summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/modules/audio_processing/ns/noise_suppressor.cc
blob: d66faa6ed400c8959ab870f290a8b9b107e3dde5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_processing/ns/noise_suppressor.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

#include "modules/audio_processing/ns/fast_math.h"
#include "rtc_base/checks.h"

namespace webrtc {

namespace {

// Maps sample rate to number of bands.
size_t NumBandsForRate(size_t sample_rate_hz) {
  RTC_DCHECK(sample_rate_hz == 16000 || sample_rate_hz == 32000 ||
             sample_rate_hz == 48000);
  return sample_rate_hz / 16000;
}

// Maximum number of channels for which the channel data is stored on
// the stack. If the number of channels are larger than this, they are stored
// using scratch memory that is pre-allocated on the heap. The reason for this
// partitioning is not to waste heap space for handling the more common numbers
// of channels, while at the same time not limiting the support for higher
// numbers of channels by enforcing the channel data to be stored on the
// stack using a fixed maximum value.
constexpr size_t kMaxNumChannelsOnStack = 2;

// Chooses the number of channels to store on the heap when that is required due
// to the number of channels being larger than the pre-defined number
// of channels to store on the stack.
size_t NumChannelsOnHeap(size_t num_channels) {
  return num_channels > kMaxNumChannelsOnStack ? num_channels : 0;
}

// Hybrib Hanning and flat window for the filterbank.
constexpr std::array<float, 96> kBlocks160w256FirstHalf = {
    0.00000000f, 0.01636173f, 0.03271908f, 0.04906767f, 0.06540313f,
    0.08172107f, 0.09801714f, 0.11428696f, 0.13052619f, 0.14673047f,
    0.16289547f, 0.17901686f, 0.19509032f, 0.21111155f, 0.22707626f,
    0.24298018f, 0.25881905f, 0.27458862f, 0.29028468f, 0.30590302f,
    0.32143947f, 0.33688985f, 0.35225005f, 0.36751594f, 0.38268343f,
    0.39774847f, 0.41270703f, 0.42755509f, 0.44228869f, 0.45690388f,
    0.47139674f, 0.48576339f, 0.50000000f, 0.51410274f, 0.52806785f,
    0.54189158f, 0.55557023f, 0.56910015f, 0.58247770f, 0.59569930f,
    0.60876143f, 0.62166057f, 0.63439328f, 0.64695615f, 0.65934582f,
    0.67155895f, 0.68359230f, 0.69544264f, 0.70710678f, 0.71858162f,
    0.72986407f, 0.74095113f, 0.75183981f, 0.76252720f, 0.77301045f,
    0.78328675f, 0.79335334f, 0.80320753f, 0.81284668f, 0.82226822f,
    0.83146961f, 0.84044840f, 0.84920218f, 0.85772861f, 0.86602540f,
    0.87409034f, 0.88192126f, 0.88951608f, 0.89687274f, 0.90398929f,
    0.91086382f, 0.91749450f, 0.92387953f, 0.93001722f, 0.93590593f,
    0.94154407f, 0.94693013f, 0.95206268f, 0.95694034f, 0.96156180f,
    0.96592583f, 0.97003125f, 0.97387698f, 0.97746197f, 0.98078528f,
    0.98384601f, 0.98664333f, 0.98917651f, 0.99144486f, 0.99344778f,
    0.99518473f, 0.99665524f, 0.99785892f, 0.99879546f, 0.99946459f,
    0.99986614f};

// Applies the filterbank window to a buffer.
void ApplyFilterBankWindow(rtc::ArrayView<float, kFftSize> x) {
  for (size_t i = 0; i < 96; ++i) {
    x[i] = kBlocks160w256FirstHalf[i] * x[i];
  }

  for (size_t i = 161, k = 95; i < kFftSize; ++i, --k) {
    RTC_DCHECK_NE(0, k);
    x[i] = kBlocks160w256FirstHalf[k] * x[i];
  }
}

