summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/render_pipeline/simple_render_pipeline.cc
blob: 4495288860cb1982edc3183ce69785f9232af6bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "lib/jxl/render_pipeline/simple_render_pipeline.h"

#include <hwy/base.h>

#include "lib/jxl/image_ops.h"
#include "lib/jxl/render_pipeline/render_pipeline_stage.h"
#include "lib/jxl/sanitizers.h"

namespace jxl {

void SimpleRenderPipeline::PrepareForThreadsInternal(size_t num,
                                                     bool use_group_ids) {
  if (!channel_data_.empty()) {
    return;
  }
  auto ch_size = [](size_t frame_size, size_t shift) {
    return DivCeil(frame_size, 1 << shift) + kRenderPipelineXOffset * 2;
  };
  for (size_t c = 0; c < channel_shifts_[0].size(); c++) {
    channel_data_.push_back(ImageF(
        ch_size(frame_dimensions_.xsize_upsampled, channel_shifts_[0][c].first),
        ch_size(frame_dimensions_.ysize_upsampled,
                channel_shifts_[0][c].second)));
    msan::PoisonImage(channel_data_.back());
  }
}

Rect SimpleRenderPipeline::MakeChannelRect(size_t group_id, size_t channel) {
  size_t base_color_shift =
      CeilLog2Nonzero(frame_dimensions_.xsize_upsampled_padded /
                      frame_dimensions_.xsize_padded);

  const size_t gx = group_id % frame_dimensions_.xsize_groups;
  const size_t gy = group_id / frame_dimensions_.xsize_groups;
  size_t xgroupdim = (frame_dimensions_.group_dim << base_color_shift) >>
                     channel_shifts_[0][channel].first;
  size_t ygroupdim = (frame_dimensions_.group_dim << base_color_shift) >>
                     channel_shifts_[0][channel].second;
  return Rect(
      kRenderPipelineXOffset + gx * xgroupdim,
      kRenderPipelineXOffset + gy * ygroupdim, xgroupdim, ygroupdim,
      kRenderPipelineXOffset + DivCeil(frame_dimensions_.xsize_upsampled,
                                       1 << channel_shifts_[0][channel].first),
      kRenderPipelineXOffset +
          DivCeil(frame_dimensions_.ysize_upsampled,
                  1 << channel_shifts_[0][channel].second));
}

std::vector<std::pair<ImageF*, Rect>> SimpleRenderPipeline::PrepareBuffers(
    size_t group_id, size_t thread_id) {
  std::vector<std::pair<ImageF*, Rect>> ret;
  for (size_t c = 0; c < channel_data_.size(); c++) {
    ret.emplace_back(&channel_data_[c], MakeChannelRect(group_id, c));
  }
  return ret;
}

void SimpleRenderPipeline::ProcessBuffers(size_t group_id, size_t thread_id) {
  for (size_t c = 0; c < channel_data_.size(); c++) {
    Rect r = MakeChannelRect(group_id, c);
    (void)r;
    JXL_CHECK_PLANE_INITIALIZED(channel_data_[c], r, c);
  }

  if (PassesWithAllInput() <= processed_passes_) return;
  processed_passes_++;

  for (size_t stage_id = 0; stage_id < stages_.size(); stage_id++) {
    const auto& stage = stages_[stage_id];
    // Prepare buffers for kInOut channels.
    std::vector<ImageF> new_channels(channel_data_.size());
    std::vector<ImageF*> output_channels(channel_data_.size());

    std::vector<std::pair<size_t, size_t>> input_sizes(channel_data_.size());
    for (size_t c = 0; c < channel_data_.size(); c++) {
      input_sizes[c] =
          std::make_pair(channel_data_[c].xsize() - kRenderPipelineXOffset * 2,
                         channel_data_[c].ysize() - kRenderPipelineXOffset * 2);
    }

