1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
|
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_BIND_INTERNAL_H_
#define BASE_BIND_INTERNAL_H_
#include <stddef.h>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/bind.h"
#include "base/callback_internal.h"
#include "base/compiler_specific.h"
#include "base/memory/raw_scoped_refptr_mismatch_checker.h"
#include "base/memory/weak_ptr.h"
#include "base/template_util.h"
#include "build/build_config.h"
#if defined(OS_MACOSX) && !HAS_FEATURE(objc_arc)
#include "base/mac/scoped_block.h"
#endif
// See base/callback.h for user documentation.
//
//
// CONCEPTS:
// Functor -- A movable type representing something that should be called.
// All function pointers and Callback<> are functors even if the
// invocation syntax differs.
// RunType -- A function type (as opposed to function _pointer_ type) for
// a Callback<>::Run(). Usually just a convenience typedef.
// (Bound)Args -- A set of types that stores the arguments.
//
// Types:
// ForceVoidReturn<> -- Helper class for translating function signatures to
// equivalent forms with a "void" return type.
// FunctorTraits<> -- Type traits used to determine the correct RunType and
// invocation manner for a Functor. This is where function
// signature adapters are applied.
// InvokeHelper<> -- Take a Functor + arguments and actully invokes it.
// Handle the differing syntaxes needed for WeakPtr<>
// support. This is separate from Invoker to avoid creating
// multiple version of Invoker<>.
// Invoker<> -- Unwraps the curried parameters and executes the Functor.
// BindState<> -- Stores the curried parameters, and is the main entry point
// into the Bind() system.
#if defined(OS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
} // namespace WRL
} // namespace Microsoft
#endif
namespace base {
template <typename T>
struct IsWeakReceiver;
template <typename>
struct BindUnwrapTraits;
template <typename Functor, typename BoundArgsTuple, typename SFINAE = void>
struct CallbackCancellationTraits;
namespace internal {
template <typename Functor, typename SFINAE = void>
struct FunctorTraits;
template <typename T>
class UnretainedWrapper {
public:
explicit UnretainedWrapper(T* o) : ptr_(o) {}
T* get() const { return ptr_; }
private:
T* ptr_;
};
template <typename T>
class RetainedRefWrapper {
public:
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
T* get() const { return ptr_.get(); }
private:
scoped_refptr<T> ptr_;
};
template <typename T>
struct IgnoreResultHelper {
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
explicit operator bool() const { return !!functor_; }
T functor_;
};
template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
public:
explicit OwnedWrapper(T* o) : ptr_(o) {}
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
: ptr_(std::move(ptr)) {}
T* get() const { return ptr_.get(); }
private:
std::unique_ptr<T, Deleter> ptr_;
};
// PassedWrapper is a copyable adapter for a scoper that ignores const.
//
// It is needed to get around the fact that Bind() takes a const reference to
// all its arguments. Because Bind() takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into Bind() would violate
// the const correctness.
//
// This conundrum cannot be solved without either C++11 rvalue references or
// a O(2^n) blowup of Bind() templates to handle each combination of regular
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
// that is copyable to transmit the correct type information down into
// BindState<>. Ignoring const in this type makes sense because it is only
// created when we are explicitly trying to do a destructive move.
//
// Two notes:
// 1) PassedWrapper supports any type that has a move constructor, however
// the type will need to be specifically whitelisted in order for it to be
// bound to a Callback. We guard this explicitly at the call of Passed()
// to make for clear errors. Things not given to Passed() will be forwarded
// and stored by value which will not work for general move-only types.
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
// scoper to a Callback and allow the Callback to execute once.
template <typename T>
class PassedWrapper {
public:
explicit PassedWrapper(T&& scoper)
: is_valid_(true), scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper&& other)
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
T Take() const {
CHECK(is_valid_);
is_valid_ = false;
return std::move(scoper_);
}
private:
mutable bool is_valid_;
mutable T scoper_;
};
template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
template <typename T>
decltype(auto) Unwrap(T&& o) {
return Unwrapper<T>::Unwrap(std::forward<T>(o));
}
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
// method. It is used internally by Bind() to select the correct
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
// the target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
struct IsWeakMethod : std::false_type {};
template <typename T, typename... Args>
struct IsWeakMethod<true, T, Args...> : IsWeakReceiver<T> {};
// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};
// Used for DropTypeListItem implementation.
