1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
/**
* Structures and methods with information about XPCOM interfaces for use by
* XPConnect. The static backing data structures used by this file are generated
* from xpidl interfaces by the jsonxpt.py and xptcodegen.py scripts.
*/
#ifndef xptinfo_h
#define xptinfo_h
#include <stdint.h>
#include "nsID.h"
#include "mozilla/Assertions.h"
#include "jsapi.h"
#include "js/Symbol.h"
#include "js/Value.h"
#include "nsString.h"
#include "nsTArray.h"
// Forward Declarations
namespace mozilla {
namespace dom {
struct NativePropertyHooks;
} // namespace dom
} // namespace mozilla
struct nsXPTInterfaceInfo;
struct nsXPTType;
struct nsXPTParamInfo;
struct nsXPTMethodInfo;
struct nsXPTConstantInfo;
struct nsXPTDOMObjectInfo;
enum class nsXPTInterface : uint16_t;
// Internal helper methods.
namespace xpt {
namespace detail {
inline const nsXPTInterfaceInfo* GetInterface(uint16_t aIndex);
inline const nsXPTType& GetType(uint16_t aIndex);
inline const nsXPTParamInfo& GetParam(uint16_t aIndex);
inline const nsXPTMethodInfo& GetMethod(uint16_t aIndex);
inline const nsXPTConstantInfo& GetConstant(uint16_t aIndex);
inline const nsXPTDOMObjectInfo& GetDOMObjectInfo(uint16_t aIndex);
inline const char* GetString(uint32_t aIndex);
const nsXPTInterfaceInfo* InterfaceByIID(const nsIID& aIID);
const nsXPTInterfaceInfo* InterfaceByName(const char* aName);
extern const uint16_t sInterfacesSize;
} // namespace detail
} // namespace xpt
/*
* An Interface describes a single XPCOM interface, including all of its
* methods. We don't record non-scriptable interfaces.
*/
struct nsXPTInterfaceInfo {
// High efficiency getters for Interfaces based on perfect hashes.
static const nsXPTInterfaceInfo* ByIID(const nsIID& aIID) {
return xpt::detail::InterfaceByIID(aIID);
}
static const nsXPTInterfaceInfo* ByName(const char* aName) {
return xpt::detail::InterfaceByName(aName);
}
static const nsXPTInterfaceInfo* Get(nsXPTInterface aID) {
return ByIndex(uint16_t(aID));
}
// These are only needed for Components_interfaces's enumerator.
static const nsXPTInterfaceInfo* ByIndex(uint16_t aIndex) {
// NOTE: We add 1 here, as the internal index 0 is reserved for null.
return xpt::detail::GetInterface(aIndex + 1);
}
static uint16_t InterfaceCount() { return xpt::detail::sInterfacesSize; }
// Interface flag getters
bool IsFunction() const { return mFunction; }
bool IsBuiltinClass() const { return mBuiltinClass; }
bool IsMainProcessScriptableOnly() const {
return mMainProcessScriptableOnly;
}
const char* Name() const { return xpt::detail::GetString(mName); }
const nsIID& IID() const { return mIID; }
// Get the parent interface, or null if this interface doesn't have a parent.
const nsXPTInterfaceInfo* GetParent() const {
return xpt::detail::GetInterface(mParent);
}
// Do we have an ancestor interface with the given IID?
bool HasAncestor(const nsIID& aIID) const;
// Get methods & constants
uint16_t ConstantCount() const { return mNumConsts; }
const nsXPTConstantInfo& Constant(uint16_t aIndex) const;
uint16_t MethodCount() const { return mNumMethods; }
const nsXPTMethodInfo& Method(uint16_t aIndex) const;
nsresult GetMethodInfo(uint16_t aIndex, const nsXPTMethodInfo** aInfo) const;
nsresult GetConstant(uint16_t aIndex, JS::MutableHandle<JS::Value> constant,
char** aName) const;
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsID mIID;
uint32_t mName; // Index into xpt::detail::sStrings
uint16_t mParent : 14;
uint16_t mBuiltinClass : 1;
// XXX(nika): Do we need this if we don't have addons anymore?
uint16_t mMainProcessScriptableOnly : 1;
uint16_t mMethods; // Index into xpt::detail::sMethods
uint16_t mConsts : 14; // Index into xpt::detail::sConsts
uint16_t mFunction : 1;
// uint16_t unused : 1;
uint8_t mNumMethods; // NOTE(24/04/18): largest=nsIDocShell (193)
uint8_t mNumConsts; // NOTE(24/04/18): largest=nsIAccessibleRole (175)
};
// The fields in nsXPTInterfaceInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTInterfaceInfo) == 28, "wrong size?");
/*
* The following enum represents contains the different tag types which
* can be found in nsXPTTypeInfo::mTag.
