1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portable double to alphanumeric string and back converters.
*/
#include "util/DoubleToString.h"
#include "mozilla/EndianUtils.h"
#include "js/Utility.h"
using namespace js;
#if MOZ_LITTLE_ENDIAN()
# define IEEE_8087
#else
# define IEEE_MC68k
#endif
#ifndef Long
# define Long int32_t
#endif
#ifndef ULong
# define ULong uint32_t
#endif
/*
#ifndef Llong
#define Llong int64_t
#endif
#ifndef ULlong
#define ULlong uint64_t
#endif
*/
// dtoa.c requires that MALLOC be infallible. Furthermore, its allocations are
// few and small. So AutoEnterOOMUnsafeRegion is appropriate here.
static inline void* dtoa_malloc(size_t size) {
AutoEnterOOMUnsafeRegion oomUnsafe;
void* p = js_malloc(size);
if (!p) oomUnsafe.crash("dtoa_malloc");
return p;
}
static inline void dtoa_free(void* p) { return js_free(p); }
#define NO_GLOBAL_STATE
#define NO_ERRNO
#define Omit_Private_Memory // This saves memory for the workloads we see.
#define MALLOC dtoa_malloc
#define FREE dtoa_free
#include "dtoa.c"
/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative.
* divisor must be between 1 and 65536.
* This function cannot run out of memory. */
static uint32_t divrem(Bigint* b, uint32_t divisor) {
int32_t n = b->wds;
uint32_t remainder = 0;
ULong* bx;
ULong* bp;
MOZ_ASSERT(divisor > 0 && divisor <= 65536);
if (!n) return 0; /* b is zero */
bx = b->x;
bp = bx + n;
do {
ULong a = *--bp;
ULong dividend = remainder << 16 | a >> 16;
ULong quotientHi = dividend / divisor;
ULong quotientLo;
remainder = dividend - quotientHi * divisor;
MOZ_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
dividend = remainder << 16 | (a & 0xFFFF);
quotientLo = dividend / divisor;
remainder = dividend - quotientLo * divisor;
MOZ_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
*bp = quotientHi << 16 | quotientLo;
} while (bp != bx);
/* Decrease the size of the number if its most significant word is now zero.
*/
if (bx[n - 1] == 0) b->wds--;
return remainder;
}
/* Return floor(b/2^k) and set b to be the remainder. The returned quotient
* must be less than 2^32. */
static uint32_t quorem2(Bigint* b, int32_t k) {
ULong mask;
ULong result;
ULong* bx;
ULong* bxe;
int32_t w;
int32_t n = k >> 5;
k &= 0x1F;
mask = (ULong(1) << k) - 1;
w = b->wds - n;
if (w <= 0) return 0;
MOZ_ASSERT(w <= 2);
bx = b->x;
bxe = bx + n;
result = *bxe >> k;
*bxe &= mask;
if (w == 2) {
MOZ_ASSERT(!(bxe[1] & ~mask));
if (k) result |= bxe[1] << (32 - k);
}
n++;
while (!*bxe && bxe != bx) {
n--;
bxe--;
}
b->wds = n;
return result;
}
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string
* that we could produce, which occurs when printing -5e-324 in binary. We
* could compute a better estimate of the size of the output string and malloc
* fewer bytes depending on d and base, but why bother? */
#define DTOBASESTR_BUFFER_SIZE 1078
#define BASEDIGIT(digit) \
((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
char* js_dtobasestr(DtoaState* state, int base, double dinput) {
U d;
char* buffer; /* The output string */
char* p; /* Pointer to current position in the buffer */
char* pInt; /* Pointer to the beginning of the integer part of the string */
char* q;
uint32_t digit;
U di; /* d truncated to an integer */
U df; /* The fractional part of d */
MOZ_ASSERT(base >= 2 && base <= 36);
dval(d) = dinput;
buffer = js_pod_malloc<char>(DTOBASESTR_BUFFER_SIZE);
if (!buffer) return nullptr;
p = buffer;
if (dval(d) < 0.0) {
*p++ = '-';
dval(d) = -dval(d);
}
/* Check for Infinity and NaN */
if ((word0(d) & Exp_mask) == Exp_mask) {
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
return buffer;
}
/* Output the integer part of d with the digits in reverse order. */
pInt = p;
dval(di) = floor(dval(d));
if (dval(di) <= 4294967295.0) {
uint32_t n = (uint32_t)dval(di);
if (n) do {
uint32_t m = n / base;
digit = n - m * base;
n = m;
MOZ_ASSERT(digit < (uint32_t)base);
*p++ = BASEDIGIT(digit);
} while (n);
else
*p++ = '0';
} else {
int e;
int bits; /* Number of significant bits in di; not used. */
Bigint* b = d2b(PASS_STATE di, &e, &bits);
if (!b) goto nomem1;
b = lshift(PASS_STATE b, e);
if (!b) {
nomem1:
Bfree(PASS_STATE b);
js_free(buffer);
return nullptr;
}
do {
digit = divrem(b, base);
MOZ_ASSERT(digit < (uint32_t)base);
*p++ = BASEDIGIT(digit);
} while (b->wds);
Bfree(PASS_STATE b);
}
/* Reverse the digits of the integer part of d. */
q = p - 1;
while (q > pInt) {
char ch = *pInt;
*pInt++ = *q;
*q-- = ch;
}
dval(df) = dval(d) - dval(di);
if (dval(df) != 0.0) {
/* We have a fraction. */
int e, bbits;
int32_t s2, done;
Bigint* b = nullptr;
Bigint* s = nullptr;
Bigint* mlo = nullptr;
Bigint* mhi = nullptr;
*p++ = '.';
b = d2b(PASS_STATE df, &e, &bbits);
if (!b) {
nomem2:
Bfree(PASS_STATE b);
Bfree(PASS_STATE s);
if (mlo != mhi) Bfree(PASS_STATE mlo);
Bfree(PASS_STATE mhi);
js_free(buffer);
return nullptr;
}
MOZ_ASSERT(e < 0);
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1.
