summaryrefslogtreecommitdiffstats
path: root/mozglue/misc/SIMD.cpp
blob: 3893de57b32cd2d07c9afd376aedfd789e105995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "mozilla/SIMD.h"

#include <cstring>
#include <stdint.h>
#include <type_traits>

#include "mozilla/EndianUtils.h"
#include "mozilla/SSE.h"

#ifdef MOZILLA_PRESUME_SSE2

#  include <immintrin.h>

#endif

namespace mozilla {

template <typename TValue>
const TValue* FindInBufferNaive(const TValue* ptr, TValue value,
                                size_t length) {
  const TValue* end = ptr + length;
  while (ptr < end) {
    if (*ptr == value) {
      return ptr;
    }
    ptr++;
  }
  return nullptr;
}

#ifdef MOZILLA_PRESUME_SSE2

const __m128i* Cast128(uintptr_t ptr) {
  return reinterpret_cast<const __m128i*>(ptr);
}

template <typename T>
T GetAs(uintptr_t ptr) {
  return *reinterpret_cast<const T*>(ptr);
}

// Akin to ceil/floor, AlignDown/AlignUp will return the original pointer if it
// is already aligned.
uintptr_t AlignDown16(uintptr_t ptr) { return ptr & ~0xf; }

uintptr_t AlignUp16(uintptr_t ptr) { return AlignDown16(ptr + 0xf); }

template <typename TValue>
__m128i CmpEq128(__m128i a, __m128i b) {
  static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
  if (sizeof(TValue) == 1) {
    return _mm_cmpeq_epi8(a, b);
  }
  return _mm_cmpeq_epi16(a, b);
}

#  ifdef __GNUC__

// Earlier versions of GCC are missing the _mm_loadu_si32 instruction. This
// workaround from Peter Cordes (https://stackoverflow.com/a/72837992) compiles
// down to the same instructions. We could just replace _mm_loadu_si32
__m128i Load32BitsIntoXMM(uintptr_t ptr) {
  int tmp;
  memcpy(&tmp, reinterpret_cast<const void*>(ptr),
         sizeof(tmp));            // unaligned aliasing-safe load
  return _mm_cvtsi32_si128(tmp);  // efficient on GCC/clang/MSVC
}

#  else

__m128i Load32BitsIntoXMM(uintptr_t ptr) {
  return _mm_loadu_si32(Cast128(ptr));
}

#  endif

const char* Check4x4Chars(__m128i needle, uintptr_t a, uintptr_t b, uintptr_t c,
                          uintptr_t d) {
  __m128i haystackA = Load32BitsIntoXMM(a);
  __m128i cmpA = CmpEq128<char>(needle, haystackA);
  __m128i haystackB = Load32BitsIntoXMM(b);
  __m128i cmpB = CmpEq128<char>(needle, haystackB);
  __m128i haystackC = Load32BitsIntoXMM(c);
  __m128i cmpC = CmpEq128<char>(needle, haystackC);
  __m128i haystackD = Load32BitsIntoXMM(d);
  __m128i cmpD = CmpEq128<char>(needle, haystackD);
  __m128i or_ab = _mm_or_si128(cmpA, cmpB);
  __m128i or_cd = _mm_or_si128(cmpC, cmpD);
  __m128i or_abcd = _mm_or_si128(or_ab, or_cd);
  int orMask = _mm_movemask_epi8(or_abcd);
  if (orMask & 0xf) {
    int cmpMask;
    cmpMask = _mm_movemask_epi8(cmpA);
    if (cmpMask & 0xf) {
      return reinterpret_cast<const char*>(a + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpB);
    if (cmpMask & 0xf) {
      return reinterpret_cast<const char*>(b + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpC);
    if (cmpMask & 0xf) {
      return reinterpret_cast<const char*>(c + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpD);
    if (cmpMask & 0xf) {
      return reinterpret_cast<const char*>(d + __builtin_ctz(cmpMask));
    }
  }

