1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jit_shared_Assembler_shared_h
#define jit_shared_Assembler_shared_h
#include "mozilla/CheckedInt.h"
#include <limits.h>
#include "gc/Barrier.h"
#include "jit/AtomicOp.h"
#include "jit/JitAllocPolicy.h"
#include "jit/JitCode.h"
#include "jit/JitContext.h"
#include "jit/Label.h"
#include "jit/Registers.h"
#include "jit/RegisterSets.h"
#include "js/ScalarType.h" // js::Scalar::Type
#include "vm/HelperThreads.h"
#include "wasm/WasmCodegenTypes.h"
#include "wasm/WasmConstants.h"
#if defined(JS_CODEGEN_ARM) || defined(JS_CODEGEN_ARM64) || \
defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64) || \
defined(JS_CODEGEN_LOONG64) || defined(JS_CODEGEN_WASM32) || \
defined(JS_CODEGEN_RISCV64)
// Push return addresses callee-side.
# define JS_USE_LINK_REGISTER
#endif
#if defined(JS_CODEGEN_MIPS32) || defined(JS_CODEGEN_MIPS64) || \
defined(JS_CODEGEN_ARM64) || defined(JS_CODEGEN_LOONG64) || \
defined(JS_CODEGEN_RISCV64)
// JS_CODELABEL_LINKMODE gives labels additional metadata
// describing how Bind() should patch them.
# define JS_CODELABEL_LINKMODE
#endif
namespace js {
namespace jit {
enum class FrameType;
enum class ExceptionResumeKind : int32_t;
namespace Disassembler {
class HeapAccess;
} // namespace Disassembler
static constexpr uint32_t Simd128DataSize = 4 * sizeof(int32_t);
static_assert(Simd128DataSize == 4 * sizeof(int32_t),
"SIMD data should be able to contain int32x4");
static_assert(Simd128DataSize == 4 * sizeof(float),
"SIMD data should be able to contain float32x4");
static_assert(Simd128DataSize == 2 * sizeof(double),
"SIMD data should be able to contain float64x2");
enum Scale { TimesOne = 0, TimesTwo = 1, TimesFour = 2, TimesEight = 3 };
static_assert(sizeof(JS::Value) == 8,
"required for TimesEight and 3 below to be correct");
static const Scale ValueScale = TimesEight;
static const size_t ValueShift = 3;
static inline unsigned ScaleToShift(Scale scale) { return unsigned(scale); }
static inline bool IsShiftInScaleRange(int i) {
return i >= TimesOne && i <= TimesEight;
}
static inline Scale ShiftToScale(int i) {
MOZ_ASSERT(IsShiftInScaleRange(i));
return Scale(i);
}
static inline Scale ScaleFromElemWidth(int shift) {
switch (shift) {
case 1:
return TimesOne;
case 2:
return TimesTwo;
case 4:
return TimesFour;
case 8:
return TimesEight;
}
MOZ_CRASH("Invalid scale");
}
static inline Scale ScaleFromScalarType(Scalar::Type type) {
return ScaleFromElemWidth(Scalar::byteSize(type));
}
// Used for 32-bit immediates which do not require relocation.
struct Imm32 {
int32_t value;
explicit Imm32(int32_t value) : value(value) {}
explicit Imm32(FrameType type) : Imm32(int32_t(type)) {}
explicit Imm32(ExceptionResumeKind kind) : Imm32(int32_t(kind)) {}
static inline Imm32 ShiftOf(enum Scale s) {
switch (s) {
case TimesOne:
return Imm32(0);
case TimesTwo:
return Imm32(1);
case TimesFour:
return Imm32(2);
case TimesEight:
return Imm32(3);
};
MOZ_CRASH("Invalid scale");
}
static inline Imm32 FactorOf(enum Scale s) {
return Imm32(1 << ShiftOf(s).value);
}
};
// Pointer-sized integer to be embedded as an immediate in an instruction.
struct ImmWord {
uintptr_t value;
explicit ImmWord(uintptr_t value) : value(value) {}
};
// Used for 64-bit immediates which do not require relocation.