template <size_t n, typename List>
struct DropTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List>
struct DropTypeListItemImpl<n, TypeList<T, List...>>
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
template <typename T, typename... List>
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
using Type = TypeList<T, List...>;
};
template <>
struct DropTypeListItemImpl<0, TypeList<>> {
using Type = TypeList<>;
};
// A type-level function that drops |n| list item from given TypeList.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
// Used for TakeTypeListItem implementation.
template <size_t n, typename List, typename... Accum>
struct TakeTypeListItemImpl;
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
template <size_t n, typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
template <typename T, typename... List, typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
using Type = TypeList<Accum...>;
};
template <typename... Accum>
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
using Type = TypeList<Accum...>;
};
// A type-level function that takes first |n| list item from given TypeList.
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
// TypeList<A, B, C>.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
// Used for ConcatTypeLists implementation.
template <typename List1, typename List2>
struct ConcatTypeListsImpl;
template <typename... Types1, typename... Types2>
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
using Type = TypeList<Types1..., Types2...>;
};
// A type-level function that concats two TypeLists.
template <typename List1, typename List2>
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
// Used for MakeFunctionType implementation.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;
template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
// MSVC 2013 doesn't support Type Alias of function types.
// Revisit this after we update it to newer version.
typedef R Type(Args...);
};
// A type-level function that constructs a function type that has |R| as its
// return type and has TypeLists items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
// Used for ExtractArgs and ExtractReturnType.
template <typename Signature>
struct ExtractArgsImpl;
template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
using ReturnType = R;
using ArgsList = TypeList<Args...>;
};
// A type-level function that extracts function arguments into a TypeList.
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
// A type-level function that extracts the return type of a function.
// E.g. ExtractReturnType<R(A, B, C)> is evaluated to R.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
template <typename Callable,
typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...)> {
using Type = R(Args...);
};
template <typename Callable, typename R, typename... Args>
struct ExtractCallableRunTypeImpl<Callable, R (Callable::*)(Args...) const> {
using Type = R(Args...);
};
// Evaluated to RunType of the given callable type.
// Example:
// auto f = [](int, char*) { return 0.1; };
// ExtractCallableRunType<decltype(f)>
// is evaluated to
// double(int, char*);
template <typename Callable>
using ExtractCallableRunType =
typename ExtractCallableRunTypeImpl<Callable>::Type;
// IsCallableObject<Functor> is std::true_type if |Functor| has operator().
// Otherwise, it's std::false_type.
// Example:
// IsCallableObject<void(*)()>::value is false.
//
// struct Foo {};
// IsCallableObject<void(Foo::*)()>::value is false.
//
// int i = 0;
// auto f = [i]() {};
// IsCallableObject<decltype(f)>::value is false.
template <typename Functor, typename SFINAE = void>
struct IsCallableObject : std::false_type {};
template <typename Callable>
struct IsCallableObject<Callable, void_t<decltype(&Callable::operator())>>
: std::true_type {};
// HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw
// pointer to a RefCounted type.
// Implementation note: This non-specialized case handles zero-arity case only.
// Non-zero-arity cases should be handled by the specialization below.
template <typename... Args>
struct HasRefCountedTypeAsRawPtr : std::false_type {};
// Implementation note: Select true_type if the first parameter is a raw pointer
// to a RefCounted type. Otherwise, skip the first parameter and check rest of
// parameters recursively.
template <typename T, typename... Args>
struct HasRefCountedTypeAsRawPtr<T, Args...>
: std::conditional_t<NeedsScopedRefptrButGetsRawPtr<T>::value,
std::true_type,
HasRefCountedTypeAsRawPtr<Args...>> {};
// ForceVoidReturn<>
//
// Set of templates that support forcing the function return type to void.
template <typename Sig>
struct ForceVoidReturn;
template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
using RunType = void(Args...);
};
// FunctorTraits<>
//
// See description at top of file.
template <typename Functor, typename SFINAE>
struct FunctorTraits;
// For empty callable types.
// This specialization is intended to allow binding captureless lambdas, based
// on the fact that captureless lambdas are empty while capturing lambdas are
// not. This also allows any functors as far as it's an empty class.
// Example:
//
// // Captureless lambdas are allowed.
// []() {return 42;};
//
// // Capturing lambdas are *not* allowed.
// int x;
// [x]() {return x;};
//
// // Any empty class with operator() is allowed.
// struct Foo {
// void operator()() const {}
// // No non-static member variable and no virtual functions.