*
* WARNING: mTag is 5 bits wide, supporting at most 32 tags.
*/
enum nsXPTTypeTag : uint8_t {
// Arithmetic (POD) Types
// - Do not require cleanup,
// - All bit patterns are valid,
// - Outparams may be uninitialized by caller,
// - Directly supported in xptcall.
//
// NOTE: The name 'Arithmetic' comes from Harbison/Steele. Despite being a tad
// unclear, it is used frequently in xptcall, so is unlikely to be changed.
TD_INT8 = 0,
TD_INT16 = 1,
TD_INT32 = 2,
TD_INT64 = 3,
TD_UINT8 = 4,
TD_UINT16 = 5,
TD_UINT32 = 6,
TD_UINT64 = 7,
TD_FLOAT = 8,
TD_DOUBLE = 9,
TD_BOOL = 10,
TD_CHAR = 11,
TD_WCHAR = 12,
_TD_LAST_ARITHMETIC = TD_WCHAR,
// Pointer Types
// - Require cleanup unless NULL,
// - All-zeros (NULL) bit pattern is valid,
// - Outparams may be uninitialized by caller,
// - Supported in xptcall as raw pointer.
TD_VOID = 13,
TD_NSIDPTR = 14,
TD_PSTRING = 15,
TD_PWSTRING = 16,
TD_INTERFACE_TYPE = 17,
TD_INTERFACE_IS_TYPE = 18,
TD_LEGACY_ARRAY = 19,
TD_PSTRING_SIZE_IS = 20,
TD_PWSTRING_SIZE_IS = 21,
TD_DOMOBJECT = 22,
TD_PROMISE = 23,
_TD_LAST_POINTER = TD_PROMISE,
// Complex Types
// - Require cleanup,
// - Always passed indirectly,
// - Outparams must be initialized by caller,
// - Supported in xptcall due to indirection.
TD_UTF8STRING = 24,
TD_CSTRING = 25,
TD_ASTRING = 26,
TD_NSID = 27,
TD_JSVAL = 28,
TD_ARRAY = 29,
_TD_LAST_COMPLEX = TD_ARRAY
};
static_assert(_TD_LAST_COMPLEX < 32, "nsXPTTypeTag must fit in 5 bits");
/*
* A nsXPTType is a union used to identify the type of a method argument or
* return value. The internal data is stored as an 5-bit tag, and two 8-bit
* integers, to keep alignment requirements low.
*
* nsXPTType contains 3 extra bits, reserved for use by nsXPTParamInfo.
*/
struct nsXPTType {
nsXPTTypeTag Tag() const { return static_cast<nsXPTTypeTag>(mTag); }
// The index in the function argument list which should be used when
// determining the iid_is or size_is properties of this dependent type.
uint8_t ArgNum() const {
MOZ_ASSERT(Tag() == TD_INTERFACE_IS_TYPE || Tag() == TD_PSTRING_SIZE_IS ||
Tag() == TD_PWSTRING_SIZE_IS || Tag() == TD_LEGACY_ARRAY);
return mData1;
}
private:
// Helper for reading 16-bit data values split between mData1 and mData2.
uint16_t Data16() const {
return static_cast<uint16_t>(mData1 << 8) | mData2;
}
public:
// Get the type of the element in the current array or sequence. Arrays only
// fit 8 bits of type data, while sequences support up to 16 bits of type data
// due to not needing to store an ArgNum.
const nsXPTType& ArrayElementType() const {
if (Tag() == TD_LEGACY_ARRAY) {
return xpt::detail::GetType(mData2);
}
MOZ_ASSERT(Tag() == TD_ARRAY);
return xpt::detail::GetType(Data16());
}
// We store the 16-bit iface value as two 8-bit values in order to
// avoid 16-bit alignment requirements for XPTTypeDescriptor, which
// reduces its size and also the size of XPTParamDescriptor.