// Extends a frame with previous data.
void FormExtendedFrame(rtc::ArrayView<const float, kNsFrameSize> frame,
                       rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data,
                       rtc::ArrayView<float, kFftSize> extended_frame) {
  std::copy(old_data.begin(), old_data.end(), extended_frame.begin());
  std::copy(frame.begin(), frame.end(),
            extended_frame.begin() + old_data.size());
  std::copy(extended_frame.end() - old_data.size(), extended_frame.end(),
            old_data.begin());
}

// Uses overlap-and-add to produce an output frame.
void OverlapAndAdd(rtc::ArrayView<const float, kFftSize> extended_frame,
                   rtc::ArrayView<float, kOverlapSize> overlap_memory,
                   rtc::ArrayView<float, kNsFrameSize> output_frame) {
  for (size_t i = 0; i < kOverlapSize; ++i) {
    output_frame[i] = overlap_memory[i] + extended_frame[i];
  }
  std::copy(extended_frame.begin() + kOverlapSize,
            extended_frame.begin() + kNsFrameSize,
            output_frame.begin() + kOverlapSize);
  std::copy(extended_frame.begin() + kNsFrameSize, extended_frame.end(),
            overlap_memory.begin());
}

// Produces a delayed frame.
void DelaySignal(rtc::ArrayView<const float, kNsFrameSize> frame,
                 rtc::ArrayView<float, kFftSize - kNsFrameSize> delay_buffer,
                 rtc::ArrayView<float, kNsFrameSize> delayed_frame) {
  constexpr size_t kSamplesFromFrame = kNsFrameSize - (kFftSize - kNsFrameSize);
  std::copy(delay_buffer.begin(), delay_buffer.end(), delayed_frame.begin());
  std::copy(frame.begin(), frame.begin() + kSamplesFromFrame,
            delayed_frame.begin() + delay_buffer.size());

  std::copy(frame.begin() + kSamplesFromFrame, frame.end(),
            delay_buffer.begin());
}

// Computes the energy of an extended frame.
float ComputeEnergyOfExtendedFrame(rtc::ArrayView<const float, kFftSize> x) {
  float energy = 0.f;
  for (float x_k : x) {
    energy += x_k * x_k;
  }

  return energy;
}

// Computes the energy of an extended frame based on its subcomponents.
float ComputeEnergyOfExtendedFrame(
    rtc::ArrayView<const float, kNsFrameSize> frame,
    rtc::ArrayView<float, kFftSize - kNsFrameSize> old_data) {
  float energy = 0.f;
  for (float v : old_data) {
    energy += v * v;
  }
  for (float v : frame) {
    energy += v * v;
  }

  return energy;
}

// Computes the magnitude spectrum based on an FFT output.
void ComputeMagnitudeSpectrum(
    rtc::ArrayView<const float, kFftSize> real,
    rtc::ArrayView<const float, kFftSize> imag,
    rtc::ArrayView<float, kFftSizeBy2Plus1> signal_spectrum) {
  signal_spectrum[0] = fabsf(real[0]) + 1.f;
  signal_spectrum[kFftSizeBy2Plus1 - 1] =
      fabsf(real[kFftSizeBy2Plus1 - 1]) + 1.f;

  for (size_t i = 1; i < kFftSizeBy2Plus1 - 1; ++i) {
    signal_spectrum[i] =
        SqrtFastApproximation(real[i] * real[i] + imag[i] * imag[i]) + 1.f;
  }
}

// Compute prior and post SNR.
void ComputeSnr(rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
                rtc::ArrayView<const float> prev_signal_spectrum,
                rtc::ArrayView<const float> signal_spectrum,
                rtc::ArrayView<const float> prev_noise_spectrum,
                rtc::ArrayView<const float> noise_spectrum,
                rtc::ArrayView<float> prior_snr,
                rtc::ArrayView<float> post_snr) {
  for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
    // Previous post SNR.
    // Previous estimate: based on previous frame with gain filter.
    float prev_estimate = prev_signal_spectrum[i] /
                          (prev_noise_spectrum[i] + 0.0001f) * filter[i];
    // Post SNR.
    if (signal_spectrum[i] > noise_spectrum[i]) {
      post_snr[i] = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f;
    } else {
      post_snr[i] = 0.f;
    }
    // The directed decision estimate of the prior SNR is a sum the current and
    // previous estimates.
    prior_snr[i] = 0.98f * prev_estimate + (1.f - 0.98f) * post_snr[i];
  }
}