// };
template <typename Functor>
struct FunctorTraits<Functor,
std::enable_if_t<IsCallableObject<Functor>::value &&
std::is_empty<Functor>::value>> {
using RunType = ExtractCallableRunType<Functor>;
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename Function, typename... RunArgs>
static R Invoke(Function&& function, RunArgs&&... args) {
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
}
};
#if defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__stdcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename... RunArgs>
static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
// For functions.
template <typename R, typename... Args>
struct FunctorTraits<R(__fastcall*)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename... RunArgs>
static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) {
return function(std::forward<RunArgs>(args)...);
}
};
#endif // defined(OS_WIN) && !defined(ARCH_CPU_64_BITS)
#if defined(OS_MACOSX)
// Support for Objective-C blocks. There are two implementation depending
// on whether Automated Reference Counting (ARC) is enabled. When ARC is
// enabled, then the block itself can be bound as the compiler will ensure
// its lifetime will be correctly managed. Otherwise, require the block to
// be wrapped in a base::mac::ScopedBlock (via base::RetainBlock) that will
// correctly manage the block lifetime.
//
// The two implementation ensure that the One Definition Rule (ODR) is not
// broken (it is not possible to write a template base::RetainBlock that would
// work correctly both with ARC enabled and disabled).
#if HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
struct FunctorTraits<R (^)(Args...)> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// According to LLVM documentation (§ 6.3), "local variables of automatic
// storage duration do not have precise lifetime." Use objc_precise_lifetime
// to ensure that the Objective-C block is not deallocated until it has
// finished executing even if the Callback<> is destroyed during the block
// execution.
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
return scoped_block(std::forward<RunArgs>(args)...);
}
};
#else // HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
struct FunctorTraits<base::mac::ScopedBlock<R (^)(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// Copy the block to ensure that the Objective-C block is not deallocated
// until it has finished executing even if the Callback<> is destroyed
// during the block execution.
base::mac::ScopedBlock<R (^)(Args...)> scoped_block(block);
return scoped_block.get()(std::forward<RunArgs>(args)...);
}
};
#endif // HAS_FEATURE(objc_arc)
#endif // defined(OS_MACOSX)
// For methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...)> {
using RunType = R(Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
// For const methods.
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const> {
using RunType = R(const Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
#ifdef __cpp_noexcept_function_type
// noexcept makes a distinct function type in C++17.
// I.e. `void(*)()` and `void(*)() noexcept` are same in pre-C++17, and
// different in C++17.
template <typename R, typename... Args>
struct FunctorTraits<R (*)(Args...) noexcept> : FunctorTraits<R (*)(Args...)> {
};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) noexcept>
: FunctorTraits<R (Receiver::*)(Args...)> {};
template <typename R, typename Receiver, typename... Args>
struct FunctorTraits<R (Receiver::*)(Args...) const noexcept>
: FunctorTraits<R (Receiver::*)(Args...) const> {};
#endif
// For IgnoreResults.
template <typename T>
struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> {
using RunType =
typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType;
template <typename IgnoreResultType, typename... RunArgs>
static void Invoke(IgnoreResultType&& ignore_result_helper,
RunArgs&&... args) {
FunctorTraits<T>::Invoke(
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
std::forward<RunArgs>(args)...);
}
};
// For OnceCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<OnceCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// For RepeatingCallbacks.
template <typename R, typename... Args>
struct FunctorTraits<RepeatingCallback<R(Args...)>> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
template <typename Functor>
using MakeFunctorTraits = FunctorTraits<std::decay_t<Functor>>;
// InvokeHelper<>
//
// There are 2 logical InvokeHelper<> specializations: normal, WeakCalls.
//
// The normal type just calls the underlying runnable.
//
// WeakCalls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call, typename ReturnType>
struct InvokeHelper;
template <typename ReturnType>
struct InvokeHelper<false, ReturnType> {
template <typename Functor, typename... RunArgs>
static inline ReturnType MakeItSo(Functor&& functor, RunArgs&&... args) {
using Traits = MakeFunctorTraits<Functor>;
return Traits::Invoke(std::forward<Functor>(functor),
std::forward<RunArgs>(args)...);
}
};
template <typename ReturnType>
struct InvokeHelper<true, ReturnType> {
// WeakCalls are only supported for functions with a void return type.
