diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /gfx/qcms/src/chain.rs | |
parent | Initial commit. (diff) | |
download | firefox-upstream.tar.xz firefox-upstream.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/qcms/src/chain.rs')
-rw-r--r-- | gfx/qcms/src/chain.rs | 1029 |
1 files changed, 1029 insertions, 0 deletions
diff --git a/gfx/qcms/src/chain.rs b/gfx/qcms/src/chain.rs new file mode 100644 index 0000000000..35a3896138 --- /dev/null +++ b/gfx/qcms/src/chain.rs @@ -0,0 +1,1029 @@ +// qcms +// Copyright (C) 2009 Mozilla Corporation +// Copyright (C) 1998-2007 Marti Maria +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +use crate::{ + iccread::LAB_SIGNATURE, + iccread::RGB_SIGNATURE, + iccread::XYZ_SIGNATURE, + iccread::{lutType, lutmABType, Profile, CMYK_SIGNATURE}, + matrix::Matrix, + s15Fixed16Number_to_float, + transform_util::clamp_float, + transform_util::{ + build_colorant_matrix, build_input_gamma_table, build_output_lut, lut_interp_linear, + lut_interp_linear_float, + }, +}; + +trait ModularTransform { + fn transform(&self, src: &[f32], dst: &mut [f32]); +} + +#[inline] +fn lerp(a: f32, b: f32, t: f32) -> f32 { + a * (1.0 - t) + b * t +} + +fn build_lut_matrix(lut: &lutType) -> Matrix { + let mut result: Matrix = Matrix { m: [[0.; 3]; 3] }; + result.m[0][0] = s15Fixed16Number_to_float(lut.e00); + result.m[0][1] = s15Fixed16Number_to_float(lut.e01); + result.m[0][2] = s15Fixed16Number_to_float(lut.e02); + result.m[1][0] = s15Fixed16Number_to_float(lut.e10); + result.m[1][1] = s15Fixed16Number_to_float(lut.e11); + result.m[1][2] = s15Fixed16Number_to_float(lut.e12); + result.m[2][0] = s15Fixed16Number_to_float(lut.e20); + result.m[2][1] = s15Fixed16Number_to_float(lut.e21); + result.m[2][2] = s15Fixed16Number_to_float(lut.e22); + result +} +fn build_mAB_matrix(lut: &lutmABType) -> Matrix { + let mut result: Matrix = Matrix { m: [[0.; 3]; 3] }; + + result.m[0][0] = s15Fixed16Number_to_float(lut.e00); + result.m[0][1] = s15Fixed16Number_to_float(lut.e01); + result.m[0][2] = s15Fixed16Number_to_float(lut.e02); + result.m[1][0] = s15Fixed16Number_to_float(lut.e10); + result.m[1][1] = s15Fixed16Number_to_float(lut.e11); + result.m[1][2] = s15Fixed16Number_to_float(lut.e12); + result.m[2][0] = s15Fixed16Number_to_float(lut.e20); + result.m[2][1] = s15Fixed16Number_to_float(lut.e21); + result.m[2][2] = s15Fixed16Number_to_float(lut.e22); + + result +} +//Based on lcms cmsLab2XYZ +fn f(t: f32) -> f32 { + if t <= 24. / 116. * (24. / 116.) * (24. / 116.) { + (841. / 108. * t) + 16. / 116. + } else { + t.powf(1. / 3.) + } +} +fn f_1(t: f32) -> f32 { + if t <= 24.0 / 116.0 { + (108.0 / 841.0) * (t - 16.0 / 116.0) + } else { + t * t * t + } +} + +#[allow(clippy::upper_case_acronyms)] +struct LABtoXYZ; +impl ModularTransform for LABtoXYZ { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + // lcms: D50 XYZ values + let WhitePointX: f32 = 0.9642; + let WhitePointY: f32 = 1.0; + let WhitePointZ: f32 = 0.8249; + + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let device_L: f32 = src[0] * 100.0; + let device_a: f32 = src[1] * 255.0 - 128.0; + let device_b: f32 = src[2] * 255.0 - 128.0; + + let y: f32 = (device_L + 16.0) / 116.0; + + let X = f_1(y + 0.002 * device_a) * WhitePointX; + let Y = f_1(y) * WhitePointY; + let Z = f_1(y - 0.005 * device_b) * WhitePointZ; + + dest[0] = (X as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; + dest[1] = (Y as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; + dest[2] = (Z as f64 / (1.0f64 + 32767.0f64 / 32768.0f64)) as f32; + } + } +} + +#[allow(clippy::upper_case_acronyms)] +struct XYZtoLAB; +impl ModularTransform for XYZtoLAB { + //Based on lcms cmsXYZ2Lab + fn transform(&self, src: &[f32], dest: &mut [f32]) { + // lcms: D50 XYZ values + let WhitePointX: f32 = 0.9642; + let WhitePointY: f32 = 1.0; + let WhitePointZ: f32 = 0.8249; + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let device_x: f32 = + (src[0] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointX as f64) as f32; + let device_y: f32 = + (src[1] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointY as f64) as f32; + let device_z: f32 = + (src[2] as f64 * (1.0f64 + 32767.0f64 / 32768.0f64) / WhitePointZ as f64) as f32; + + let fx = f(device_x); + let fy = f(device_y); + let fz = f(device_z); + + let L: f32 = 116.0 * fy - 16.0; + let a: f32 = 500.0 * (fx - fy); + let b: f32 = 200.0 * (fy - fz); + + dest[0] = L / 100.0; + dest[1] = (a + 128.0) / 255.0; + dest[2] = (b + 128.0) / 255.0; + } + } +} +#[derive(Default)] +struct ClutOnly { + clut: Option<Vec<f32>>, + grid_size: u16, +} +impl ModularTransform for ClutOnly { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let xy_len: i32 = 1; + let x_len: i32 = self.grid_size as i32; + let len: i32 = x_len * x_len; + + let r_table = &self.clut.as_ref().unwrap()[0..]; + let g_table = &self.clut.as_ref().unwrap()[1..]; + let b_table = &self.clut.as_ref().unwrap()[2..]; + + let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize]; + + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + debug_assert!(self.grid_size as i32 >= 1); + let linear_r: f32 = src[0]; + let linear_g: f32 = src[1]; + let linear_b: f32 = src[2]; + let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32; + let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32; + let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32; + let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32; + let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32; + let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32; + + let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d); + let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d); + let r_y1: f32 = lerp(r_x1, r_x2, y_d); + let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d); + let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d); + let r_y2: f32 = lerp(r_x3, r_x4, y_d); + let clut_r: f32 = lerp(r_y1, r_y2, z_d); + + let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d); + let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d); + let g_y1: f32 = lerp(g_x1, g_x2, y_d); + let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d); + let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d); + let g_y2: f32 = lerp(g_x3, g_x4, y_d); + let clut_g: f32 = lerp(g_y1, g_y2, z_d); + + let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d); + let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d); + let b_y1: f32 = lerp(b_x1, b_x2, y_d); + let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d); + let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d); + let b_y2: f32 = lerp(b_x3, b_x4, y_d); + let clut_b: f32 = lerp(b_y1, b_y2, z_d); + + dest[0] = clamp_float(clut_r); + dest[1] = clamp_float(clut_g); + dest[2] = clamp_float(clut_b); + } + } +} +#[derive(Default)] +struct Clut3x3 { + input_clut_table: [Option<Vec<f32>>; 3], + clut: Option<Vec<f32>>, + grid_size: u16, + output_clut_table: [Option<Vec<f32>>; 3], +} +impl ModularTransform for Clut3x3 { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let xy_len: i32 = 1; + let x_len: i32 = self.grid_size as i32; + let len: i32 = x_len * x_len; + + let r_table = &self.clut.as_ref().unwrap()[0..]; + let g_table = &self.clut.as_ref().unwrap()[1..]; + let b_table = &self.clut.as_ref().unwrap()[2..]; + let CLU = |table: &[f32], x, y, z| table[((x * len + y * x_len + z * xy_len) * 3) as usize]; + + let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap(); + let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap(); + let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap(); + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + debug_assert!