summaryrefslogtreecommitdiffstats
path: root/third_party/jpeg-xl/lib/jxl/transfer_functions-inl.h
blob: 9f4c10c76de25046f9e9fc5f8b00464be96693ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Transfer functions for color encodings.

#if defined(LIB_JXL_TRANSFER_FUNCTIONS_INL_H_) == defined(HWY_TARGET_TOGGLE)
#ifdef LIB_JXL_TRANSFER_FUNCTIONS_INL_H_
#undef LIB_JXL_TRANSFER_FUNCTIONS_INL_H_
#else
#define LIB_JXL_TRANSFER_FUNCTIONS_INL_H_
#endif

#include <algorithm>
#include <cmath>
#include <hwy/highway.h>

#include "lib/jxl/base/compiler_specific.h"
#include "lib/jxl/base/status.h"
#include "lib/jxl/fast_math-inl.h"
#include "lib/jxl/rational_polynomial-inl.h"

HWY_BEFORE_NAMESPACE();
namespace jxl {
namespace HWY_NAMESPACE {

// These templates are not found via ADL.
using hwy::HWY_NAMESPACE::And;
using hwy::HWY_NAMESPACE::AndNot;
using hwy::HWY_NAMESPACE::Gt;
using hwy::HWY_NAMESPACE::IfThenElse;
using hwy::HWY_NAMESPACE::Lt;
using hwy::HWY_NAMESPACE::Or;
using hwy::HWY_NAMESPACE::Sqrt;
using hwy::HWY_NAMESPACE::TableLookupBytes;

// Definitions for BT.2100-2 transfer functions (used inside/outside SIMD):
// "display" is linear light (nits) normalized to [0, 1].
// "encoded" is a nonlinear encoding (e.g. PQ) in [0, 1].
// "scene" is a linear function of photon counts, normalized to [0, 1].

// Despite the stated ranges, we need unbounded transfer functions: see
// http://www.littlecms.com/CIC18_UnboundedCMM.pdf. Inputs can be negative or
// above 1 due to chromatic adaptation. To avoid severe round-trip errors caused
// by clamping, we mirror negative inputs via copysign (f(-x) = -f(x), see
// https://developer.apple.com/documentation/coregraphics/cgcolorspace/1644735-extendedsrgb)
// and extend the function domains above 1.

// Hybrid Log-Gamma.
class TF_HLG {
 public:
  // EOTF. e = encoded.
  JXL_INLINE double DisplayFromEncoded(const double e) const {
    return OOTF(InvOETF(e));
  }

  // Inverse EOTF. d = display.
  JXL_INLINE double EncodedFromDisplay(const double d) const {
    return OETF(InvOOTF(d));
  }

  // Maximum error 5e-7.
  template <class D, class V>
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
    const V kSign = BitCast(d, Set(du, 0x80000000u));
    const V original_sign = And(x, kSign);
    x = AndNot(kSign, x);  // abs
    const V below_div12 = Sqrt(Mul(Set(d, 3.0f), x));
    const V e =
        MulAdd(Set(d, kA * 0.693147181f),
               FastLog2f(d, MulAdd(Set(d, 12), x, Set(d, -kB))), Set(d, kC));
    const V magnitude = IfThenElse(Le(x, Set(d, kDiv12)), below_div12, e);
    return Or(AndNot(kSign, magnitude), original_sign);
  }

 private:
  // OETF (defines the HLG approach). s = scene, returns encoded.
  JXL_INLINE double OETF(double s) const {
    if (s == 0.0) return 0.0;
    const double original_sign = s;
    s = std::abs(s);

    if (s <= kDiv12) return copysignf(std::sqrt(3.0 * s), original_sign);

    const double e = kA * std::log(12 * s - kB) + kC;
    JXL_ASSERT(e > 0.0);
    return copysignf(e, original_sign);
  }