struct Imm64 {
uint64_t value;
explicit Imm64(int64_t value) : value(value) {}
Imm32 low() const { return Imm32(int32_t(value)); }
Imm32 hi() const { return Imm32(int32_t(value >> 32)); }
inline Imm32 firstHalf() const;
inline Imm32 secondHalf() const;
};
#ifdef DEBUG
static inline bool IsCompilingWasm() {
return GetJitContext()->isCompilingWasm();
}
#endif
// Pointer to be embedded as an immediate in an instruction.
struct ImmPtr {
void* value;
struct NoCheckToken {};
explicit constexpr ImmPtr(std::nullptr_t) : value(nullptr) {
// Explicit constructor for nullptr. This ensures ImmPtr(0) can't be called.
// Either use ImmPtr(nullptr) or ImmWord(0).
}
explicit ImmPtr(void* value, NoCheckToken) : value(value) {
// A special unchecked variant for contexts where we know it is safe to
// use an immptr. This is assuming the caller knows what they're doing.
}
explicit ImmPtr(const void* value) : value(const_cast<void*>(value)) {
// To make code serialization-safe, wasm compilation should only
// compile pointer immediates using a SymbolicAddress.
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R>
explicit ImmPtr(R (*pf)()) : value(JS_FUNC_TO_DATA_PTR(void*, pf)) {
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1>
explicit ImmPtr(R (*pf)(A1)) : value(JS_FUNC_TO_DATA_PTR(void*, pf)) {
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2>
explicit ImmPtr(R (*pf)(A1, A2)) : value(JS_FUNC_TO_DATA_PTR(void*, pf)) {
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2, class A3>
explicit ImmPtr(R (*pf)(A1, A2, A3)) : value(JS_FUNC_TO_DATA_PTR(void*, pf)) {
MOZ_ASSERT(!IsCompilingWasm());
}
template <class R, class A1, class A2, class A3, class A4>
explicit ImmPtr(R (*pf)(A1, A2, A3, A4))
: value(JS_FUNC_TO_DATA_PTR(void*, pf)) {
MOZ_ASSERT(!IsCompilingWasm());
}
};
// The same as ImmPtr except that the intention is to patch this
// instruction. The initial value of the immediate is 'addr' and this value is
// either clobbered or used in the patching process.
struct PatchedImmPtr {
void* value;
explicit PatchedImmPtr() : value(nullptr) {}
explicit PatchedImmPtr(const void* value) : value(const_cast<void*>(value)) {}
};
class AssemblerShared;
class ImmGCPtr;
// Used for immediates which require relocation.
class ImmGCPtr {
public:
const gc::Cell* value;
explicit ImmGCPtr(const gc::Cell* ptr) : value(ptr) {
// Nursery pointers can't be used if the main thread might be currently
// performing a minor GC.
MOZ_ASSERT_IF(ptr && !ptr->isTenured(), !CurrentThreadIsIonCompiling());
// wasm shouldn't be creating GC things
MOZ_ASSERT(!IsCompilingWasm());
}
private:
ImmGCPtr() : value(0) {}
};
// Pointer to trampoline code. Trampoline code is kept alive until the runtime
// is destroyed, so does not need to be traced.
struct TrampolinePtr {
uint8_t* value;
TrampolinePtr() : value(nullptr) {}
explicit TrampolinePtr(uint8_t* value) : value(value) { MOZ_ASSERT(value); }
};
// Pointer to be embedded as an immediate that is loaded/stored from by an
// instruction.
struct AbsoluteAddress {
void* addr;
explicit AbsoluteAddress(const void* addr) : addr(const_cast<void*>(addr)) {
MOZ_ASSERT(!IsCompilingWasm());
}
AbsoluteAddress offset(ptrdiff_t delta) {
return AbsoluteAddress(((uint8_t*)addr) + delta);
}
};
// The same as AbsoluteAddress except that the intention is to patch this
// instruction. The initial value of the immediate is 'addr' and this value is
// either clobbered or used in the patching process.