// Computes the attenuating gain for the noise suppression of the upper bands.
float ComputeUpperBandsGain(
    float minimum_attenuating_gain,
    rtc::ArrayView<const float, kFftSizeBy2Plus1> filter,
    rtc::ArrayView<const float> speech_probability,
    rtc::ArrayView<const float, kFftSizeBy2Plus1> prev_analysis_signal_spectrum,
    rtc::ArrayView<const float, kFftSizeBy2Plus1> signal_spectrum) {
  // Average speech prob and filter gain for the end of the lowest band.
  constexpr int kNumAvgBins = 32;
  constexpr float kOneByNumAvgBins = 1.f / kNumAvgBins;

  float avg_prob_speech = 0.f;
  float avg_filter_gain = 0.f;
  for (size_t i = kFftSizeBy2Plus1 - kNumAvgBins - 1; i < kFftSizeBy2Plus1 - 1;
       i++) {
    avg_prob_speech += speech_probability[i];
    avg_filter_gain += filter[i];
  }
  avg_prob_speech = avg_prob_speech * kOneByNumAvgBins;
  avg_filter_gain = avg_filter_gain * kOneByNumAvgBins;

  // If the speech was suppressed by a component between Analyze and Process, an
  // example being by an AEC, it should not be considered speech for the purpose
  // of high band suppression. To that end, the speech probability is scaled
  // accordingly.
  float sum_analysis_spectrum = 0.f;
  float sum_processing_spectrum = 0.f;
  for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
    sum_analysis_spectrum += prev_analysis_signal_spectrum[i];
    sum_processing_spectrum += signal_spectrum[i];
  }

  // The magnitude spectrum computation enforces the spectrum to be strictly
  // positive.
  RTC_DCHECK_GT(sum_analysis_spectrum, 0.f);
  avg_prob_speech *= sum_processing_spectrum / sum_analysis_spectrum;

  // Compute gain based on speech probability.
  float gain =
      0.5f * (1.f + static_cast<float>(tanh(2.f * avg_prob_speech - 1.f)));

  // Combine gain with low band gain.
  if (avg_prob_speech >= 0.5f) {
    gain = 0.25f * gain + 0.75f * avg_filter_gain;
  } else {
    gain = 0.5f * gain + 0.5f * avg_filter_gain;
  }

  // Make sure gain is within flooring range.
  return std::min(std::max(gain, minimum_attenuating_gain), 1.f);
}

}  // namespace

NoiseSuppressor::ChannelState::ChannelState(
    const SuppressionParams& suppression_params,
    size_t num_bands)
    : wiener_filter(suppression_params),
      noise_estimator(suppression_params),
      process_delay_memory(num_bands > 1 ? num_bands - 1 : 0) {
  analyze_analysis_memory.fill(0.f);
  prev_analysis_signal_spectrum.fill(1.f);
  process_analysis_memory.fill(0.f);
  process_synthesis_memory.fill(0.f);
  for (auto& d : process_delay_memory) {
    d.fill(0.f);
  }
}