  // e = encoded, returns scene.
  JXL_INLINE double InvOETF(double e) const {
    if (e == 0.0) return 0.0;
    const double original_sign = e;
    e = std::abs(e);

    if (e <= 0.5) return copysignf(e * e * (1.0 / 3), original_sign);

    const double s = (std::exp((e - kC) * kRA) + kB) * kDiv12;
    JXL_ASSERT(s >= 0);
    return copysignf(s, original_sign);
  }

  // s = scene, returns display.
  JXL_INLINE double OOTF(const double s) const {
    // The actual (red channel) OOTF is RD = alpha * YS^(gamma-1) * RS, where
    // YS = 0.2627 * RS + 0.6780 * GS + 0.0593 * BS. Let alpha = 1 so we return
    // "display" (normalized [0, 1]) instead of nits. Our transfer function
    // interface does not allow a dependency on YS. Fortunately, the system
    // gamma at 334 nits is 1.0, so this reduces to RD = RS.
    return s;
  }

  // d = display, returns scene.
  JXL_INLINE double InvOOTF(const double d) const {
    return d;  // see OOTF().
  }

  static constexpr double kA = 0.17883277;
  static constexpr double kRA = 1.0 / kA;
  static constexpr double kB = 1 - 4 * kA;
  static constexpr double kC = 0.5599107295;
  static constexpr double kDiv12 = 1.0 / 12;
};

class TF_709 {
 public:
  JXL_INLINE double EncodedFromDisplay(const double d) const {
    if (d < kThresh) return kMulLow * d;
    return kMulHi * std::pow(d, kPowHi) + kSub;
  }

  // Maximum error 1e-6.
  template <class D, class V>
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
    auto low = Mul(Set(d, kMulLow), x);
    auto hi =
        MulAdd(Set(d, kMulHi), FastPowf(d, x, Set(d, kPowHi)), Set(d, kSub));
    return IfThenElse(Le(x, Set(d, kThresh)), low, hi);
  }

  template <class D, class V>
  JXL_INLINE V DisplayFromEncoded(D d, V x) const {
    auto low = Mul(Set(d, kInvMulLow), x);
    auto hi = FastPowf(d, MulAdd(x, Set(d, kInvMulHi), Set(d, kInvAdd)),
                       Set(d, kInvPowHi));
    return IfThenElse(Lt(x, Set(d, kInvThresh)), low, hi);
  }

 private:
  static constexpr double kThresh = 0.018;
  static constexpr double kMulLow = 4.5;
  static constexpr double kMulHi = 1.099;
  static constexpr double kPowHi = 0.45;
  static constexpr double kSub = -0.099;

  static constexpr double kInvThresh = 0.081;
  static constexpr double kInvMulLow = 1 / 4.5;
  static constexpr double kInvMulHi = 1 / 1.099;
  static constexpr double kInvPowHi = 1 / 0.45;
  static constexpr double kInvAdd = 0.099 * kInvMulHi;
};

// Perceptual Quantization
class TF_PQ {
 public:
  // EOTF (defines the PQ approach). e = encoded.
  JXL_INLINE double DisplayFromEncoded(double e) const {
    if (e == 0.0) return 0.0;
    const double original_sign = e;
    e = std::abs(e);

    const double xp = std::pow(e, 1.0 / kM2);
    const double num = std::max(xp - kC1, 0.0);
    const double den = kC2 - kC3 * xp;
    JXL_DASSERT(den != 0.0);
    const double d = std::pow(num / den, 1.0 / kM1);
    JXL_DASSERT(d >= 0.0);  // Equal for e ~= 1E-9
    return copysignf(d, original_sign);
  }