// Otherwise, the function result would be undefined if the the WeakPtr<>
// is invalidated.
static_assert(std::is_void<ReturnType>::value,
"weak_ptrs can only bind to methods without return values");
template <typename Functor, typename BoundWeakPtr, typename... RunArgs>
static inline void MakeItSo(Functor&& functor,
BoundWeakPtr&& weak_ptr,
RunArgs&&... args) {
if (!weak_ptr)
return;
using Traits = MakeFunctorTraits<Functor>;
Traits::Invoke(std::forward<Functor>(functor),
std::forward<BoundWeakPtr>(weak_ptr),
std::forward<RunArgs>(args)...);
}
};
// Invoker<>
//
// See description at the top of the file.
template <typename StorageType, typename UnboundRunType>
struct Invoker;
template <typename StorageType, typename R, typename... UnboundArgs>
struct Invoker<StorageType, R(UnboundArgs...)> {
static R RunOnce(BindStateBase* base,
PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size<decltype(storage->bound_args_)>::value;
return RunImpl(std::move(storage->functor_),
std::move(storage->bound_args_),
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
// Local references to make debugger stepping easier. If in a debugger,
// you really want to warp ahead and step through the
// InvokeHelper<>::MakeItSo() call below.
const StorageType* storage = static_cast<StorageType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size<decltype(storage->bound_args_)>::value;
return RunImpl(storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>(),
std::forward<UnboundArgs>(unbound_args)...);
}
private:
template <typename Functor, typename BoundArgsTuple, size_t... indices>
static inline R RunImpl(Functor&& functor,
BoundArgsTuple&& bound,
std::index_sequence<indices...>,
UnboundArgs&&... unbound_args) {
static constexpr bool is_method = MakeFunctorTraits<Functor>::is_method;
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
static constexpr bool is_weak_call =
IsWeakMethod<is_method,
std::tuple_element_t<indices, DecayedArgsTuple>...>();
return InvokeHelper<is_weak_call, R>::MakeItSo(
std::forward<Functor>(functor),
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<UnboundArgs>(unbound_args)...);
}
};
// Extracts necessary type info from Functor and BoundArgs.
// Used to implement MakeUnboundRunType, BindOnce and BindRepeating.
template <typename Functor, typename... BoundArgs>
struct BindTypeHelper {
static constexpr size_t num_bounds = sizeof...(BoundArgs);
using FunctorTraits = MakeFunctorTraits<Functor>;
// Example:
// When Functor is `double (Foo::*)(int, const std::string&)`, and BoundArgs
// is a template pack of `Foo*` and `int16_t`:
// - RunType is `double(Foo*, int, const std::string&)`,
// - ReturnType is `double`,
// - RunParamsList is `TypeList<Foo*, int, const std::string&>`,
// - BoundParamsList is `TypeList<Foo*, int>`,
// - UnboundParamsList is `TypeList<const std::string&>`,
// - BoundArgsList is `TypeList<Foo*, int16_t>`,
// - UnboundRunType is `double(const std::string&)`.
using RunType = typename FunctorTraits::RunType;
using ReturnType = ExtractReturnType<RunType>;
using RunParamsList = ExtractArgs<RunType>;
using BoundParamsList = TakeTypeListItem<num_bounds, RunParamsList>;
using UnboundParamsList = DropTypeListItem<num_bounds, RunParamsList>;
using BoundArgsList = TypeList<BoundArgs...>;
using UnboundRunType = MakeFunctionType<ReturnType, UnboundParamsList>;
};
template <typename Functor>
std::enable_if_t<FunctorTraits<Functor>::is_nullable, bool> IsNull(
const Functor& functor) {
return !functor;
}
template <typename Functor>
std::enable_if_t<!FunctorTraits<Functor>::is_nullable, bool> IsNull(
const Functor&) {
return false;
}
// Used by QueryCancellationTraits below.
template <typename Functor, typename BoundArgsTuple, size_t... indices>
bool QueryCancellationTraitsImpl(BindStateBase::CancellationQueryMode mode,
const Functor& functor,
const BoundArgsTuple& bound_args,
std::index_sequence<indices...>) {
switch (mode) {
case BindStateBase::IS_CANCELLED:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::IsCancelled(
functor, std::get<indices>(bound_args)...);
case BindStateBase::MAYBE_VALID:
return CallbackCancellationTraits<Functor, BoundArgsTuple>::MaybeValid(
functor, std::get<indices>(bound_args)...);
}
NOTREACHED();
}
// Relays |base| to corresponding CallbackCancellationTraits<>::Run(). Returns
// true if the callback |base| represents is canceled.
