1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "jit/arm64/vixl/Cpu-vixl.h"
#include "jit/arm64/vixl/Simulator-vixl.h"
#include "jit/arm64/vixl/Utils-vixl.h"
#include "util/WindowsWrapper.h"
#if defined(XP_DARWIN)
# include <libkern/OSCacheControl.h>
#endif
namespace vixl {
// Currently computes I and D cache line size.
void CPU::SetUp() {
uint32_t cache_type_register = GetCacheType();
// The cache type register holds information about the caches, including I
// D caches line size.
static const int kDCacheLineSizeShift = 16;
static const int kICacheLineSizeShift = 0;
static const uint32_t kDCacheLineSizeMask = 0xf << kDCacheLineSizeShift;
static const uint32_t kICacheLineSizeMask = 0xf << kICacheLineSizeShift;
// The cache type register holds the size of the I and D caches in words as
// a power of two.
uint32_t dcache_line_size_power_of_two =
(cache_type_register & kDCacheLineSizeMask) >> kDCacheLineSizeShift;
uint32_t icache_line_size_power_of_two =
(cache_type_register & kICacheLineSizeMask) >> kICacheLineSizeShift;
dcache_line_size_ = 4 << dcache_line_size_power_of_two;
icache_line_size_ = 4 << icache_line_size_power_of_two;
// Bug 1521158 suggests that having CPU with different cache line sizes could
// cause issues as we would only invalidate half of the cache line of we
// invalidate every 128 bytes, but other little cores have a different stride
// such as 64 bytes. To be conservative, we will try reducing the stride to 32
// bytes, which should be smaller than any known cache line.
const uint32_t conservative_line_size = 32;
dcache_line_size_ = std::min(dcache_line_size_, conservative_line_size);
icache_line_size_ = std::min(icache_line_size_, conservative_line_size);
}
uint32_t CPU::GetCacheType() {
#if defined(__aarch64__) && (defined(__linux__) || defined(__android__))
uint64_t cache_type_register;
// Copy the content of the cache type register to a core register.
__asm__ __volatile__ ("mrs %[ctr], ctr_el0" // NOLINT
: [ctr] "=r" (cache_type_register));
VIXL_ASSERT(IsUint32(cache_type_register));
return static_cast<uint32_t>(cache_type_register);
#else
// This will lead to a cache with 1 byte long lines, which is fine since
// neither EnsureIAndDCacheCoherency nor the simulator will need this
// information.
return 0;
#endif
}
void CPU::EnsureIAndDCacheCoherency(void* address, size_t length) {
#if defined(JS_SIMULATOR_ARM64) && defined(JS_CACHE_SIMULATOR_ARM64)
// This code attempts to emulate what the following assembly sequence is
// doing, which is sending the information to all cores that some cache line
// have to be invalidated and invalidating them only on the current core.
//
// This is done by recording the current range to be flushed to all
// simulators, then if there is a simulator associated with the current
// thread, applying all flushed ranges as the "isb" instruction would do.
//
// As we have no control over the CPU cores used by the code generator and the
// execution threads, this code assumes that each thread runs on its own core.
//
// See Bug 1529933 for more detailed explanation of this issue.
using js::jit::SimulatorProcess;
js::jit::AutoLockSimulatorCache alsc;
if (length > 0) {
SimulatorProcess::recordICacheFlush(address, length);
}
Simulator* sim = vixl::Simulator::Current();
if (sim) {
sim->FlushICache();
}
#elif defined(_MSC_VER) && defined(_M_ARM64)
FlushInstructionCache(GetCurrentProcess(), address, length);
#elif defined(XP_DARWIN)
sys_icache_invalidate(address, length);
#elif defined(__aarch64__) && (defined(__linux__) || defined(__android__))
// Implement the cache synchronisation for all targets where AArch64 is the
// host, even if we're building the simulator for an AAarch64 host. This
// allows for cases where the user wants to simulate code as well as run it
// natively.
if (length == 0) {
return;
}
// The code below assumes user space cache operations are allowed.
// Work out the line sizes for each cache, and use them to determine the
// start addresses.
uintptr_t start = reinterpret_cast<uintptr_t>(address);
uintptr_t dsize = static_cast<uintptr_t>(dcache_line_size_);
uintptr_t isize = static_cast<uintptr_t>(icache_line_size_);
uintptr_t dline = start & ~(dsize - 1);
uintptr_t iline = start & ~(isize - 1);
// Cache line sizes are always a power of 2.
VIXL_ASSERT(IsPowerOf2(dsize));
VIXL_ASSERT(IsPowerOf2(isize));
uintptr_t end = start + length;
do {
__asm__ __volatile__ (
// Clean each line of the D cache containing the target data.
//
// dc : Data Cache maintenance
// c : Clean
// i : Invalidate
// va : by (Virtual) Address
// c : to the point of Coherency
// Original implementation used cvau, but changed to civac due to
// errata on Cortex-A53 819472, 826319, 827319 and 824069.
// See ARM DDI 0406B page B2-12 for more information.
//
" dc civac, %[dline]\n"
:
: [dline] "r" (dline)
// This code does not write to memory, but the "memory" dependency
// prevents GCC from reordering the code.
: "memory");
dline += dsize;
} while (dline < end);
__asm__ __volatile__ (
// Make sure that the data cache operations (above) complete before the
// instruction cache operations (below).
//
// dsb : Data Synchronisation Barrier
// ish : Inner SHareable domain
//
// The point of unification for an Inner Shareable shareability domain is
// the point by which the instruction and data caches of all the processors
// in that Inner Shareable shareability domain are guaranteed to see the
// same copy of a memory location. See ARM DDI 0406B page B2-12 for more
// information.
" dsb ish\n"
: : : "memory");
do {
__asm__ __volatile__ (
// Invalidate each line of the I cache containing the target data.
//
// ic : Instruction Cache maintenance
// i : Invalidate
// va : by Address
// u : to the point of Unification
" ic ivau, %[iline]\n"
:
: [iline] "r" (iline)
: "memory");
iline += isize;
} while (iline < end);
__asm__ __volatile__(
// Make sure that the instruction cache operations (above) take effect
// before the isb (below).
" dsb ish\n"
// Ensure that any instructions already in the pipeline are discarded and
// reloaded from the new data.
// isb : Instruction Synchronisation Barrier
" isb\n"
:
:
: "memory");
#else
// If the host isn't AArch64, we must be using the simulator, so this function
// doesn't have to do anything.
USE(address, length);
#endif
}
void CPU::FlushExecutionContext() {
#if defined(JS_SIMULATOR_ARM64) && defined(JS_CACHE_SIMULATOR_ARM64)
// Performing an 'isb' will ensure the current core instruction pipeline is
// synchronized with an icache flush executed by another core.
using js::jit::SimulatorProcess;
js::jit::AutoLockSimulatorCache alsc;
Simulator* sim = vixl::Simulator::Current();
if (sim) {
sim->FlushICache();
}
#elif defined(__aarch64__)
// Ensure that any instructions already in the pipeline are discarded and
// reloaded from the icache.
__asm__ __volatile__("isb\n" : : : "memory");
#endif
}
} // namespace vixl
|