  // Maximum error 3e-6
  template <class D, class V>
  JXL_INLINE V DisplayFromEncoded(D d, V x) const {
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
    const V kSign = BitCast(d, Set(du, 0x80000000u));
    const V original_sign = And(x, kSign);
    x = AndNot(kSign, x);  // abs
    // 4-over-4-degree rational polynomial approximation on x+x*x. This improves
    // the maximum error by about 5x over a rational polynomial for x.
    auto xpxx = MulAdd(x, x, x);
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
        HWY_REP4(2.62975656e-04f), HWY_REP4(-6.23553089e-03f),
        HWY_REP4(7.38602301e-01f), HWY_REP4(2.64553172e+00f),
        HWY_REP4(5.50034862e-01f),
    };
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
        HWY_REP4(4.21350107e+02f), HWY_REP4(-4.28736818e+02f),
        HWY_REP4(1.74364667e+02f), HWY_REP4(-3.39078883e+01f),
        HWY_REP4(2.67718770e+00f),
    };
    auto magnitude = EvalRationalPolynomial(d, xpxx, p, q);
    return Or(AndNot(kSign, magnitude), original_sign);
  }

  // Inverse EOTF. d = display.
  JXL_INLINE double EncodedFromDisplay(double d) const {
    if (d == 0.0) return 0.0;
    const double original_sign = d;
    d = std::abs(d);

    const double xp = std::pow(d, kM1);
    const double num = kC1 + xp * kC2;
    const double den = 1.0 + xp * kC3;
    const double e = std::pow(num / den, kM2);
    JXL_DASSERT(e > 0.0);
    return copysignf(e, original_sign);
  }

  // Maximum error 7e-7.
  template <class D, class V>
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
    const V kSign = BitCast(d, Set(du, 0x80000000u));
    const V original_sign = And(x, kSign);
    x = AndNot(kSign, x);  // abs
    // 4-over-4-degree rational polynomial approximation on x**0.25, with two
    // different polynomials above and below 1e-4.
    auto xto025 = Sqrt(Sqrt(x));
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
        HWY_REP4(1.351392e-02f), HWY_REP4(-1.095778e+00f),
        HWY_REP4(5.522776e+01f), HWY_REP4(1.492516e+02f),
        HWY_REP4(4.838434e+01f),
    };
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
        HWY_REP4(1.012416e+00f), HWY_REP4(2.016708e+01f),
        HWY_REP4(9.263710e+01f), HWY_REP4(1.120607e+02f),
        HWY_REP4(2.590418e+01f),
    };

    HWY_ALIGN constexpr float plo[(4 + 1) * 4] = {
        HWY_REP4(9.863406e-06f),  HWY_REP4(3.881234e-01f),
        HWY_REP4(1.352821e+02f),  HWY_REP4(6.889862e+04f),
        HWY_REP4(-2.864824e+05f),
    };
    HWY_ALIGN constexpr float qlo[(4 + 1) * 4] = {
        HWY_REP4(3.371868e+01f),  HWY_REP4(1.477719e+03f),
        HWY_REP4(1.608477e+04f),  HWY_REP4(-4.389884e+04f),
        HWY_REP4(-2.072546e+05f),
    };

    auto magnitude = IfThenElse(Lt(x, Set(d, 1e-4f)),
                                EvalRationalPolynomial(d, xto025, plo, qlo),
                                EvalRationalPolynomial(d, xto025, p, q));
    return Or(AndNot(kSign, magnitude), original_sign);
  }

 private:
  static constexpr double kM1 = 2610.0 / 16384;
  static constexpr double kM2 = (2523.0 / 4096) * 128;
  static constexpr double kC1 = 3424.0 / 4096;
  static constexpr double kC2 = (2413.0 / 4096) * 32;
  static constexpr double kC3 = (2392.0 / 4096) * 32;
};

// sRGB
class TF_SRGB {
 public:
  template <typename V>
  JXL_INLINE V DisplayFromEncoded(V x) const {
    const HWY_FULL(float) d;
    const HWY_FULL(uint32_t) du;
    const V kSign = BitCast(d, Set(du, 0x80000000u));
    const V original_sign = And(x, kSign);
    x = AndNot(kSign, x);  // abs