*/
s2 = -(int32_t)(word0(d) >> Exp_shift1 & Exp_mask >> Exp_shift1);
#ifndef Sudden_Underflow
if (!s2) s2 = -1;
#endif
s2 += Bias + P;
/* 1/2^s2 = (nextDouble(d) - d)/2 */
MOZ_ASSERT(-s2 < e);
mlo = i2b(PASS_STATE 1);
if (!mlo) goto nomem2;
mhi = mlo;
if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
&& word0(d) & (Exp_mask & Exp_mask << 1)
#endif
) {
/* The special case. Here we want to be within a quarter of the last
input significant digit instead of one half of it when the output
string's value is less than d. */
s2 += Log2P;
mhi = i2b(PASS_STATE 1 << Log2P);
if (!mhi) goto nomem2;
}
b = lshift(PASS_STATE b, e + s2);
if (!b) goto nomem2;
s = i2b(PASS_STATE 1);
if (!s) goto nomem2;
s = lshift(PASS_STATE s, s2);
if (!s) goto nomem2;
/* At this point we have the following:
* s = 2^s2;
* 1 > df = b/2^s2 > 0;
* (d - prevDouble(d))/2 = mlo/2^s2;
* (nextDouble(d) - d)/2 = mhi/2^s2. */
done = false;
do {
int32_t j, j1;
Bigint* delta;
b = multadd(PASS_STATE b, base, 0);
if (!b) goto nomem2;
digit = quorem2(b, s2);
if (mlo == mhi) {
mlo = mhi = multadd(PASS_STATE mlo, base, 0);
if (!mhi) goto nomem2;
} else {
mlo = multadd(PASS_STATE mlo, base, 0);
if (!mlo) goto nomem2;
mhi = multadd(PASS_STATE mhi, base, 0);
if (!mhi) goto nomem2;
}
/* Do we yet have the shortest string that will round to d? */
j = cmp(b, mlo);
/* j is b/2^s2 compared with mlo/2^s2. */
delta = diff(PASS_STATE s, mhi);
if (!delta) goto nomem2;
j1 = delta->sign ? 1 : cmp(b, delta);
Bfree(PASS_STATE delta);
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
#ifndef ROUND_BIASED
if (j1 == 0 && !(word1(d) & 1)) {
if (j > 0) digit++;
done = true;
} else
#endif
if (j < 0 || (j == 0
#ifndef ROUND_BIASED
&& !(word1(d) & 1)
#endif
)) {
if (j1 > 0) {
/* Either dig or dig+1 would work here as the least significant digit.
Use whichever would produce an output value closer to d. */
b = lshift(PASS_STATE b, 1);
if (!b) goto nomem2;
j1 = cmp(b, s);
if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here
* because it messes up odd base output such as 3.5 in
* base 3. */
digit++;
}
done = true;
} else if (j1 > 0) {
digit++;
done = true;
}
MOZ_ASSERT(digit < (uint32_t)base);
*p++ = BASEDIGIT(digit);
} while (!done);
Bfree(PASS_STATE b);
Bfree(PASS_STATE s);
if (mlo != mhi) Bfree(PASS_STATE mlo);
Bfree(PASS_STATE mhi);
}
MOZ_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
*p = '\0';
return buffer;
}
DtoaState* js::NewDtoaState() { return newdtoa(); }
void js::DestroyDtoaState(DtoaState* state) { destroydtoa(state); }
/* Cleanup pollution from dtoa.c */
#undef Bias
|