const nsXPTInterfaceInfo* GetInterface() const {
MOZ_ASSERT(Tag() == TD_INTERFACE_TYPE);
return xpt::detail::GetInterface(Data16());
}
const nsXPTDOMObjectInfo& GetDOMObjectInfo() const {
MOZ_ASSERT(Tag() == TD_DOMOBJECT);
return xpt::detail::GetDOMObjectInfo(Data16());
}
// See the comments in nsXPTTypeTag for an explanation as to what each of
// these categories mean.
bool IsArithmetic() const { return Tag() <= _TD_LAST_ARITHMETIC; }
bool IsPointer() const {
return !IsArithmetic() && Tag() <= _TD_LAST_POINTER;
}
bool IsComplex() const { return Tag() > _TD_LAST_POINTER; }
bool IsInterfacePointer() const {
return Tag() == TD_INTERFACE_TYPE || Tag() == TD_INTERFACE_IS_TYPE;
}
bool IsDependent() const {
return (Tag() == TD_ARRAY && InnermostType().IsDependent()) ||
Tag() == TD_INTERFACE_IS_TYPE || Tag() == TD_LEGACY_ARRAY ||
Tag() == TD_PSTRING_SIZE_IS || Tag() == TD_PWSTRING_SIZE_IS;
}
// Unwrap a nested type to its innermost value (e.g. through arrays).
const nsXPTType& InnermostType() const {
if (Tag() == TD_LEGACY_ARRAY || Tag() == TD_ARRAY) {
return ArrayElementType().InnermostType();
}
return *this;
}
// In-memory size of native type in bytes.
inline size_t Stride() const;
// Offset the given base pointer to reference the element at the given index.
void* ElementPtr(const void* aBase, uint32_t aIndex) const {
return (char*)aBase + (aIndex * Stride());
}
// Zero out a native value of the given type. The type must not be 'complex'.
void ZeroValue(void* aValue) const {
MOZ_RELEASE_ASSERT(!IsComplex(), "Cannot zero a complex value");
memset(aValue, 0, Stride());
}
// Indexes into the extra types array of a small set of known types.
enum class Idx : uint8_t {
INT8 = 0,
UINT8,
INT16,
UINT16,
INT32,
UINT32,
INT64,
UINT64,
FLOAT,
DOUBLE,
BOOL,
CHAR,
WCHAR,
NSIDPTR,
PSTRING,
PWSTRING,
INTERFACE_IS_TYPE
};
// Helper methods for fabricating nsXPTType values used by xpconnect.
static nsXPTType MkArrayType(Idx aInner) {
MOZ_ASSERT(aInner <= Idx::INTERFACE_IS_TYPE);
return {TD_LEGACY_ARRAY, false, false, false, 0, (uint8_t)aInner};
}
static const nsXPTType& Get(Idx aInner) {
MOZ_ASSERT(aInner <= Idx::INTERFACE_IS_TYPE);
return xpt::detail::GetType((uint8_t)aInner);
}
///////////////////////////////////////
// nsXPTType backwards compatibility //
///////////////////////////////////////
nsXPTType& operator=(nsXPTTypeTag aPrefix) {
mTag = aPrefix;
return *this;
}
operator nsXPTTypeTag() const { return Tag(); }
#define TD_ALIAS_(name_, value_) static constexpr nsXPTTypeTag name_ = value_
TD_ALIAS_(T_I8, TD_INT8);
TD_ALIAS_(T_I16, TD_INT16);
TD_ALIAS_(T_I32, TD_INT32);
TD_ALIAS_(T_I64, TD_INT64);
TD_ALIAS_(T_U8, TD_UINT8);
TD_ALIAS_(T_U16, TD_UINT16);
TD_ALIAS_(T_U32, TD_UINT32);
TD_ALIAS_(T_U64, TD_UINT64);
TD_ALIAS_(T_FLOAT, TD_FLOAT);
TD_ALIAS_(T_DOUBLE, TD_DOUBLE);
TD_ALIAS_(T_BOOL, TD_BOOL);
TD_ALIAS_(T_CHAR, TD_CHAR);
TD_ALIAS_(T_WCHAR, TD_WCHAR);
TD_ALIAS_(T_VOID, TD_VOID);
TD_ALIAS_(T_NSIDPTR, TD_NSIDPTR);
TD_ALIAS_(T_CHAR_STR, TD_PSTRING);
TD_ALIAS_(T_WCHAR_STR, TD_PWSTRING);
TD_ALIAS_(T_INTERFACE, TD_INTERFACE_TYPE);
TD_ALIAS_(T_INTERFACE_IS, TD_INTERFACE_IS_TYPE);
TD_ALIAS_(T_LEGACY_ARRAY, TD_LEGACY_ARRAY);
TD_ALIAS_(T_PSTRING_SIZE_IS, TD_PSTRING_SIZE_IS);
TD_ALIAS_(T_PWSTRING_SIZE_IS, TD_PWSTRING_SIZE_IS);
TD_ALIAS_(T_UTF8STRING, TD_UTF8STRING);
TD_ALIAS_(T_CSTRING, TD_CSTRING);
TD_ALIAS_(T_ASTRING, TD_ASTRING);
TD_ALIAS_(T_NSID, TD_NSID);
TD_ALIAS_(T_JSVAL, TD_JSVAL);
TD_ALIAS_(T_DOMOBJECT, TD_DOMOBJECT);
TD_ALIAS_(T_PROMISE, TD_PROMISE);
TD_ALIAS_(T_ARRAY, TD_ARRAY);
#undef TD_ALIAS_
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint8_t mTag : 5;
// Parameter bitflags are packed into the XPTTypeDescriptor to save space.