(self.grid_size as i32 >= 1); + let device_r: f32 = src[0]; + let device_g: f32 = src[1]; + let device_b: f32 = src[2]; + let linear_r: f32 = lut_interp_linear_float(device_r, &input_clut_table_r); + let linear_g: f32 = lut_interp_linear_float(device_g, &input_clut_table_g); + let linear_b: f32 = lut_interp_linear_float(device_b, &input_clut_table_b); + let x: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).floor() as i32; + let y: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).floor() as i32; + let z: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).floor() as i32; + let x_n: i32 = (linear_r * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let y_n: i32 = (linear_g * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let z_n: i32 = (linear_b * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let x_d: f32 = linear_r * (self.grid_size as i32 - 1) as f32 - x as f32; + let y_d: f32 = linear_g * (self.grid_size as i32 - 1) as f32 - y as f32; + let z_d: f32 = linear_b * (self.grid_size as i32 - 1) as f32 - z as f32; + + let r_x1: f32 = lerp(CLU(r_table, x, y, z), CLU(r_table, x_n, y, z), x_d); + let r_x2: f32 = lerp(CLU(r_table, x, y_n, z), CLU(r_table, x_n, y_n, z), x_d); + let r_y1: f32 = lerp(r_x1, r_x2, y_d); + let r_x3: f32 = lerp(CLU(r_table, x, y, z_n), CLU(r_table, x_n, y, z_n), x_d); + let r_x4: f32 = lerp(CLU(r_table, x, y_n, z_n), CLU(r_table, x_n, y_n, z_n), x_d); + let r_y2: f32 = lerp(r_x3, r_x4, y_d); + let clut_r: f32 = lerp(r_y1, r_y2, z_d); + + let g_x1: f32 = lerp(CLU(g_table, x, y, z), CLU(g_table, x_n, y, z), x_d); + let g_x2: f32 = lerp(CLU(g_table, x, y_n, z), CLU(g_table, x_n, y_n, z), x_d); + let g_y1: f32 = lerp(g_x1, g_x2, y_d); + let g_x3: f32 = lerp(CLU(g_table, x, y, z_n), CLU(g_table, x_n, y, z_n), x_d); + let g_x4: f32 = lerp(CLU(g_table, x, y_n, z_n), CLU(g_table, x_n, y_n, z_n), x_d); + let g_y2: f32 = lerp(g_x3, g_x4, y_d); + let clut_g: f32 = lerp(g_y1, g_y2, z_d); + + let b_x1: f32 = lerp(CLU(b_table, x, y, z), CLU(b_table, x_n, y, z), x_d); + let b_x2: f32 = lerp(CLU(b_table, x, y_n, z), CLU(b_table, x_n, y_n, z), x_d); + let b_y1: f32 = lerp(b_x1, b_x2, y_d); + let b_x3: f32 = lerp(CLU(b_table, x, y, z_n), CLU(b_table, x_n, y, z_n), x_d); + let b_x4: f32 = lerp(CLU(b_table, x, y_n, z_n), CLU(b_table, x_n, y_n, z_n), x_d); + let b_y2: f32 = lerp(b_x3, b_x4, y_d); + let clut_b: f32 = lerp(b_y1, b_y2, z_d); + let pcs_r: f32 = + lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap()); + let pcs_g: f32 = + lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap()); + let pcs_b: f32 = + lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap()); + dest[0] = clamp_float(pcs_r); + dest[1] = clamp_float(pcs_g); + dest[2] = clamp_float(pcs_b); + } + } +} +#[derive(Default)] +struct Clut4x3 { + input_clut_table: [Option<Vec<f32>>; 4], + clut: Option<Vec<f32>>, + grid_size: u16, + output_clut_table: [Option<Vec<f32>>; 3], +} +impl ModularTransform for Clut4x3 { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let z_stride: i32 = self.grid_size as i32; + let y_stride: i32 = z_stride * z_stride; + let x_stride: i32 = z_stride * z_stride * z_stride; + + let r_tbl = &self.clut.as_ref().unwrap()[0..]; + let g_tbl = &self.clut.as_ref().unwrap()[1..]; + let b_tbl = &self.clut.as_ref().unwrap()[2..]; + + let CLU = |table: &[f32], x, y, z, w| { + table[((x * x_stride + y * y_stride + z * z_stride + w) * 3) as usize] + }; + + let input_clut_table_0 = self.input_clut_table[0].as_ref().unwrap(); + let input_clut_table_1 = self.input_clut_table[1].as_ref().unwrap(); + let input_clut_table_2 = self.input_clut_table[2].as_ref().unwrap(); + let input_clut_table_3 = self.input_clut_table[3].as_ref().unwrap(); + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(4)) { + debug_assert!