  return nullptr;
}

template <typename TValue>
const TValue* Check4x16Bytes(__m128i needle, uintptr_t a, uintptr_t b,
                             uintptr_t c, uintptr_t d) {
  __m128i haystackA = _mm_loadu_si128(Cast128(a));
  __m128i cmpA = CmpEq128<TValue>(needle, haystackA);
  __m128i haystackB = _mm_loadu_si128(Cast128(b));
  __m128i cmpB = CmpEq128<TValue>(needle, haystackB);
  __m128i haystackC = _mm_loadu_si128(Cast128(c));
  __m128i cmpC = CmpEq128<TValue>(needle, haystackC);
  __m128i haystackD = _mm_loadu_si128(Cast128(d));
  __m128i cmpD = CmpEq128<TValue>(needle, haystackD);
  __m128i or_ab = _mm_or_si128(cmpA, cmpB);
  __m128i or_cd = _mm_or_si128(cmpC, cmpD);
  __m128i or_abcd = _mm_or_si128(or_ab, or_cd);
  int orMask = _mm_movemask_epi8(or_abcd);
  if (orMask) {
    int cmpMask;
    cmpMask = _mm_movemask_epi8(cmpA);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpB);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpC);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(c + __builtin_ctz(cmpMask));
    }
    cmpMask = _mm_movemask_epi8(cmpD);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(d + __builtin_ctz(cmpMask));
    }
  }

  return nullptr;
}

enum class HaystackOverlap {
  Overlapping,
  Sequential,
};

// Check two 16-byte chunks for the two-byte sequence loaded into needle1
// followed by needle1. `carryOut` is an optional pointer which we will
// populate based on whether the last character of b matches needle1. This
// should be provided on subsequent calls via `carryIn` so we can detect cases
// where the last byte of b's 16-byte chunk is needle1 and the first byte of
// the next a's 16-byte chunk is needle2. `overlap` and whether
// `carryIn`/`carryOut` are NULL should be knowable at compile time to avoid
// branching.
template <typename TValue>
const TValue* Check2x2x16Bytes(__m128i needle1, __m128i needle2, uintptr_t a,
                               uintptr_t b, __m128i* carryIn, __m128i* carryOut,
                               HaystackOverlap overlap) {
  const int shiftRightAmount = 16 - sizeof(TValue);
  const int shiftLeftAmount = sizeof(TValue);
  __m128i haystackA = _mm_loadu_si128(Cast128(a));
  __m128i cmpA1 = CmpEq128<TValue>(needle1, haystackA);
  __m128i cmpA2 = CmpEq128<TValue>(needle2, haystackA);
  __m128i cmpA;
  if (carryIn) {
    cmpA = _mm_and_si128(
        _mm_or_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), *carryIn), cmpA2);
  } else {
    cmpA = _mm_and_si128(_mm_bslli_si128(cmpA1, shiftLeftAmount), cmpA2);
  }
  __m128i haystackB = _mm_loadu_si128(Cast128(b));
  __m128i cmpB1 = CmpEq128<TValue>(needle1, haystackB);
  __m128i cmpB2 = CmpEq128<TValue>(needle2, haystackB);
  __m128i cmpB;
  if (overlap == HaystackOverlap::Overlapping) {
    cmpB = _mm_and_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), cmpB2);
  } else {
    MOZ_ASSERT(overlap == HaystackOverlap::Sequential);
    __m128i carryAB = _mm_bsrli_si128(cmpA1, shiftRightAmount);
    cmpB = _mm_and_si128(
        _mm_or_si128(_mm_bslli_si128(cmpB1, shiftLeftAmount), carryAB), cmpB2);
  }
  __m128i or_ab = _mm_or_si128(cmpA, cmpB);
  int orMask = _mm_movemask_epi8(or_ab);
  if (orMask) {
    int cmpMask;
    cmpMask = _mm_movemask_epi8(cmpA);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(a + __builtin_ctz(cmpMask) -
                                             shiftLeftAmount);
    }
    cmpMask = _mm_movemask_epi8(cmpB);
    if (cmpMask) {
      return reinterpret_cast<const TValue*>(b + __builtin_ctz(cmpMask) -
                                             shiftLeftAmount);
    }
  }

  if (carryOut) {
    _mm_store_si128(carryOut, _mm_bsrli_si128(cmpB1, shiftRightAmount));
  }

  return nullptr;
}

template <typename TValue>
const TValue* FindInBuffer(const TValue* ptr, TValue value, size_t length) {
  static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
  static_assert(std::is_unsigned<TValue>::value);
  uint64_t splat64;
  if (sizeof(TValue) == 1) {
    splat64 = 0x0101010101010101llu;
  } else {
    splat64 = 0x0001000100010001llu;
  }