    // TODO(janwas): range reduction
    // Computed via af_cheb_rational (k=100); replicated 4x.
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
        2.200248328e-04f, 2.200248328e-04f, 2.200248328e-04f, 2.200248328e-04f,
        1.043637593e-02f, 1.043637593e-02f, 1.043637593e-02f, 1.043637593e-02f,
        1.624820318e-01f, 1.624820318e-01f, 1.624820318e-01f, 1.624820318e-01f,
        7.961564959e-01f, 7.961564959e-01f, 7.961564959e-01f, 7.961564959e-01f,
        8.210152774e-01f, 8.210152774e-01f, 8.210152774e-01f, 8.210152774e-01f,
    };
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
        2.631846970e-01f,  2.631846970e-01f,  2.631846970e-01f,
        2.631846970e-01f,  1.076976492e+00f,  1.076976492e+00f,
        1.076976492e+00f,  1.076976492e+00f,  4.987528350e-01f,
        4.987528350e-01f,  4.987528350e-01f,  4.987528350e-01f,
        -5.512498495e-02f, -5.512498495e-02f, -5.512498495e-02f,
        -5.512498495e-02f, 6.521209011e-03f,  6.521209011e-03f,
        6.521209011e-03f,  6.521209011e-03f,
    };
    const V linear = Mul(x, Set(d, kLowDivInv));
    const V poly = EvalRationalPolynomial(d, x, p, q);
    const V magnitude =
        IfThenElse(Gt(x, Set(d, kThreshSRGBToLinear)), poly, linear);
    return Or(AndNot(kSign, magnitude), original_sign);
  }

  // Error ~5e-07
  template <class D, class V>
  JXL_INLINE V EncodedFromDisplay(D d, V x) const {
    const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
    const V kSign = BitCast(d, Set(du, 0x80000000u));
    const V original_sign = And(x, kSign);
    x = AndNot(kSign, x);  // abs

    // Computed via af_cheb_rational (k=100); replicated 4x.
    HWY_ALIGN constexpr float p[(4 + 1) * 4] = {
        -5.135152395e-04f, -5.135152395e-04f, -5.135152395e-04f,
        -5.135152395e-04f, 5.287254571e-03f,  5.287254571e-03f,
        5.287254571e-03f,  5.287254571e-03f,  3.903842876e-01f,
        3.903842876e-01f,  3.903842876e-01f,  3.903842876e-01f,
        1.474205315e+00f,  1.474205315e+00f,  1.474205315e+00f,
        1.474205315e+00f,  7.352629620e-01f,  7.352629620e-01f,
        7.352629620e-01f,  7.352629620e-01f,
    };
    HWY_ALIGN constexpr float q[(4 + 1) * 4] = {
        1.004519624e-02f, 1.004519624e-02f, 1.004519624e-02f, 1.004519624e-02f,
        3.036675394e-01f, 3.036675394e-01f, 3.036675394e-01f, 3.036675394e-01f,
        1.340816930e+00f, 1.340816930e+00f, 1.340816930e+00f, 1.340816930e+00f,
        9.258482155e-01f, 9.258482155e-01f, 9.258482155e-01f, 9.258482155e-01f,
        2.424867759e-02f, 2.424867759e-02f, 2.424867759e-02f, 2.424867759e-02f,
    };
    const V linear = Mul(x, Set(d, kLowDiv));
    const V poly = EvalRationalPolynomial(d, Sqrt(x), p, q);
    const V magnitude =
        IfThenElse(Gt(x, Set(d, kThreshLinearToSRGB)), poly, linear);
    return Or(AndNot(kSign, magnitude), original_sign);
  }

 private:
  static constexpr float kThreshSRGBToLinear = 0.04045f;
  static constexpr float kThreshLinearToSRGB = 0.0031308f;
  static constexpr float kLowDiv = 12.92f;
  static constexpr float kLowDivInv = 1.0f / kLowDiv;
};