// When the TypeDescriptor is not in a parameter, these flags are ignored.
uint8_t mInParam : 1;
uint8_t mOutParam : 1;
uint8_t mOptionalParam : 1;
// The data for the different variants is stored in these two data fields.
// These should only be accessed via the getter methods above, which will
// assert if the tag is invalid.
uint8_t mData1;
uint8_t mData2;
};
// The fields in nsXPTType were carefully ordered to minimize size.
static_assert(sizeof(nsXPTType) == 3, "wrong size");
/*
* A nsXPTParamInfo is used to describe either a single argument to a method or
* a method's result. It stores its flags in the type descriptor to save space.
*/
struct nsXPTParamInfo {
bool IsIn() const { return mType.mInParam; }
bool IsOut() const { return mType.mOutParam; }
bool IsOptional() const { return mType.mOptionalParam; }
bool IsShared() const { return false; } // XXX remove (backcompat)
// Get the type of this parameter.
const nsXPTType& Type() const { return mType; }
const nsXPTType& GetType() const {
return Type();
} // XXX remove (backcompat)
// Whether this parameter is passed indirectly on the stack. All out/inout
// params are passed indirectly, and complex types are always passed
// indirectly.
bool IsIndirect() const { return IsOut() || Type().IsComplex(); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsXPTType mType;
};
// The fields in nsXPTParamInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTParamInfo) == 3, "wrong size");
/*
* A nsXPTMethodInfo is used to describe a single interface method.
*/
struct nsXPTMethodInfo {
bool IsGetter() const { return mGetter; }
bool IsSetter() const { return mSetter; }
bool IsReflectable() const { return mReflectable; }
bool IsSymbol() const { return mIsSymbol; }
bool WantsOptArgc() const { return mOptArgc; }
bool WantsContext() const { return mContext; }
uint8_t ParamCount() const { return mNumParams; }
const char* Name() const {
MOZ_ASSERT(!IsSymbol());
return xpt::detail::GetString(mName);
}
const nsXPTParamInfo& Param(uint8_t aIndex) const {
MOZ_ASSERT(aIndex < mNumParams);
return xpt::detail::GetParam(mParams + aIndex);
}
bool HasRetval() const { return mHasRetval; }
const nsXPTParamInfo* GetRetval() const {
return mHasRetval ? &Param(mNumParams - 1) : nullptr;
}
// If this is an [implicit_jscontext] method, returns the index of the
// implicit JSContext* argument in the C++ method's argument list.
// Otherwise returns UINT8_MAX.
uint8_t IndexOfJSContext() const {
if (!WantsContext()) {
return UINT8_MAX;
}
if (IsGetter() || IsSetter()) {
// Getters/setters always have the context as first argument.
return 0;
}
// The context comes before the return value, if there is one.