  // Load our needle into a 16-byte register
  uint64_t u64_value = static_cast<uint64_t>(value) * splat64;
  int64_t i64_value = *reinterpret_cast<int64_t*>(&u64_value);
  __m128i needle = _mm_set_epi64x(i64_value, i64_value);

  size_t numBytes = length * sizeof(TValue);
  uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
  uintptr_t end = cur + numBytes;

  if ((sizeof(TValue) > 1 && numBytes < 16) || numBytes < 4) {
    while (cur < end) {
      if (GetAs<TValue>(cur) == value) {
        return reinterpret_cast<const TValue*>(cur);
      }
      cur += sizeof(TValue);
    }
    return nullptr;
  }

  if (numBytes < 16) {
    // NOTE: here and below, we have some bit fiddling which could look a
    // little weird. The important thing to note though is it's just a trick
    // for getting the number 4 if numBytes is greater than or equal to 8,
    // and 0 otherwise. This lets us fully cover the range without any
    // branching for the case where numBytes is in [4,8), and [8,16). We get
    // four ranges from this - if numbytes > 8, we get:
    //   [0,4), [4,8], [end - 8), [end - 4)
    // and if numbytes < 8, we get
    //   [0,4), [0,4), [end - 4), [end - 4)
    uintptr_t a = cur;
    uintptr_t b = cur + ((numBytes & 8) >> 1);
    uintptr_t c = end - 4 - ((numBytes & 8) >> 1);
    uintptr_t d = end - 4;
    const char* charResult = Check4x4Chars(needle, a, b, c, d);
    // Note: we ensure above that sizeof(TValue) == 1 here, so this is
    // either char to char or char to something like a uint8_t.
    return reinterpret_cast<const TValue*>(charResult);
  }

  if (numBytes < 64) {
    // NOTE: see the above explanation of the similar chunk of code, but in
    // this case, replace 8 with 32 and 4 with 16.
    uintptr_t a = cur;
    uintptr_t b = cur + ((numBytes & 32) >> 1);
    uintptr_t c = end - 16 - ((numBytes & 32) >> 1);
    uintptr_t d = end - 16;
    return Check4x16Bytes<TValue>(needle, a, b, c, d);
  }

  // Get the initial unaligned load out of the way. This will overlap with the
  // aligned stuff below, but the overlapped part should effectively be free
  // (relative to a mispredict from doing a byte-by-byte loop).
  __m128i haystack = _mm_loadu_si128(Cast128(cur));
  __m128i cmp = CmpEq128<TValue>(needle, haystack);
  int cmpMask = _mm_movemask_epi8(cmp);
  if (cmpMask) {
    return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask));
  }

  // Now we're working with aligned memory. Hooray! \o/
  cur = AlignUp16(cur);

  // The address of the final 48-63 bytes. We overlap this with what we check in
  // our hot loop below to avoid branching. Again, the overlap should be
  // negligible compared with a branch mispredict.
  uintptr_t tailStartPtr = AlignDown16(end - 48);
  uintptr_t tailEndPtr = end - 16;

  while (cur < tailStartPtr) {
    uintptr_t a = cur;
    uintptr_t b = cur + 16;
    uintptr_t c = cur + 32;
    uintptr_t d = cur + 48;
    const TValue* result = Check4x16Bytes<TValue>(needle, a, b, c, d);
    if (result) {
      return result;
    }
    cur += 64;
  }

  uintptr_t a = tailStartPtr;
  uintptr_t b = tailStartPtr + 16;
  uintptr_t c = tailStartPtr + 32;
  uintptr_t d = tailEndPtr;
  return Check4x16Bytes<TValue>(needle, a, b, c, d);
}

template <typename TValue>
const TValue* TwoElementLoop(uintptr_t start, uintptr_t end, TValue v1,
                             TValue v2) {
  static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);

  const TValue* cur = reinterpret_cast<const TValue*>(start);
  const TValue* preEnd = reinterpret_cast<const TValue*>(end - sizeof(TValue));