struct PatchedAbsoluteAddress {
void* addr;
explicit PatchedAbsoluteAddress() : addr(nullptr) {}
explicit PatchedAbsoluteAddress(const void* addr)
: addr(const_cast<void*>(addr)) {}
explicit PatchedAbsoluteAddress(uintptr_t addr)
: addr(reinterpret_cast<void*>(addr)) {}
};
// Specifies an address computed in the form of a register base and a constant,
// 32-bit offset.
struct Address {
RegisterOrSP base;
int32_t offset;
Address(Register base, int32_t offset)
: base(RegisterOrSP(base)), offset(offset) {}
#ifdef JS_HAS_HIDDEN_SP
Address(RegisterOrSP base, int32_t offset) : base(base), offset(offset) {}
#endif
Address() = delete;
};
#if JS_BITS_PER_WORD == 32
static inline Address LowWord(const Address& address) {
using mozilla::CheckedInt;
CheckedInt<int32_t> offset =
CheckedInt<int32_t>(address.offset) + INT64LOW_OFFSET;
MOZ_ALWAYS_TRUE(offset.isValid());
return Address(address.base, offset.value());
}
static inline Address HighWord(const Address& address) {
using mozilla::CheckedInt;
CheckedInt<int32_t> offset =
CheckedInt<int32_t>(address.offset) + INT64HIGH_OFFSET;
MOZ_ALWAYS_TRUE(offset.isValid());
return Address(address.base, offset.value());
}
#endif
// Specifies an address computed in the form of a register base, a register
// index with a scale, and a constant, 32-bit offset.
struct BaseIndex {
RegisterOrSP base;
Register index;
Scale scale;
int32_t offset;
BaseIndex(Register base, Register index, Scale scale, int32_t offset = 0)
: base(RegisterOrSP(base)), index(index), scale(scale), offset(offset) {}
#ifdef JS_HAS_HIDDEN_SP
BaseIndex(RegisterOrSP base, Register index, Scale scale, int32_t offset = 0)
: base(base), index(index), scale(scale), offset(offset) {}
#endif
BaseIndex() = delete;
};
#if JS_BITS_PER_WORD == 32
static inline BaseIndex LowWord(const BaseIndex& address) {
using mozilla::CheckedInt;
CheckedInt<int32_t> offset =
CheckedInt<int32_t>(address.offset) + INT64LOW_OFFSET;
MOZ_ALWAYS_TRUE(offset.isValid());
return BaseIndex(address.base, address.index, address.scale, offset.value());
}
static inline BaseIndex HighWord(const BaseIndex& address) {
using mozilla::CheckedInt;
CheckedInt<int32_t> offset =
CheckedInt<int32_t>(address.offset) + INT64HIGH_OFFSET;
MOZ_ALWAYS_TRUE(offset.isValid());
return BaseIndex(address.base, address.index, address.scale, offset.value());
}
#endif
// A BaseIndex used to access Values. Note that |offset| is *not* scaled by
// sizeof(Value). Use this *only* if you're indexing into a series of Values
// that aren't object elements or object slots (for example, values on the
// stack, values in an arguments object, &c.). If you're indexing into an
// object's elements or slots, don't use this directly! Use
// BaseObject{Element,Slot}Index instead.
struct BaseValueIndex : BaseIndex {
BaseValueIndex(Register base, Register index, int32_t offset = 0)
: BaseIndex(RegisterOrSP(base), index, ValueScale, offset) {}
#ifdef JS_HAS_HIDDEN_SP
BaseValueIndex(RegisterOrSP base, Register index, int32_t offset = 0)
: BaseIndex(base, index, ValueScale, offset) {}
#endif
};
// Specifies the address of an indexed Value within object elements from a
// base. The index must not already be scaled by sizeof(Value)!
struct BaseObjectElementIndex : BaseValueIndex {
BaseObjectElementIndex(Register base, Register index, int32_t offset = 0)
: BaseValueIndex(base, index, offset) {}
#ifdef JS_HAS_HIDDEN_SP
BaseObjectElementIndex(RegisterOrSP base, Register index, int32_t offset = 0)
: BaseValueIndex(base, index, offset) {}
#endif
static void staticAssertions();
};
// Like BaseObjectElementIndex, except for object slots.