NoiseSuppressor::NoiseSuppressor(const NsConfig& config,
                                 size_t sample_rate_hz,
                                 size_t num_channels)
    : num_bands_(NumBandsForRate(sample_rate_hz)),
      num_channels_(num_channels),
      suppression_params_(config.target_level),
      filter_bank_states_heap_(NumChannelsOnHeap(num_channels_)),
      upper_band_gains_heap_(NumChannelsOnHeap(num_channels_)),
      energies_before_filtering_heap_(NumChannelsOnHeap(num_channels_)),
      gain_adjustments_heap_(NumChannelsOnHeap(num_channels_)),
      channels_(num_channels_) {
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    channels_[ch] =
        std::make_unique<ChannelState>(suppression_params_, num_bands_);
  }
}

void NoiseSuppressor::AggregateWienerFilters(
    rtc::ArrayView<float, kFftSizeBy2Plus1> filter) const {
  rtc::ArrayView<const float, kFftSizeBy2Plus1> filter0 =
      channels_[0]->wiener_filter.get_filter();
  std::copy(filter0.begin(), filter0.end(), filter.begin());

  for (size_t ch = 1; ch < num_channels_; ++ch) {
    rtc::ArrayView<const float, kFftSizeBy2Plus1> filter_ch =
        channels_[ch]->wiener_filter.get_filter();

    for (size_t k = 0; k < kFftSizeBy2Plus1; ++k) {
      filter[k] = std::min(filter[k], filter_ch[k]);
    }
  }
}

void NoiseSuppressor::Analyze(const AudioBuffer& audio) {
  // Prepare the noise estimator for the analysis stage.
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    channels_[ch]->noise_estimator.PrepareAnalysis();
  }

  // Check for zero frames.
  bool zero_frame = true;
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    rtc::ArrayView<const float, kNsFrameSize> y_band0(
        &audio.split_bands_const(ch)[0][0], kNsFrameSize);
    float energy = ComputeEnergyOfExtendedFrame(
        y_band0, channels_[ch]->analyze_analysis_memory);
    if (energy > 0.f) {
      zero_frame = false;
      break;
    }
  }

  if (zero_frame) {
    // We want to avoid updating statistics in this case:
    // Updating feature statistics when we have zeros only will cause
    // thresholds to move towards zero signal situations. This in turn has the
    // effect that once the signal is "turned on" (non-zero values) everything
    // will be treated as speech and there is no noise suppression effect.
    // Depending on the duration of the inactive signal it takes a
    // considerable amount of time for the system to learn what is noise and
    // what is speech.
    return;
  }

  // Only update analysis counter for frames that are properly analyzed.
  if (++num_analyzed_frames_ < 0) {
    num_analyzed_frames_ = 0;
  }

  // Analyze all channels.
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    std::unique_ptr<ChannelState>& ch_p = channels_[ch];
    rtc::ArrayView<const float, kNsFrameSize> y_band0(
        &audio.split_bands_const(ch)[0][0], kNsFrameSize);

    // Form an extended frame and apply analysis filter bank windowing.
    std::array<float, kFftSize> extended_frame;
    FormExtendedFrame(y_band0, ch_p->analyze_analysis_memory, extended_frame);
    ApplyFilterBankWindow(extended_frame);

    // Compute the magnitude spectrum.
    std::array<float, kFftSize> real;
    std::array<float, kFftSize> imag;
    fft_.Fft(extended_frame, real, imag);

    std::array<float, kFftSizeBy2Plus1> signal_spectrum;
    ComputeMagnitudeSpectrum(real, imag, signal_spectrum);

    // Compute energies.
    float signal_energy = 0.f;
    for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
      signal_energy += real[i] * real[i] + imag[i] * imag[i];
    }
    signal_energy /= kFftSizeBy2Plus1;

    float signal_spectral_sum = 0.f;
    for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
      signal_spectral_sum += signal_spectrum[i];
    }

    // Estimate the noise spectra and the probability estimates of speech
    // presence.
    ch_p->noise_estimator.PreUpdate(num_analyzed_frames_, signal_spectrum,
                                    signal_spectral_sum);

    std::array<float, kFftSizeBy2Plus1> post_snr;
    std::array<float, kFftSizeBy2Plus1> prior_snr;
    ComputeSnr(ch_p->wiener_filter.get_filter(),
               ch_p->prev_analysis_signal_spectrum, signal_spectrum,
               ch_p->noise_estimator.get_prev_noise_spectrum(),
               ch_p->noise_estimator.get_noise_spectrum(), prior_snr, post_snr);

    ch_p->speech_probability_estimator.Update(
        num_analyzed_frames_, prior_snr, post_snr,
        ch_p->noise_estimator.get_conservative_noise_spectrum(),
        signal_spectrum, signal_spectral_sum, signal_energy);

    ch_p->noise_estimator.PostUpdate(
        ch_p->speech_probability_estimator.get_probability(), signal_spectrum);