MOZ_ASSERT_IF(HasRetval(), ParamCount() > 0);
return ParamCount() - uint8_t(HasRetval());
}
JS::SymbolCode GetSymbolCode() const {
MOZ_ASSERT(IsSymbol());
return JS::SymbolCode(mName);
}
JS::Symbol* GetSymbol(JSContext* aCx) const {
return JS::GetWellKnownSymbol(aCx, GetSymbolCode());
}
const char* SymbolDescription() const;
const char* NameOrDescription() const {
if (IsSymbol()) {
return SymbolDescription();
}
return Name();
}
bool GetId(JSContext* aCx, jsid& aId) const;
/////////////////////////////////////////////
// nsXPTMethodInfo backwards compatibility //
/////////////////////////////////////////////
const char* GetName() const { return Name(); }
uint8_t GetParamCount() const { return ParamCount(); }
const nsXPTParamInfo& GetParam(uint8_t aIndex) const { return Param(aIndex); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint32_t mName; // Index into xpt::detail::sStrings.
uint16_t mParams; // Index into xpt::detail::sParams.
uint8_t mNumParams;
uint8_t mGetter : 1;
uint8_t mSetter : 1;
uint8_t mReflectable : 1;
uint8_t mOptArgc : 1;
uint8_t mContext : 1;
uint8_t mHasRetval : 1;
uint8_t mIsSymbol : 1;
};
// The fields in nsXPTMethodInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTMethodInfo) == 8, "wrong size");
// This number is chosen to be no larger than the maximum number of parameters
// any XPIDL-defined function needs; there is a static assert in the generated
// code from xptcodegen.py to verify that decision. It is therefore also the
// maximum number of stack allocated nsXPTCMiniVariant structures for argument
// passing purposes in PrepareAndDispatch implementations.
#if defined(MOZ_THUNDERBIRD) || defined(MOZ_SUITE)
# define PARAM_BUFFER_COUNT 18
#else
# define PARAM_BUFFER_COUNT 14
#endif
/**
* A nsXPTConstantInfo is used to describe a single interface constant.
*/
struct nsXPTConstantInfo {
const char* Name() const { return xpt::detail::GetString(mName); }
JS::Value JSValue() const {
if (mSigned || mValue <= uint32_t(INT32_MAX)) {
return JS::Int32Value(int32_t(mValue));
}
return JS::DoubleValue(mValue);
}
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
uint32_t mName : 31; // Index into xpt::detail::mStrings.
// Whether the value should be interpreted as a int32_t or uint32_t.
uint32_t mSigned : 1;
uint32_t mValue; // The value stored as a u32
};
// The fields in nsXPTConstantInfo were carefully ordered to minimize size.
static_assert(sizeof(nsXPTConstantInfo) == 8, "wrong size");
/**
* Object representing the information required to wrap and unwrap DOMObjects.
*
* This object will not live in rodata as it contains relocations.
*/
struct nsXPTDOMObjectInfo {
nsresult Unwrap(JS::Handle<JS::Value> aHandle, void** aObj,
JSContext* aCx) const {
return mUnwrap(aHandle, aObj, aCx);
}
bool Wrap(JSContext* aCx, void* aObj,
JS::MutableHandle<JS::Value> aHandle) const {
return mWrap(aCx, aObj, aHandle);
}
void Cleanup(void* aObj) const { return mCleanup(aObj); }
////////////////////////////////////////////////////////////////
// Ensure these fields are in the same order as xptcodegen.py //
////////////////////////////////////////////////////////////////
nsresult (*mUnwrap)(JS::Handle<JS::Value> aHandle, void** aObj,
JSContext* aCx);
bool (*mWrap)(JSContext* aCx, void* aObj,
JS::MutableHandle<JS::Value> aHandle);
void (*mCleanup)(void* aObj);
};
namespace xpt {
namespace detail {
// The UntypedTArray type allows low-level access from XPConnect to nsTArray
// internals without static knowledge of the array element type in question.
class UntypedTArray : public nsTArray_base<nsTArrayFallibleAllocator,
nsTArray_RelocateUsingMemutils> {
public:
void* Elements() const { return static_cast<void*>(Hdr() + 1); }
// Changes the length and capacity to be at least large enough for aTo
// elements.
bool SetLength(const nsXPTType& aEltTy, uint32_t aTo) {
if (!EnsureCapacity<nsTArrayFallibleAllocator>(aTo, aEltTy.Stride())) {
return false;
}
if (mHdr != EmptyHdr()) {
mHdr->mLength = aTo;
}
return true;
}
// Free backing memory for the nsTArray object.