struct BaseObjectSlotIndex : BaseValueIndex {
BaseObjectSlotIndex(Register base, Register index)
: BaseValueIndex(base, index) {}
#ifdef JS_HAS_HIDDEN_SP
BaseObjectSlotIndex(RegisterOrSP base, Register index)
: BaseValueIndex(base, index) {}
#endif
static void staticAssertions();
};
enum class RelocationKind {
// The target is immovable, so patching is only needed if the source
// buffer is relocated and the reference is relative.
HARDCODED,
// The target is the start of a JitCode buffer, which must be traced
// during garbage collection. Relocations and patching may be needed.
JITCODE
};
class CodeOffset {
size_t offset_;
static const size_t NOT_BOUND = size_t(-1);
public:
explicit CodeOffset(size_t offset) : offset_(offset) {}
CodeOffset() : offset_(NOT_BOUND) {}
size_t offset() const {
MOZ_ASSERT(bound());
return offset_;
}
void bind(size_t offset) {
MOZ_ASSERT(!bound());
offset_ = offset;
MOZ_ASSERT(bound());
}
bool bound() const { return offset_ != NOT_BOUND; }
void offsetBy(size_t delta) {
MOZ_ASSERT(bound());
MOZ_ASSERT(offset_ + delta >= offset_, "no overflow");
offset_ += delta;
}
};
// A code label contains an absolute reference to a point in the code. Thus, it
// cannot be patched until after linking.
// When the source label is resolved into a memory address, this address is
// patched into the destination address.
// Some need to distinguish between multiple ways of patching that address.
// See JS_CODELABEL_LINKMODE.
class CodeLabel {
// The destination position, where the absolute reference should get
// patched into.
CodeOffset patchAt_;
// The source label (relative) in the code to where the destination should
// get patched to.
CodeOffset target_;
#ifdef JS_CODELABEL_LINKMODE
public:
enum LinkMode { Uninitialized = 0, RawPointer, MoveImmediate, JumpImmediate };
private:
LinkMode linkMode_ = Uninitialized;
#endif
public:
CodeLabel() = default;
explicit CodeLabel(const CodeOffset& patchAt) : patchAt_(patchAt) {}
CodeLabel(const CodeOffset& patchAt, const CodeOffset& target)
: patchAt_(patchAt), target_(target) {}
CodeOffset* patchAt() { return &patchAt_; }
CodeOffset* target() { return &target_; }
CodeOffset patchAt() const { return patchAt_; }
CodeOffset target() const { return target_; }
#ifdef JS_CODELABEL_LINKMODE
LinkMode linkMode() const { return linkMode_; }
void setLinkMode(LinkMode value) { linkMode_ = value; }
#endif
};
typedef Vector<CodeLabel, 0, SystemAllocPolicy> CodeLabelVector;
class CodeLocationLabel {
uint8_t* raw_ = nullptr;
public:
CodeLocationLabel(JitCode* code, CodeOffset base) {
MOZ_ASSERT(base.offset() < code->instructionsSize());
raw_ = code->raw() + base.offset();
}
explicit CodeLocationLabel(JitCode* code) { raw_ = code->raw(); }
explicit CodeLocationLabel(uint8_t* raw) {
MOZ_ASSERT(raw);
raw_ = raw;
}
ptrdiff_t operator-(const CodeLocationLabel& other) const {
return raw_ - other.raw_;
}
uint8_t* raw() const { return raw_; }
};
} // namespace jit
namespace wasm {
// Represents an instruction to be patched and the intended pointee. These
// links are accumulated in the MacroAssembler, but patching is done outside
// the MacroAssembler (in Module::staticallyLink).
struct SymbolicAccess {
SymbolicAccess(jit::CodeOffset patchAt, SymbolicAddress target)
: patchAt(patchAt), target(target) {}
jit::CodeOffset patchAt;
SymbolicAddress target;
};
typedef Vector<SymbolicAccess, 0, SystemAllocPolicy> SymbolicAccessVector;
// Describes a single wasm or asm.js memory access for the purpose of generating
// code and metadata.