    // Store the magnitude spectrum to make it avalilable for the process
    // method.
    std::copy(signal_spectrum.begin(), signal_spectrum.end(),
              ch_p->prev_analysis_signal_spectrum.begin());
  }
}

void NoiseSuppressor::Process(AudioBuffer* audio) {
  // Select the space for storing data during the processing.
  std::array<FilterBankState, kMaxNumChannelsOnStack> filter_bank_states_stack;
  rtc::ArrayView<FilterBankState> filter_bank_states(
      filter_bank_states_stack.data(), num_channels_);
  std::array<float, kMaxNumChannelsOnStack> upper_band_gains_stack;
  rtc::ArrayView<float> upper_band_gains(upper_band_gains_stack.data(),
                                         num_channels_);
  std::array<float, kMaxNumChannelsOnStack> energies_before_filtering_stack;
  rtc::ArrayView<float> energies_before_filtering(
      energies_before_filtering_stack.data(), num_channels_);
  std::array<float, kMaxNumChannelsOnStack> gain_adjustments_stack;
  rtc::ArrayView<float> gain_adjustments(gain_adjustments_stack.data(),
                                         num_channels_);
  if (NumChannelsOnHeap(num_channels_) > 0) {
    // If the stack-allocated space is too small, use the heap for storing the
    // data.
    filter_bank_states = rtc::ArrayView<FilterBankState>(
        filter_bank_states_heap_.data(), num_channels_);
    upper_band_gains =
        rtc::ArrayView<float>(upper_band_gains_heap_.data(), num_channels_);
    energies_before_filtering = rtc::ArrayView<float>(
        energies_before_filtering_heap_.data(), num_channels_);
    gain_adjustments =
        rtc::ArrayView<float>(gain_adjustments_heap_.data(), num_channels_);
  }

  // Compute the suppression filters for all channels.
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    // Form an extended frame and apply analysis filter bank windowing.
    rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
                                                kNsFrameSize);

    FormExtendedFrame(y_band0, channels_[ch]->process_analysis_memory,
                      filter_bank_states[ch].extended_frame);

    ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);

    energies_before_filtering[ch] =
        ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);

    // Perform filter bank analysis and compute the magnitude spectrum.
    fft_.Fft(filter_bank_states[ch].extended_frame, filter_bank_states[ch].real,
             filter_bank_states[ch].imag);

    std::array<float, kFftSizeBy2Plus1> signal_spectrum;
    ComputeMagnitudeSpectrum(filter_bank_states[ch].real,
                             filter_bank_states[ch].imag, signal_spectrum);

    // Compute the frequency domain gain filter for noise attenuation.
    channels_[ch]->wiener_filter.Update(
        num_analyzed_frames_,
        channels_[ch]->noise_estimator.get_noise_spectrum(),
        channels_[ch]->noise_estimator.get_prev_noise_spectrum(),
        channels_[ch]->noise_estimator.get_parametric_noise_spectrum(),
        signal_spectrum);

    if (num_bands_ > 1) {
      // Compute the time-domain gain for attenuating the noise in the upper
      // bands.

      upper_band_gains[ch] = ComputeUpperBandsGain(
          suppression_params_.minimum_attenuating_gain,
          channels_[ch]->wiener_filter.get_filter(),
          channels_[ch]->speech_probability_estimator.get_probability(),
          channels_[ch]->prev_analysis_signal_spectrum, signal_spectrum);
    }
  }

  // Only do the below processing if the output of the audio processing module
  // is used.
  if (!capture_output_used_) {
    return;
  }