void Clear() {
if (mHdr != EmptyHdr() && !UsesAutoArrayBuffer()) {
nsTArrayFallibleAllocator::Free(mHdr);
}
mHdr = EmptyHdr();
}
};
//////////////////////////////////////////////
// Raw typelib data stored in const statics //
//////////////////////////////////////////////
// XPIDL information
extern const nsXPTInterfaceInfo sInterfaces[];
extern const nsXPTType sTypes[];
extern const nsXPTParamInfo sParams[];
extern const nsXPTMethodInfo sMethods[];
extern const nsXPTConstantInfo sConsts[];
extern const nsXPTDOMObjectInfo sDOMObjects[];
extern const char sStrings[];
//////////////////////////////////////
// Helper Methods for fetching data //
//////////////////////////////////////
inline const nsXPTInterfaceInfo* GetInterface(uint16_t aIndex) {
if (aIndex > 0 && aIndex <= sInterfacesSize) {
return &sInterfaces[aIndex - 1]; // 1-based as 0 is a marker.
}
return nullptr;
}
inline const nsXPTType& GetType(uint16_t aIndex) { return sTypes[aIndex]; }
inline const nsXPTParamInfo& GetParam(uint16_t aIndex) {
return sParams[aIndex];
}
inline const nsXPTMethodInfo& GetMethod(uint16_t aIndex) {
return sMethods[aIndex];
}
inline const nsXPTConstantInfo& GetConstant(uint16_t aIndex) {
return sConsts[aIndex];
}
inline const nsXPTDOMObjectInfo& GetDOMObjectInfo(uint16_t aIndex) {
return sDOMObjects[aIndex];
}
inline const char* GetString(uint32_t aIndex) { return &sStrings[aIndex]; }
} // namespace detail
} // namespace xpt
#define XPT_FOR_EACH_ARITHMETIC_TYPE(MACRO) \
MACRO(TD_INT8, int8_t) \
MACRO(TD_INT16, int16_t) \
MACRO(TD_INT32, int32_t) \
MACRO(TD_INT64, int64_t) \
MACRO(TD_UINT8, uint8_t) \
MACRO(TD_UINT16, uint16_t) \
MACRO(TD_UINT32, uint32_t) \
MACRO(TD_UINT64, uint64_t) \
MACRO(TD_FLOAT, float) \
MACRO(TD_DOUBLE, double) \
MACRO(TD_BOOL, bool) \
MACRO(TD_CHAR, char) \
MACRO(TD_WCHAR, char16_t)
#define XPT_FOR_EACH_POINTER_TYPE(MACRO) \
MACRO(TD_VOID, void*) \
MACRO(TD_NSIDPTR, nsID*) \
MACRO(TD_PSTRING, char*) \
MACRO(TD_PWSTRING, wchar_t*) \
MACRO(TD_INTERFACE_TYPE, nsISupports*) \
MACRO(TD_INTERFACE_IS_TYPE, nsISupports*) \
MACRO(TD_LEGACY_ARRAY, void*) \
MACRO(TD_PSTRING_SIZE_IS, char*) \
MACRO(TD_PWSTRING_SIZE_IS, wchar_t*) \
MACRO(TD_DOMOBJECT, void*) \
MACRO(TD_PROMISE, mozilla::dom::Promise*)
#define XPT_FOR_EACH_COMPLEX_TYPE(MACRO) \
MACRO(TD_UTF8STRING, nsCString) \
MACRO(TD_CSTRING, nsCString) \
MACRO(TD_ASTRING, nsString) \
MACRO(TD_NSID, nsID) \
MACRO(TD_JSVAL, JS::Value) \
MACRO(TD_ARRAY, xpt::detail::UntypedTArray)
#define XPT_FOR_EACH_TYPE(MACRO) \
XPT_FOR_EACH_ARITHMETIC_TYPE(MACRO) \
XPT_FOR_EACH_POINTER_TYPE(MACRO) \
XPT_FOR_EACH_COMPLEX_TYPE(MACRO)
inline size_t nsXPTType::Stride() const {
// Compute the stride to use when walking an array of the given type.
switch (Tag()) {
#define XPT_TYPE_STRIDE(tag, type) \
case tag: \
return sizeof(type);
XPT_FOR_EACH_TYPE(XPT_TYPE_STRIDE)
#undef XPT_TYPE_STRIDE
}
MOZ_CRASH("Unknown type");
}
#endif /* xptinfo_h */
|