  uint32_t expected = static_cast<uint32_t>(v1) |
                      (static_cast<uint32_t>(v2) << (sizeof(TValue) * 8));
  while (cur < preEnd) {
    // NOTE: this should only ever be called on little endian architectures.
    static_assert(MOZ_LITTLE_ENDIAN());
    // We or cur[0] and cur[1] together explicitly and compare to expected,
    // in order to avoid UB from just loading them as a uint16_t/uint32_t.
    // However, it will compile down the same code after optimizations on
    // little endian systems which support unaligned loads. Comparing them
    // value-by-value, however, will not, and seems to perform worse in local
    // microbenchmarking. Even after bitwise or'ing the comparison values
    // together to avoid the short circuit, the compiler doesn't seem to get
    // the hint and creates two branches, the first of which might be
    // frequently mispredicted.
    uint32_t actual = static_cast<uint32_t>(cur[0]) |
                      (static_cast<uint32_t>(cur[1]) << (sizeof(TValue) * 8));
    if (actual == expected) {
      return cur;
    }
    cur++;
  }
  return nullptr;
}

template <typename TValue>
const TValue* FindTwoInBuffer(const TValue* ptr, TValue v1, TValue v2,
                              size_t length) {
  static_assert(sizeof(TValue) == 1 || sizeof(TValue) == 2);
  static_assert(std::is_unsigned<TValue>::value);
  uint64_t splat64;
  if (sizeof(TValue) == 1) {
    splat64 = 0x0101010101010101llu;
  } else {
    splat64 = 0x0001000100010001llu;
  }

  // Load our needle into a 16-byte register
  uint64_t u64_v1 = static_cast<uint64_t>(v1) * splat64;
  int64_t i64_v1 = *reinterpret_cast<int64_t*>(&u64_v1);
  __m128i needle1 = _mm_set_epi64x(i64_v1, i64_v1);
  uint64_t u64_v2 = static_cast<uint64_t>(v2) * splat64;
  int64_t i64_v2 = *reinterpret_cast<int64_t*>(&u64_v2);
  __m128i needle2 = _mm_set_epi64x(i64_v2, i64_v2);

  size_t numBytes = length * sizeof(TValue);
  uintptr_t cur = reinterpret_cast<uintptr_t>(ptr);
  uintptr_t end = cur + numBytes;

  if (numBytes < 16) {
    return TwoElementLoop<TValue>(cur, end, v1, v2);
  }

  if (numBytes < 32) {
    uintptr_t a = cur;
    uintptr_t b = end - 16;
    return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, nullptr, nullptr,
                                    HaystackOverlap::Overlapping);
  }

  // Get the initial unaligned load out of the way. This will likely overlap
  // with the aligned stuff below, but the overlapped part should effectively
  // be free.
  __m128i haystack = _mm_loadu_si128(Cast128(cur));
  __m128i cmp1 = CmpEq128<TValue>(needle1, haystack);
  __m128i cmp2 = CmpEq128<TValue>(needle2, haystack);
  int cmpMask1 = _mm_movemask_epi8(cmp1);
  int cmpMask2 = _mm_movemask_epi8(cmp2);
  int cmpMask = (cmpMask1 << sizeof(TValue)) & cmpMask2;
  if (cmpMask) {
    return reinterpret_cast<const TValue*>(cur + __builtin_ctz(cmpMask) -
                                           sizeof(TValue));
  }

  // Now we're working with aligned memory. Hooray! \o/
  cur = AlignUp16(cur);

  // The address of the final 48-63 bytes. We overlap this with what we check in
  // our hot loop below to avoid branching. Again, the overlap should be
  // negligible compared with a branch mispredict.
  uintptr_t tailEndPtr = end - 16;
  uintptr_t tailStartPtr = AlignDown16(tailEndPtr);

  __m128i cmpMaskCarry = _mm_set1_epi32(0);
  while (cur < tailStartPtr) {
    uintptr_t a = cur;
    uintptr_t b = cur + 16;
    const TValue* result =
        Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry,
                                 &cmpMaskCarry, HaystackOverlap::Sequential);
    if (result) {
      return result;
    }
    cur += 32;
  }

  uint32_t carry = (cur == tailStartPtr) ? 0xffffffff : 0;
  __m128i wideCarry = Load32BitsIntoXMM(reinterpret_cast<uintptr_t>(&carry));
  cmpMaskCarry = _mm_and_si128(cmpMaskCarry, wideCarry);
  uintptr_t a = tailStartPtr;
  uintptr_t b = tailEndPtr;
  return Check2x2x16Bytes<TValue>(needle1, needle2, a, b, &cmpMaskCarry,
                                  nullptr, HaystackOverlap::Overlapping);
}

const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) {
  // Signed chars are just really annoying to do bit logic with. Convert to
  // unsigned at the outermost scope so we don't have to worry about it.
  const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
  unsigned char uvalue = static_cast<unsigned char>(value);
  const unsigned char* uresult =
      FindInBuffer<unsigned char>(uptr, uvalue, length);
  return reinterpret_cast<const char*>(uresult);
}