template <typename BindStateType>
bool QueryCancellationTraits(const BindStateBase* base,
BindStateBase::CancellationQueryMode mode) {
const BindStateType* storage = static_cast<const BindStateType*>(base);
static constexpr size_t num_bound_args =
std::tuple_size<decltype(storage->bound_args_)>::value;
return QueryCancellationTraitsImpl(
mode, storage->functor_, storage->bound_args_,
std::make_index_sequence<num_bound_args>());
}
// The base case of BanUnconstructedRefCountedReceiver that checks nothing.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
!(MakeFunctorTraits<Functor>::is_method &&
std::is_pointer<std::decay_t<Receiver>>::value &&
IsRefCountedType<std::remove_pointer_t<std::decay_t<Receiver>>>::value)>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {}
template <typename Functor>
void BanUnconstructedRefCountedReceiver() {}
// Asserts that Callback is not the first owner of a ref-counted receiver.
template <typename Functor, typename Receiver, typename... Unused>
std::enable_if_t<
MakeFunctorTraits<Functor>::is_method &&
std::is_pointer<std::decay_t<Receiver>>::value &&
IsRefCountedType<std::remove_pointer_t<std::decay_t<Receiver>>>::value>
BanUnconstructedRefCountedReceiver(const Receiver& receiver, Unused&&...) {
DCHECK(receiver);
// It's error prone to make the implicit first reference to ref-counted types.
// In the example below, base::BindOnce() makes the implicit first reference
// to the ref-counted Foo. If PostTask() failed or the posted task ran fast
// enough, the newly created instance can be destroyed before |oo| makes
// another reference.
// Foo::Foo() {
// base::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, this));
// }
//
// scoped_refptr<Foo> oo = new Foo();
//
// Instead of doing like above, please consider adding a static constructor,
// and keep the first reference alive explicitly.
// // static
// scoped_refptr<Foo> Foo::Create() {
// auto foo = base::WrapRefCounted(new Foo());
// base::PostTask(FROM_HERE, base::BindOnce(&Foo::Bar, foo));
// return foo;
// }
//
// Foo::Foo() {}
//
// scoped_refptr<Foo> oo = Foo::Create();
DCHECK(receiver->HasAtLeastOneRef())
<< "base::Bind{Once,Repeating}() refuses to create the first reference "
"to ref-counted objects. That typically happens around PostTask() in "
"their constructor, and such objects can be destroyed before `new` "
"returns if the task resolves fast enough.";
}
// BindState<>
//
// This stores all the state passed into Bind().
template <typename Functor, typename... BoundArgs>
struct BindState final : BindStateBase {
using IsCancellable = std::integral_constant<
bool,
CallbackCancellationTraits<Functor,
std::tuple<BoundArgs...>>::is_cancellable>;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args) {
// Ban ref counted receivers that were not yet fully constructed to avoid
// a common pattern of racy situation.
BanUnconstructedRefCountedReceiver<ForwardFunctor>(bound_args...);
// IsCancellable is std::false_type if
// CallbackCancellationTraits<>::IsCancelled returns always false.
// Otherwise, it's std::true_type.
return new BindState(IsCancellable{}, invoke_func,
std::forward<ForwardFunctor>(functor),
std::forward<ForwardBoundArgs>(bound_args)...);
}
Functor functor_;
std::tuple<BoundArgs...> bound_args_;
private:
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::true_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func,
&Destroy,
&QueryCancellationTraits<BindState>),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
DCHECK(!IsNull(functor_));
}
template <typename ForwardFunctor, typename... ForwardBoundArgs>
explicit BindState(std::false_type,
BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
DCHECK(!IsNull(functor_));
}
~BindState() = default;
static void Destroy(const BindStateBase* self) {
delete static_cast<const BindState*>(self);
}
};
// Used to implement MakeBindStateType.