class MemoryAccessDesc {
uint64_t offset64_;
uint32_t align_;
Scalar::Type type_;
jit::Synchronization sync_;
wasm::BytecodeOffset trapOffset_;
wasm::SimdOp widenOp_;
enum { Plain, ZeroExtend, Splat, Widen } loadOp_;
public:
explicit MemoryAccessDesc(
Scalar::Type type, uint32_t align, uint64_t offset,
BytecodeOffset trapOffset,
const jit::Synchronization& sync = jit::Synchronization::None())
: offset64_(offset),
align_(align),
type_(type),
sync_(sync),
trapOffset_(trapOffset),
widenOp_(wasm::SimdOp::Limit),
loadOp_(Plain) {
MOZ_ASSERT(mozilla::IsPowerOfTwo(align));
}
// The offset is a 64-bit value because of memory64. Almost always, it will
// fit in 32 bits, and hence offset() checks that it will, this method is used
// almost everywhere in the engine. The compiler front-ends must use
// offset64() to bypass the check performed by offset(), and must resolve
// offsets that don't fit in 32 bits early in the compilation pipeline so that
// no large offsets are observed later.
uint32_t offset() const {
MOZ_ASSERT(offset64_ <= UINT32_MAX);
return uint32_t(offset64_);
}
uint64_t offset64() const { return offset64_; }
// The offset can be cleared without worrying about its magnitude.
void clearOffset() { offset64_ = 0; }
// The offset can be set (after compile-time evaluation) but only to values
// that fit in 32 bits.
void setOffset32(uint32_t offset) { offset64_ = offset; }
uint32_t align() const { return align_; }
Scalar::Type type() const { return type_; }
unsigned byteSize() const { return Scalar::byteSize(type()); }
const jit::Synchronization& sync() const { return sync_; }
BytecodeOffset trapOffset() const { return trapOffset_; }
wasm::SimdOp widenSimdOp() const {
MOZ_ASSERT(isWidenSimd128Load());
return widenOp_;
}
bool isAtomic() const { return !sync_.isNone(); }
bool isZeroExtendSimd128Load() const { return loadOp_ == ZeroExtend; }
bool isSplatSimd128Load() const { return loadOp_ == Splat; }
bool isWidenSimd128Load() const { return loadOp_ == Widen; }
void setZeroExtendSimd128Load() {
MOZ_ASSERT(type() == Scalar::Float32 || type() == Scalar::Float64);
MOZ_ASSERT(!isAtomic());
MOZ_ASSERT(loadOp_ == Plain);
loadOp_ = ZeroExtend;
}
void setSplatSimd128Load() {
MOZ_ASSERT(type() == Scalar::Uint8 || type() == Scalar::Uint16 ||
type() == Scalar::Float32 || type() == Scalar::Float64);
MOZ_ASSERT(!isAtomic());
MOZ_ASSERT(loadOp_ == Plain);
loadOp_ = Splat;
}
void setWidenSimd128Load(wasm::SimdOp op) {
MOZ_ASSERT(type() == Scalar::Float64);
MOZ_ASSERT(!isAtomic());
MOZ_ASSERT(loadOp_ == Plain);
widenOp_ = op;
loadOp_ = Widen;
}
};
} // namespace wasm
namespace jit {
// The base class of all Assemblers for all archs.
class AssemblerShared {
wasm::CallSiteVector callSites_;
wasm::CallSiteTargetVector callSiteTargets_;
wasm::TrapSiteVectorArray trapSites_;
wasm::SymbolicAccessVector symbolicAccesses_;
wasm::TryNoteVector tryNotes_;
#ifdef DEBUG
// To facilitate figuring out which part of SM created each instruction as
// shown by IONFLAGS=codegen, this maintains a stack of (notionally)
// code-creating routines, which is printed in the log output every time an
// entry is pushed or popped. Do not push/pop entries directly; instead use
// `class AutoCreatedBy`.