    for (size_t c = 0; c < channel_data_.size(); c++) {
      if (stage->GetChannelMode(c) != RenderPipelineChannelMode::kInOut) {
        continue;
      }
      // Ensure that the newly allocated channels are large enough to avoid
      // problems with padding.
      new_channels[c] =
          ImageF(frame_dimensions_.xsize_upsampled_padded +
                     kRenderPipelineXOffset * 2 + hwy::kMaxVectorSize * 8,
                 frame_dimensions_.ysize_upsampled_padded +
                     kRenderPipelineXOffset * 2);
      new_channels[c].ShrinkTo(
          (input_sizes[c].first << stage->settings_.shift_x) +
              kRenderPipelineXOffset * 2,
          (input_sizes[c].second << stage->settings_.shift_y) +
              kRenderPipelineXOffset * 2);
      output_channels[c] = &new_channels[c];
    }

    auto get_row = [&](size_t c, int64_t y) {
      return channel_data_[c].Row(kRenderPipelineXOffset + y) +
             kRenderPipelineXOffset;
    };

    // Add mirrored pixes to all kInOut channels.
    for (size_t c = 0; c < channel_data_.size(); c++) {
      if (stage->GetChannelMode(c) != RenderPipelineChannelMode::kInOut) {
        continue;
      }
      // Horizontal mirroring.
      for (size_t y = 0; y < input_sizes[c].second; y++) {
        float* row = get_row(c, y);
        for (size_t ix = 0; ix < stage->settings_.border_x; ix++) {
          *(row - ix - 1) = row[Mirror(-ssize_t(ix) - 1, input_sizes[c].first)];
        }
        for (size_t ix = 0; ix < stage->settings_.border_x; ix++) {
          *(row + ix + input_sizes[c].first) =
              row[Mirror(ix + input_sizes[c].first, input_sizes[c].first)];
        }
      }
      // Vertical mirroring.
      for (int y = 0; y < static_cast<int>(stage->settings_.border_y); y++) {
        memcpy(get_row(c, -y - 1) - stage->settings_.border_x,
               get_row(c, Mirror(-ssize_t(y) - 1, input_sizes[c].second)) -
                   stage->settings_.border_x,
               sizeof(float) *
                   (input_sizes[c].first + 2 * stage->settings_.border_x));
      }
      for (int y = 0; y < static_cast<int>(stage->settings_.border_y); y++) {
        memcpy(
            get_row(c, input_sizes[c].second + y) - stage->settings_.border_x,
            get_row(c,
                    Mirror(input_sizes[c].second + y, input_sizes[c].second)) -
                stage->settings_.border_x,
            sizeof(float) *
                (input_sizes[c].first + 2 * stage->settings_.border_x));
      }
    }

    size_t ysize = 0;
    size_t xsize = 0;
    for (size_t c = 0; c < channel_data_.size(); c++) {
      if (stage->GetChannelMode(c) == RenderPipelineChannelMode::kIgnored) {
        continue;
      }
      ysize = std::max(input_sizes[c].second, ysize);
      xsize = std::max(input_sizes[c].first, xsize);
    }

    JXL_ASSERT(ysize != 0);
    JXL_ASSERT(xsize != 0);

    RenderPipelineStage::RowInfo input_rows(channel_data_.size());
    RenderPipelineStage::RowInfo output_rows(channel_data_.size());

    // Run the pipeline.
    {
      stage->SetInputSizes(input_sizes);
      int border_y = stage->settings_.border_y;
      for (size_t y = 0; y < ysize; y++) {
        // Prepare input rows.
        for (size_t c = 0; c < channel_data_.size(); c++) {
          if (stage->GetChannelMode(c) == RenderPipelineChannelMode::kIgnored) {
            continue;
          }
          input_rows[c].resize(2 * border_y + 1);
          for (int iy = -border_y; iy <= border_y; iy++) {
            input_rows[c][iy + border_y] =
                channel_data_[c].Row(y + kRenderPipelineXOffset + iy);
          }
        }
        // Prepare output rows.
        for (size_t c = 0; c < channel_data_.size(); c++) {
          if (!output_channels[c]) continue;
          output_rows[c].resize(1 << stage->settings_.shift_y);
          for (size_t iy = 0; iy < output_rows[c].size(); iy++) {
            output_rows[c][iy] = output_channels[c]->Row(
                (y << stage->settings_.shift_y) + iy + kRenderPipelineXOffset);
          }
        }
        stage->ProcessRow(input_rows, output_rows, /*xextra=*/0, xsize,
                          /*xpos=*/0, y, thread_id);
      }
    }