// Linear to sRGB conversion with error of at most 1.2e-4.
template <typename D, typename V>
V FastLinearToSRGB(D d, V v) {
  const hwy::HWY_NAMESPACE::Rebind<uint32_t, D> du;
  const hwy::HWY_NAMESPACE::Rebind<int32_t, D> di;
  // Convert to 0.25 - 0.5 range.
  auto v025_05 = BitCast(
      d, And(Or(BitCast(du, v), Set(du, 0x3e800000)), Set(du, 0x3effffff)));
  // third degree polynomial approximation between 0.25 and 0.5
  // of 1.055/2^(7/2.4) * x^(1/2.4) * 0.5. A degree 4 polynomial only improves
  // accuracy by about 3x.
  auto d1 = MulAdd(v025_05, Set(d, 0.059914046f), Set(d, -0.108894556f));
  auto d2 = MulAdd(d1, v025_05, Set(d, 0.107963754f));
  auto pow = MulAdd(d2, v025_05, Set(d, 0.018092343f));
  // Compute extra multiplier depending on exponent. Valid exponent range for
  // [0.0031308f, 1.0) is 0...8 after subtracting 118.
  // The next three constants contain a representation of the powers of
  // 2**(1/2.4) = 2**(5/12) times two; in particular, bits from 26 to 31 are
  // always the same and in k2to512powers_basebits, and the two arrays contain
  // the next groups of 8 bits. This ends up being a 22-bit representation (with
  // a mantissa of 13 bits). The choice of polynomial to approximate is such
  // that the multiplication factor has the highest 5 bits constant, and that
  // the factor for the lowest possible exponent is a power of two (thus making
  // the additional bits 0, which is used to correctly merge back together the
  // floats).
  constexpr uint32_t k2to512powers_basebits = 0x40000000;
  HWY_ALIGN constexpr uint8_t k2to512powers_25to18bits[16] = {
      0x0,  0xa,  0x19, 0x26, 0x32, 0x41, 0x4d, 0x5c,
      0x68, 0x75, 0x83, 0x8f, 0xa0, 0xaa, 0xb9, 0xc6,
  };
  HWY_ALIGN constexpr uint8_t k2to512powers_17to10bits[16] = {
      0x0,  0xb7, 0x4,  0xd,  0xcb, 0xe7, 0x41, 0x68,
      0x51, 0xd1, 0xeb, 0xf2, 0x0,  0xb7, 0x4,  0xd,
  };
  // Note that vld1q_s8_x2 on ARM seems to actually be slower.
#if HWY_TARGET != HWY_SCALAR
  using hwy::HWY_NAMESPACE::ShiftLeft;
  using hwy::HWY_NAMESPACE::ShiftRight;
  // Every lane of exp is now (if cast to byte) {0, 0, 0, <index for lookup>}.
  auto exp = Sub(ShiftRight<23>(BitCast(di, v)), Set(di, 118));
  auto pow25to18bits = TableLookupBytes(
      LoadDup128(di,
                 reinterpret_cast<const int32_t*>(k2to512powers_25to18bits)),
      exp);
  auto pow17to10bits = TableLookupBytes(
      LoadDup128(di,
                 reinterpret_cast<const int32_t*>(k2to512powers_17to10bits)),
      exp);
  // Now, pow* contain {0, 0, 0, <part of float repr of multiplier>}. Here
  // we take advantage of the fact that each table has its position 0 equal to
  // 0.
  // We can now just reassemble the float.
  auto mul = BitCast(
      d, Or(Or(ShiftLeft<18>(pow25to18bits), ShiftLeft<10>(pow17to10bits)),
            Set(di, k2to512powers_basebits)));
#else
  // Fallback for scalar.
  uint32_t exp = ((BitCast(di, v).raw >> 23) - 118) & 0xf;
  auto mul = BitCast(d, Set(di, (k2to512powers_25to18bits[exp] << 18) |
                                    (k2to512powers_17to10bits[exp] << 10) |
                                    k2to512powers_basebits));
#endif
  return IfThenElse(Lt(v, Set(d, 0.0031308f)), Mul(v, Set(d, 12.92f)),
                    MulAdd(pow, mul, Set(d, -0.055)));
}

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace jxl
HWY_AFTER_NAMESPACE();

#endif  // LIB_JXL_TRANSFER_FUNCTIONS_INL_H_