mozilla::Vector<const char*> creators_;
#endif
protected:
CodeLabelVector codeLabels_;
bool enoughMemory_;
bool embedsNurseryPointers_;
public:
AssemblerShared() : enoughMemory_(true), embedsNurseryPointers_(false) {}
~AssemblerShared();
#ifdef DEBUG
// Do not use these directly; instead use `class AutoCreatedBy`.
void pushCreator(const char*);
void popCreator();
// See comment on the implementation of `hasCreator` for guidance on what to
// do if you get failures of the assertion `MOZ_ASSERT(hasCreator())`,
bool hasCreator() const;
#endif
void propagateOOM(bool success) { enoughMemory_ &= success; }
void setOOM() { enoughMemory_ = false; }
bool oom() const { return !enoughMemory_; }
bool embedsNurseryPointers() const { return embedsNurseryPointers_; }
void addCodeLabel(CodeLabel label) {
propagateOOM(codeLabels_.append(label));
}
size_t numCodeLabels() const { return codeLabels_.length(); }
CodeLabel codeLabel(size_t i) { return codeLabels_[i]; }
CodeLabelVector& codeLabels() { return codeLabels_; }
// WebAssembly metadata emitted by masm operations accumulated on the
// MacroAssembler, and swapped into a wasm::CompiledCode after finish().
template <typename... Args>
void append(const wasm::CallSiteDesc& desc, CodeOffset retAddr,
Args&&... args) {
enoughMemory_ &= callSites_.emplaceBack(desc, retAddr.offset());
enoughMemory_ &= callSiteTargets_.emplaceBack(std::forward<Args>(args)...);
}
void append(wasm::Trap trap, wasm::TrapSite site) {
enoughMemory_ &= trapSites_[trap].append(site);
}
void append(const wasm::MemoryAccessDesc& access, uint32_t pcOffset) {
appendOutOfBoundsTrap(access.trapOffset(), pcOffset);
}
void appendOutOfBoundsTrap(wasm::BytecodeOffset trapOffset,
uint32_t pcOffset) {
append(wasm::Trap::OutOfBounds, wasm::TrapSite(pcOffset, trapOffset));
}
void append(wasm::SymbolicAccess access) {
enoughMemory_ &= symbolicAccesses_.append(access);
}
// This one returns an index as the try note so that it can be looked up
// later to add the end point and stack position of the try block.
[[nodiscard]] bool append(wasm::TryNote tryNote, size_t* tryNoteIndex) {
if (!tryNotes_.append(tryNote)) {
enoughMemory_ = false;
return false;
}
*tryNoteIndex = tryNotes_.length() - 1;
return true;
}
wasm::CallSiteVector& callSites() { return callSites_; }
wasm::CallSiteTargetVector& callSiteTargets() { return callSiteTargets_; }
wasm::TrapSiteVectorArray& trapSites() { return trapSites_; }
wasm::SymbolicAccessVector& symbolicAccesses() { return symbolicAccesses_; }
wasm::TryNoteVector& tryNotes() { return tryNotes_; }
};
// AutoCreatedBy pushes and later pops a who-created-these-insns? tag into the
// JitSpew_Codegen output. These could be created fairly frequently, so a
// dummy inlineable-out version is provided for non-debug builds. The tag
// text can be completely arbitrary -- it serves only to help readers of the
// output text to relate instructions back to the part(s) of SM that created
// them.
#ifdef DEBUG
class MOZ_RAII AutoCreatedBy {
private:
AssemblerShared& ash_;
public:
AutoCreatedBy(AssemblerShared& ash, const char* who) : ash_(ash) {
ash_.pushCreator(who);
}
~AutoCreatedBy() { ash_.popCreator(); }
};
#else
class MOZ_RAII AutoCreatedBy {
public:
inline AutoCreatedBy(AssemblerShared& ash, const char* who) {}
// A user-defined constructor is necessary to stop some compilers from
// complaining about unused variables.
inline ~AutoCreatedBy() {}
};
#endif
} // namespace jit
} // namespace js
#endif /* jit_shared_Assembler_shared_h */
|