summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jpegli/huffman.cc
blob: 1cf88a5536ce18a949bdd1d82484f248045d8eb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jpegli/huffman.h"

#include <limits>
#include <vector>

#include "lib/jpegli/common.h"
#include "lib/jpegli/error.h"

namespace jpegli {

// Returns the table width of the next 2nd level table, count is the histogram
// of bit lengths for the remaining symbols, len is the code length of the next
// processed symbol.
static inline int NextTableBitSize(const int* count, int len) {
  int left = 1 << (len - kJpegHuffmanRootTableBits);
  while (len < static_cast<int>(kJpegHuffmanMaxBitLength)) {
    left -= count[len];
    if (left <= 0) break;
    ++len;
    left <<= 1;
  }
  return len - kJpegHuffmanRootTableBits;
}

void BuildJpegHuffmanTable(const uint32_t* count, const uint32_t* symbols,
                           HuffmanTableEntry* lut) {
  HuffmanTableEntry code;    // current table entry
  HuffmanTableEntry* table;  // next available space in table
  int len;                   // current code length
  int idx;                   // symbol index
  int key;                   // prefix code
  int reps;                  // number of replicate key values in current table
  int low;                   // low bits for current root entry
  int table_bits;            // key length of current table
  int table_size;            // size of current table

  // Make a local copy of the input bit length histogram.
  int tmp_count[kJpegHuffmanMaxBitLength + 1] = {0};
  int total_count = 0;
  for (len = 1; len <= static_cast<int>(kJpegHuffmanMaxBitLength); ++len) {
    tmp_count[len] = count[len];
    total_count += tmp_count[len];
  }

  table = lut;
  table_bits = kJpegHuffmanRootTableBits;
  table_size = 1 << table_bits;

  // Special case code with only one value.
  if (total_count == 1) {
    code.bits = 0;
    code.value = symbols[0];
    for (key = 0; key < table_size; ++key) {
      table[key] = code;
    }
    return;
  }

  // Fill in root table.
  key = 0;
  idx = 0;
  for (len = 1; len <= kJpegHuffmanRootTableBits; ++len) {
    for (; tmp_count[len] > 0; --tmp_count[len]) {
      code.bits = len;
      code.value = symbols[idx++];
      reps = 1 << (kJpegHuffmanRootTableBits - len);
      while (reps--) {
        table[key++] = code;
      }
    }
  }

  // Fill in 2nd level tables and add pointers to root table.
  table += table_size;
  table_size = 0;
  low = 0;
  for (len = kJpegHuffmanRootTableBits + 1;
       len <= static_cast<int>(kJpegHuffmanMaxBitLength); ++len) {
    for (; tmp_count[len] > 0; --tmp_count[len]) {
      // Start a new sub-table if the previous one is full.
      if (low >= table_size) {
        table += table_size;
        table_bits = NextTableBitSize(tmp_count, len);
        table_size = 1 << table_bits;
        low = 0;
        lut[key].bits = table_bits + kJpegHuffmanRootTableBits;
        lut[key].value = (table - lut) - key;
        ++key;
      }
      code.bits = len - kJpegHuffmanRootTableBits;
      code.value = symbols[idx++];
      reps = 1 << (table_bits - code.bits);
      while (reps--) {
        table[low++] = code;
      }
    }
  }
}

// A node of a Huffman tree.
struct HuffmanTree {
  HuffmanTree(uint32_t count, int16_t left, int16_t right)
      : total_count(count), index_left(left), index_right_or_value(right) {}
  uint32_t total_count;
  int16_t index_left;
  int16_t index_right_or_value;
};

void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth,
              uint8_t level) {
  if (p.index_left >= 0) {
    ++level;
    SetDepth(pool[p.index_left], pool, depth, level);
    SetDepth(pool[p.index_right_or_value], pool, depth, level);
  } else {
    depth[p.index_right_or_value] = level;
  }
}

// Sort the root nodes, least popular first.
static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) {
  return v0.total_count < v1.total_count;
}

// This function will create a Huffman tree.
//
// The catch here is that the tree cannot be arbitrarily deep.
// Brotli specifies a maximum depth of 15 bits for "code trees"
// and 7 bits for "code length code trees."
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
void CreateHuffmanTree(const uint32_t* data, const size_t length,
                       const int tree_limit, uint8_t* depth) {
  // For block sizes below 64 kB, we never need to do a second iteration
  // of this loop. Probably all of our block sizes will be smaller than
  // that, so this loop is mostly of academic interest. If we actually
  // would need this, we would be better off with the Katajainen algorithm.
  for (uint32_t count_limit = 1;; count_limit *= 2) {
    std::vector<HuffmanTree> tree;
    tree.reserve(2 * length + 1);

    for (size_t i = length; i != 0;) {
      --i;
      if (data[i]) {
        const uint32_t count = std::max(data[i], count_limit - 1);
        tree.emplace_back(count, -1, static_cast<int16_t>(i));
      }
    }

    const size_t n = tree.size();
    if (n == 1) {
      // Fake value; will be fixed on upper level.
      depth[tree[0].index_right_or_value] = 1;
      break;
    }

    std::stable_sort(tree.begin(), tree.end(), Compare);