// So, this is a bit awkward. It generally simplifies things if we can just
// assume all the AVX2 code is 64-bit, so we have this preprocessor guard
// in SIMD_avx2 over all of its actual code, and it also defines versions
// of its endpoints that just assert false if the guard is not satisfied.
// A 32 bit processor could implement the AVX2 instruction set though, which
// would result in it passing the supports_avx2() check and landing in an
// assertion failure. Accordingly, we just don't allow that to happen. We
// are not particularly concerned about ensuring that newer 32 bit processors
// get access to the AVX2 functions exposed here.
#  if defined(MOZILLA_MAY_SUPPORT_AVX2) && defined(__x86_64__)

bool SupportsAVX2() { return supports_avx2(); }

#  else

bool SupportsAVX2() { return false; }

#  endif

const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
  if (SupportsAVX2()) {
    return memchr8AVX2(ptr, value, length);
  }
  return memchr8SSE2(ptr, value, length);
}

const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value,
                                   size_t length) {
  return FindInBuffer<char16_t>(ptr, value, length);
}

const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
                               size_t length) {
  if (SupportsAVX2()) {
    return memchr16AVX2(ptr, value, length);
  }
  return memchr16SSE2(ptr, value, length);
}

const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value,
                               size_t length) {
  if (SupportsAVX2()) {
    return memchr64AVX2(ptr, value, length);
  }
  return FindInBufferNaive<uint64_t>(ptr, value, length);
}

const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
  // Signed chars are just really annoying to do bit logic with. Convert to
  // unsigned at the outermost scope so we don't have to worry about it.
  const unsigned char* uptr = reinterpret_cast<const unsigned char*>(ptr);
  unsigned char uv1 = static_cast<unsigned char>(v1);
  unsigned char uv2 = static_cast<unsigned char>(v2);
  const unsigned char* uresult =
      FindTwoInBuffer<unsigned char>(uptr, uv1, uv2, length);
  return reinterpret_cast<const char*>(uresult);
}

const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
                                 size_t length) {
  return FindTwoInBuffer<char16_t>(ptr, v1, v2, length);
}

#else

const char* SIMD::memchr8(const char* ptr, char value, size_t length) {
  const void* result = ::memchr(reinterpret_cast<const void*>(ptr),
                                static_cast<int>(value), length);
  return reinterpret_cast<const char*>(result);
}

const char* SIMD::memchr8SSE2(const char* ptr, char value, size_t length) {
  return memchr8(ptr, value, length);
}

const char16_t* SIMD::memchr16(const char16_t* ptr, char16_t value,
                               size_t length) {
  return FindInBufferNaive<char16_t>(ptr, value, length);
}

const char16_t* SIMD::memchr16SSE2(const char16_t* ptr, char16_t value,
                                   size_t length) {
  return memchr16(ptr, value, length);
}

const uint64_t* SIMD::memchr64(const uint64_t* ptr, uint64_t value,
                               size_t length) {
  return FindInBufferNaive<uint64_t>(ptr, value, length);
}

const char* SIMD::memchr2x8(const char* ptr, char v1, char v2, size_t length) {
  const char* end = ptr + length - 1;
  while (ptr < end) {
    ptr = memchr8(ptr, v1, end - ptr);
    if (!ptr) {
      return nullptr;
    }
    if (ptr[1] == v2) {
      return ptr;
    }
    ptr++;
  }
  return nullptr;
}

const char16_t* SIMD::memchr2x16(const char16_t* ptr, char16_t v1, char16_t v2,
                                 size_t length) {
  const char16_t* end = ptr + length - 1;
  while (ptr < end) {
    ptr = memchr16(ptr, v1, end - ptr);
    if (!ptr) {
      return nullptr;
    }
    if (ptr[1] == v2) {
      return ptr;
    }
    ptr++;
  }
  return nullptr;
}

#endif

}  // namespace mozilla