summaryrefslogtreecommitdiffstats
path: root/third_party/aom/aom_dsp/x86/aom_subpixel_8t_intrin_ssse3.c
blob: 325a21b7614a8a479b7c694b610e8b2a1adc4870 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <tmmintrin.h>

#include "config/aom_dsp_rtcd.h"

#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "aom_ports/emmintrin_compat.h"

// filters only for the 4_h8 convolution
DECLARE_ALIGNED(16, static const uint8_t, filt1_4_h8[16]) = {
  0, 1, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 5, 6
};

DECLARE_ALIGNED(16, static const uint8_t, filt2_4_h8[16]) = {
  4, 5, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 9, 10
};

// filters for 8_h8 and 16_h8
DECLARE_ALIGNED(16, static const uint8_t, filt1_global[16]) = {
  0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8
};

DECLARE_ALIGNED(16, static const uint8_t, filt2_global[16]) = {
  2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10
};

DECLARE_ALIGNED(16, static const uint8_t, filt3_global[16]) = {
  4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12
};

DECLARE_ALIGNED(16, static const uint8_t, filt4_global[16]) = {
  6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14
};

// These are reused by the avx2 intrinsics.
filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3;

void aom_filter_block1d4_h8_intrin_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i firstFilters, secondFilters, shuffle1, shuffle2;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
  __m128i addFilterReg64, filtersReg, srcReg, minReg;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits in the filter into the first lane
  firstFilters = _mm_shufflelo_epi16(filtersReg, 0);
  // duplicate only the third 16 bit in the filter into the first lane
  secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu);
  // duplicate only the seconds 16 bits in the filter into the second lane
  // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3
  firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u);
  // duplicate only the forth 16 bits in the filter into the second lane
  // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7
  secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu);

  // loading the local filters
  shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8);
  shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8);

  for (i = 0; i < output_height; i++) {
    srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1);
    srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

    // extract the higher half of the lane
    srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8);
    srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8);

    minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2);

    // add and saturate all the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
    srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bits
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);
    src_ptr += src_pixels_per_line;

    // save only 4 bytes
    *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1);

    output_ptr += output_pitch;
  }
}

void aom_filter_block1d8_h8_intrin_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr,
    ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg;
  __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4;
  __m128i addFilterReg64, filtersReg, minReg;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 128 bit register
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 128 bit register
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 128 bit register
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 128 bit register
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  filt1Reg = _mm_load_si128((__m128i const *)filt1_global);
  filt2Reg = _mm_load_si128((__m128i const *)filt2_global);
  filt3Reg = _mm_load_si128((__m128i const *)filt3_global);
  filt4Reg = _mm_load_si128((__m128i const *)filt4_global);

  for (i = 0; i < output_height; i++) {
    srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg);
    srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters);

    // filter the source buffer
    srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg);
    srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters);
    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters);

    // add and saturate all the results together
    minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);

    srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bits
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

    src_ptr += src_pixels_per_line;

    // save only 8 bytes
    _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);

    output_ptr += output_pitch;
  }
}

void aom_filter_block1d8_v8_intrin_ssse3(
    const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr,
    ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) {
  __m128i addFilterReg64, filtersReg, minReg;
  __m128i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5;
  __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7;
  __m128i srcReg8;
  unsigned int i;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg = _mm_packs_epi16(filtersReg, filtersReg);

  // duplicate only the first 16 bits in the filter
  firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u));
  // duplicate only the second 16 bits in the filter
  secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u));
  // duplicate only the third 16 bits in the filter
  thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u));
  // duplicate only the forth 16 bits in the filter
  forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u));

  // load the first 7 rows of 8 bytes
  srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr);
  srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch));
  srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
  srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
  srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
  srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
  srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));

  for (i = 0; i < output_height; i++) {
    // load the last 8 bytes
    srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7));

    // merge the result together
    srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2);
    srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4);

    // merge the result together
    srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6);
    srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters);
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters);
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters);
    srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters);

    // add and saturate the results together
    minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5);
    srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2);
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);

    // shrink to 8 bit each 16 bits
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1);

    src_ptr += src_pitch;

    // shift down a row
    srcReg1 = srcReg2;
    srcReg2 = srcReg3;
    srcReg3 = srcReg4;
    srcReg4 = srcReg5;
    srcReg5 = srcReg6;
    srcReg6 = srcReg7;
    srcReg7 = srcReg8;

    // save only 8 bytes convolve result
    _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1);

    output_ptr += out_pitch;
  }
}

filter8_1dfunction aom_filter_block1d16_v8_ssse3;
filter8_1dfunction aom_filter_block1d16_h8_ssse3;
filter8_1dfunction aom_filter_block1d8_v8_ssse3;
filter8_1dfunction aom_filter_block1d8_h8_ssse3;
filter8_1dfunction aom_filter_block1d4_v8_ssse3;
filter8_1dfunction aom_filter_block1d4_h8_ssse3;

#define aom_filter_block1d16_h4_ssse3 aom_filter_block1d16_h8_ssse3
#define aom_filter_block1d16_v4_ssse3 aom_filter_block1d16_v8_ssse3
#define aom_filter_block1d8_h4_ssse3 aom_filter_block1d8_h8_ssse3
#define aom_filter_block1d8_v4_ssse3 aom_filter_block1d8_v8_ssse3
#define aom_filter_block1d4_h4_ssse3 aom_filter_block1d4_h8_ssse3
#define aom_filter_block1d4_v4_ssse3 aom_filter_block1d4_v8_ssse3

filter8_1dfunction aom_filter_block1d16_v2_ssse3;
filter8_1dfunction aom_filter_block1d16_h2_ssse3;
filter8_1dfunction aom_filter_block1d8_v2_ssse3;
filter8_1dfunction aom_filter_block1d8_h2_ssse3;
filter8_1dfunction aom_filter_block1d4_v2_ssse3;
filter8_1dfunction aom_filter_block1d4_h2_ssse3;

// void aom_convolve8_horiz_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                                uint8_t *dst, ptrdiff_t dst_stride,
//                                const int16_t *filter_x, int x_step_q4,
//                                const int16_t *filter_y, int y_step_q4,
//                                int w, int h);
// void aom_convolve8_vert_ssse3(const uint8_t *src, ptrdiff_t src_stride,
//                               uint8_t *dst, ptrdiff_t dst_stride,
//                               const int16_t *filter_x, int x_step_q4,
//                               const int16_t *filter_y, int y_step_q4,
//                               int w, int h);
FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , ssse3);
FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , ssse3);