template <bool is_method, typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl;
template <typename Functor, typename... BoundArgs>
struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> {
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
"A parameter is a refcounted type and needs scoped_refptr.");
using Type = BindState<std::decay_t<Functor>, std::decay_t<BoundArgs>...>;
};
template <typename Functor>
struct MakeBindStateTypeImpl<true, Functor> {
using Type = BindState<std::decay_t<Functor>>;
};
template <typename Functor, typename Receiver, typename... BoundArgs>
struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> {
private:
using DecayedReceiver = std::decay_t<Receiver>;
static_assert(!std::is_array<std::remove_reference_t<Receiver>>::value,
"First bound argument to a method cannot be an array.");
static_assert(
!std::is_pointer<DecayedReceiver>::value ||
IsRefCountedType<std::remove_pointer_t<DecayedReceiver>>::value,
"Receivers may not be raw pointers. If using a raw pointer here is safe"
" and has no lifetime concerns, use base::Unretained() and document why"
" it's safe.");
static_assert(!HasRefCountedTypeAsRawPtr<std::decay_t<BoundArgs>...>::value,
"A parameter is a refcounted type and needs scoped_refptr.");
public:
using Type = BindState<
std::decay_t<Functor>,
std::conditional_t<std::is_pointer<DecayedReceiver>::value,
scoped_refptr<std::remove_pointer_t<DecayedReceiver>>,
DecayedReceiver>,
std::decay_t<BoundArgs>...>;
};
template <typename Functor, typename... BoundArgs>
using MakeBindStateType =
typename MakeBindStateTypeImpl<MakeFunctorTraits<Functor>::is_method,
Functor,
BoundArgs...>::Type;
} // namespace internal
// An injection point to control |this| pointer behavior on a method invocation.
// If IsWeakReceiver<> is true_type for |T| and |T| is used for a receiver of a
// method, base::Bind cancels the method invocation if the receiver is tested as
// false.
// E.g. Foo::bar() is not called:
// struct Foo : base::SupportsWeakPtr<Foo> {
// void bar() {}
// };
//
// WeakPtr<Foo> oo = nullptr;
// base::BindOnce(&Foo::bar, oo).Run();
template <typename T>
struct IsWeakReceiver : std::false_type {};
template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
template <typename T>
struct IsWeakReceiver<WeakPtr<T>> : std::true_type {};
// An injection point to control how bound objects passed to the target
// function. BindUnwrapTraits<>::Unwrap() is called for each bound objects right
// before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
template <typename T>
static T&& Unwrap(T&& o) {
return std::forward<T>(o);
}
};
template <typename T>
struct BindUnwrapTraits<internal::UnretainedWrapper<T>> {
static T* Unwrap(const internal::UnretainedWrapper<T>& o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<std::reference_wrapper<T>> {
static T& Unwrap(std::reference_wrapper<T> o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<internal::RetainedRefWrapper<T>> {
static T* Unwrap(const internal::RetainedRefWrapper<T>& o) { return o.get(); }
};
template <typename T, typename Deleter>
struct BindUnwrapTraits<internal::OwnedWrapper<T, Deleter>> {
static T* Unwrap(const internal::OwnedWrapper<T, Deleter>& o) {
return o.get();
}
};
template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};
#if defined(OS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif
// CallbackCancellationTraits allows customization of Callback's cancellation
// semantics. By default, callbacks are not cancellable. A specialization should
// set is_cancellable = true and implement an IsCancelled() that returns if the
// callback should be cancelled.
template <typename Functor, typename BoundArgsTuple, typename SFINAE>
struct CallbackCancellationTraits {
static constexpr bool is_cancellable = false;
};
// Specialization for method bound to weak pointer receiver.
template <typename Functor, typename... BoundArgs>
struct CallbackCancellationTraits<
Functor,
std::tuple<BoundArgs...>,
std::enable_if_t<
internal::IsWeakMethod<internal::FunctorTraits<Functor>::is_method,
BoundArgs...>::value>> {
static constexpr bool is_cancellable = true;
template <typename Receiver, typename... Args>
static bool IsCancelled(const Functor&,
const Receiver& receiver,
const Args&...) {
return !receiver;
}
template <typename Receiver, typename... Args>
static bool MaybeValid(const Functor&,
const Receiver& receiver,
const Args&...) {
return receiver.MaybeValid();
}
};
// Specialization for a nested bind.
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<OnceCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return functor.MaybeValid();
}
};
template <typename Signature, typename... BoundArgs>
struct CallbackCancellationTraits<RepeatingCallback<Signature>,
std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Functor>
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
template <typename Functor>
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return functor.MaybeValid();
}
};
// Returns a RunType of bound functor.
// E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C).
template <typename Functor, typename... BoundArgs>
using MakeUnboundRunType =
typename internal::BindTypeHelper<Functor, BoundArgs...>::UnboundRunType;
} // namespace base
#endif // BASE_BIND_INTERNAL_H_
|