    // The nodes are:
    // [0, n): the sorted leaf nodes that we start with.
    // [n]: we add a sentinel here.
    // [n + 1, 2n): new parent nodes are added here, starting from
    //              (n+1). These are naturally in ascending order.
    // [2n]: we add a sentinel at the end as well.
    // There will be (2n+1) elements at the end.
    const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1);
    tree.push_back(sentinel);
    tree.push_back(sentinel);

    size_t i = 0;      // Points to the next leaf node.
    size_t j = n + 1;  // Points to the next non-leaf node.
    for (size_t k = n - 1; k != 0; --k) {
      size_t left, right;
      if (tree[i].total_count <= tree[j].total_count) {
        left = i;
        ++i;
      } else {
        left = j;
        ++j;
      }
      if (tree[i].total_count <= tree[j].total_count) {
        right = i;
        ++i;
      } else {
        right = j;
        ++j;
      }

      // The sentinel node becomes the parent node.
      size_t j_end = tree.size() - 1;
      tree[j_end].total_count =
          tree[left].total_count + tree[right].total_count;
      tree[j_end].index_left = static_cast<int16_t>(left);
      tree[j_end].index_right_or_value = static_cast<int16_t>(right);

      // Add back the last sentinel node.
      tree.push_back(sentinel);
    }
    JXL_DASSERT(tree.size() == 2 * n + 1);
    SetDepth(tree[2 * n - 1], &tree[0], depth, 0);

    // We need to pack the Huffman tree in tree_limit bits.
    // If this was not successful, add fake entities to the lowest values
    // and retry.
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
      break;
    }
  }
}

void ValidateHuffmanTable(j_common_ptr cinfo, const JHUFF_TBL* table,
                          bool is_dc) {
  size_t total_symbols = 0;
  size_t total_p = 0;
  size_t max_depth = 0;
  for (size_t d = 1; d <= kJpegHuffmanMaxBitLength; ++d) {
    uint8_t count = table->bits[d];
    if (count) {
      total_symbols += count;
      total_p += (1u << (kJpegHuffmanMaxBitLength - d)) * count;
      max_depth = d;
    }
  }
  total_p += 1u << (kJpegHuffmanMaxBitLength - max_depth);  // sentinel symbol
  if (total_symbols == 0) {
    JPEGLI_ERROR("Empty Huffman table");
  }
  if (total_symbols > kJpegHuffmanAlphabetSize) {
    JPEGLI_ERROR("Too many symbols in Huffman table");
  }
  if (total_p != (1u << kJpegHuffmanMaxBitLength)) {
    JPEGLI_ERROR("Invalid bit length distribution");
  }
  uint8_t symbol_seen[kJpegHuffmanAlphabetSize] = {};
  for (size_t i = 0; i < total_symbols; ++i) {
    uint8_t symbol = table->huffval[i];
    if (symbol_seen[symbol]) {
      JPEGLI_ERROR("Duplicate symbol %d in Huffman table", symbol);
    }
    symbol_seen[symbol] = 1;
  }
}

void AddStandardHuffmanTables(j_common_ptr cinfo, bool is_dc) {
  // Huffman tables from the JPEG standard.
  static constexpr JHUFF_TBL kStandardDCTables[2] = {
      // DC luma
      {{0, 0, 1, 5, 1, 1, 1, 1, 1, 1},
       {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
       FALSE},
      // DC chroma
      {{0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1},
       {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
       FALSE}};
  static constexpr JHUFF_TBL kStandardACTables[2] = {
      // AC luma
      {{0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 125},
       {0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06,
        0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
        0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72,
        0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
        0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45,
        0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
        0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75,
        0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
        0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3,
        0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
        0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9,
        0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
        0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4,
        0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa},
       FALSE},
      // AC chroma
      {{0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 119},
       {0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41,
        0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
        0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1,
        0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
        0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44,
        0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
        0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74,
        0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
        0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a,
        0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
        0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
        0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
        0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4,
        0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa},
       FALSE}};
  const JHUFF_TBL* std_tables = is_dc ? kStandardDCTables : kStandardACTables;
  JHUFF_TBL** tables;
  if (cinfo->is_decompressor) {
    j_decompress_ptr cinfo_d = reinterpret_cast<j_decompress_ptr>(cinfo);
    tables = is_dc ? cinfo_d->dc_huff_tbl_ptrs : cinfo_d->ac_huff_tbl_ptrs;
  } else {
    j_compress_ptr cinfo_c = reinterpret_cast<j_compress_ptr>(cinfo);
    tables = is_dc ? cinfo_c->dc_huff_tbl_ptrs : cinfo_c->ac_huff_tbl_ptrs;
  }
  for (int i = 0; i < 2; ++i) {
    if (tables[i] == nullptr) {
      tables[i] = jpegli_alloc_huff_table(cinfo);
      memcpy(tables[i], &std_tables[i], sizeof(JHUFF_TBL));
      ValidateHuffmanTable(cinfo, tables[i], is_dc);
    }
  }
}

}  // namespace jpegli