    // Move new channels to current channels.
    for (size_t c = 0; c < channel_data_.size(); c++) {
      if (stage->GetChannelMode(c) != RenderPipelineChannelMode::kInOut) {
        continue;
      }
      channel_data_[c] = std::move(new_channels[c]);
    }
    for (size_t c = 0; c < channel_data_.size(); c++) {
      size_t next_stage = std::min(stage_id + 1, channel_shifts_.size() - 1);
      size_t xsize = DivCeil(frame_dimensions_.xsize_upsampled,
                             1 << channel_shifts_[next_stage][c].first);
      size_t ysize = DivCeil(frame_dimensions_.ysize_upsampled,
                             1 << channel_shifts_[next_stage][c].second);
      channel_data_[c].ShrinkTo(xsize + 2 * kRenderPipelineXOffset,
                                ysize + 2 * kRenderPipelineXOffset);
      JXL_CHECK_PLANE_INITIALIZED(
          channel_data_[c],
          Rect(kRenderPipelineXOffset, kRenderPipelineXOffset, xsize, ysize),
          c);
    }

    if (stage->SwitchToImageDimensions()) {
      size_t image_xsize, image_ysize;
      FrameOrigin frame_origin;
      stage->GetImageDimensions(&image_xsize, &image_ysize, &frame_origin);
      frame_dimensions_.Set(image_xsize, image_ysize, 0, 0, 0, false, 1);
      std::vector<ImageF> old_channels = std::move(channel_data_);
      channel_data_.clear();
      channel_data_.reserve(old_channels.size());
      for (size_t c = 0; c < old_channels.size(); c++) {
        channel_data_.emplace_back(2 * kRenderPipelineXOffset + image_xsize,
                                   2 * kRenderPipelineXOffset + image_ysize);
      }
      for (size_t y = 0; y < image_ysize; ++y) {
        for (size_t c = 0; c < channel_data_.size(); c++) {
          output_rows[c].resize(1);
          output_rows[c][0] = channel_data_[c].Row(kRenderPipelineXOffset + y);
        }
        // TODO(sboukortt): consider doing this only on the parts of the
        // background that won't be occluded.
        stage->ProcessPaddingRow(output_rows, image_xsize, 0, y);
      }
      ssize_t x0 = frame_origin.x0;
      ssize_t y0 = frame_origin.y0;
      size_t x0_fg = 0;
      size_t y0_fg = 0;
      if (x0 < 0) {
        xsize += x0;
        x0_fg -= x0;
        x0 = 0;
      }
      if (x0 + xsize > image_xsize) {
        xsize = image_xsize - x0;
      }
      if (y0 < 0) {
        ysize += y0;
        y0_fg -= x0;
        y0 = 0;
      }
      if (y0 + ysize > image_ysize) {
        ysize = image_ysize - y0;
      }
      const Rect rect_fg_relative_to_image =
          Rect(x0, y0, xsize, ysize)
              .Translate(kRenderPipelineXOffset, kRenderPipelineXOffset);
      const Rect rect_fg =
          Rect(x0_fg, y0_fg, xsize, ysize)
              .Translate(kRenderPipelineXOffset, kRenderPipelineXOffset);
      for (size_t c = 0; c < channel_data_.size(); c++) {
        CopyImageTo(rect_fg, old_channels[c], rect_fg_relative_to_image,
                    &channel_data_[c]);
      }
    }
  }
}
}  // namespace jxl