  // Aggregate the Wiener filters for all channels.
  std::array<float, kFftSizeBy2Plus1> filter_data;
  rtc::ArrayView<const float, kFftSizeBy2Plus1> filter = filter_data;
  if (num_channels_ == 1) {
    filter = channels_[0]->wiener_filter.get_filter();
  } else {
    AggregateWienerFilters(filter_data);
  }

  for (size_t ch = 0; ch < num_channels_; ++ch) {
    // Apply the filter to the lower band.
    for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) {
      filter_bank_states[ch].real[i] *= filter[i];
      filter_bank_states[ch].imag[i] *= filter[i];
    }
  }

  // Perform filter bank synthesis
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    fft_.Ifft(filter_bank_states[ch].real, filter_bank_states[ch].imag,
              filter_bank_states[ch].extended_frame);
  }

  for (size_t ch = 0; ch < num_channels_; ++ch) {
    const float energy_after_filtering =
        ComputeEnergyOfExtendedFrame(filter_bank_states[ch].extended_frame);

    // Apply synthesis window.
    ApplyFilterBankWindow(filter_bank_states[ch].extended_frame);

    // Compute the adjustment of the noise attenuation filter based on the
    // effect of the attenuation.
    gain_adjustments[ch] =
        channels_[ch]->wiener_filter.ComputeOverallScalingFactor(
            num_analyzed_frames_,
            channels_[ch]->speech_probability_estimator.get_prior_probability(),
            energies_before_filtering[ch], energy_after_filtering);
  }

  // Select and apply adjustment of the noise attenuation filter based on the
  // effect of the attenuation.
  float gain_adjustment = gain_adjustments[0];
  for (size_t ch = 1; ch < num_channels_; ++ch) {
    gain_adjustment = std::min(gain_adjustment, gain_adjustments[ch]);
  }
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    for (size_t i = 0; i < kFftSize; ++i) {
      filter_bank_states[ch].extended_frame[i] =
          gain_adjustment * filter_bank_states[ch].extended_frame[i];
    }
  }

  // Use overlap-and-add to form the output frame of the lowest band.
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    rtc::ArrayView<float, kNsFrameSize> y_band0(&audio->split_bands(ch)[0][0],
                                                kNsFrameSize);
    OverlapAndAdd(filter_bank_states[ch].extended_frame,
                  channels_[ch]->process_synthesis_memory, y_band0);
  }

  if (num_bands_ > 1) {
    // Select the noise attenuating gain to apply to the upper band.
    float upper_band_gain = upper_band_gains[0];
    for (size_t ch = 1; ch < num_channels_; ++ch) {
      upper_band_gain = std::min(upper_band_gain, upper_band_gains[ch]);
    }

    // Process the upper bands.
    for (size_t ch = 0; ch < num_channels_; ++ch) {
      for (size_t b = 1; b < num_bands_; ++b) {
        // Delay the upper bands to match the delay of the filterbank applied to
        // the lowest band.
        rtc::ArrayView<float, kNsFrameSize> y_band(
            &audio->split_bands(ch)[b][0], kNsFrameSize);
        std::array<float, kNsFrameSize> delayed_frame;
        DelaySignal(y_band, channels_[ch]->process_delay_memory[b - 1],
                    delayed_frame);

        // Apply the time-domain noise-attenuating gain.
        for (size_t j = 0; j < kNsFrameSize; j++) {
          y_band[j] = upper_band_gain * delayed_frame[j];
        }
      }
    }
  }

  // Limit the output the allowed range.
  for (size_t ch = 0; ch < num_channels_; ++ch) {
    for (size_t b = 0; b < num_bands_; ++b) {
      rtc::ArrayView<float, kNsFrameSize> y_band(&audio->split_bands(ch)[b][0],
                                                 kNsFrameSize);
      for (size_t j = 0; j < kNsFrameSize; j++) {
        y_band[j] = std::min(std::max(y_band[j], -32768.f), 32767.f);
      }
    }
  }
}

}  // namespace webrtc