(self.grid_size as i32 >= 1); + let linear_x: f32 = lut_interp_linear_float(src[0], &input_clut_table_0); + let linear_y: f32 = lut_interp_linear_float(src[1], &input_clut_table_1); + let linear_z: f32 = lut_interp_linear_float(src[2], &input_clut_table_2); + let linear_w: f32 = lut_interp_linear_float(src[3], &input_clut_table_3); + + let x: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).floor() as i32; + let y: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).floor() as i32; + let z: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).floor() as i32; + let w: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).floor() as i32; + + let x_n: i32 = (linear_x * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let y_n: i32 = (linear_y * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let z_n: i32 = (linear_z * (self.grid_size as i32 - 1) as f32).ceil() as i32; + let w_n: i32 = (linear_w * (self.grid_size as i32 - 1) as f32).ceil() as i32; + + let x_d: f32 = linear_x * (self.grid_size as i32 - 1) as f32 - x as f32; + let y_d: f32 = linear_y * (self.grid_size as i32 - 1) as f32 - y as f32; + let z_d: f32 = linear_z * (self.grid_size as i32 - 1) as f32 - z as f32; + let w_d: f32 = linear_w * (self.grid_size as i32 - 1) as f32 - w as f32; + + let quadlinear = |tbl| { + let CLU = |x, y, z, w| CLU(tbl, x, y, z, w); + let r_x1 = lerp(CLU(x, y, z, w), CLU(x_n, y, z, w), x_d); + let r_x2 = lerp(CLU(x, y_n, z, w), CLU(x_n, y_n, z, w), x_d); + let r_y1 = lerp(r_x1, r_x2, y_d); + let r_x3 = lerp(CLU(x, y, z_n, w), CLU(x_n, y, z_n, w), x_d); + let r_x4 = lerp(CLU(x, y_n, z_n, w), CLU(x_n, y_n, z_n, w), x_d); + let r_y2 = lerp(r_x3, r_x4, y_d); + let r_z1 = lerp(r_y1, r_y2, z_d); + + let r_x1 = lerp(CLU(x, y, z, w_n), CLU(x_n, y, z, w_n), x_d); + let r_x2 = lerp(CLU(x, y_n, z, w_n), CLU(x_n, y_n, z, w_n), x_d); + let r_y1 = lerp(r_x1, r_x2, y_d); + let r_x3 = lerp(CLU(x, y, z_n, w_n), CLU(x_n, y, z_n, w_n), x_d); + let r_x4 = lerp(CLU(x, y_n, z_n, w_n), CLU(x_n, y_n, z_n, w_n), x_d); + let r_y2 = lerp(r_x3, r_x4, y_d); + let r_z2 = lerp(r_y1, r_y2, z_d); + lerp(r_z1, r_z2, w_d) + }; + // TODO: instead of reading each component separately we should read all three components at once. + let clut_r = quadlinear(r_tbl); + let clut_g = quadlinear(g_tbl); + let clut_b = quadlinear(b_tbl); + + let pcs_r = + lut_interp_linear_float(clut_r, &self.output_clut_table[0].as_ref().unwrap()); + let pcs_g = + lut_interp_linear_float(clut_g, &self.output_clut_table[1].as_ref().unwrap()); + let pcs_b = + lut_interp_linear_float(clut_b, &self.output_clut_table[2].as_ref().unwrap()); + dest[0] = clamp_float(pcs_r); + dest[1] = clamp_float(pcs_g); + dest[2] = clamp_float(pcs_b); + } + } +} +/* NOT USED +static void qcms_transform_module_tetra_clut(struct qcms_modular_transform *transform, float *src, float *dest, size_t length) +{ + size_t i; + int xy_len = 1; + int x_len = transform->grid_size; + int len = x_len * x_len; + float* r_table = transform->r_clut; + float* g_table = transform->g_clut; + float* b_table = transform->b_clut; + float c0_r, c1_r, c2_r, c3_r; + float c0_g, c1_g, c2_g, c3_g; + float c0_b, c1_b, c2_b, c3_b; + float clut_r, clut_g, clut_b; + float pcs_r, pcs_g, pcs_b; + for (i = 0; i < length; i++) { + float device_r = *src++; + float device_g = *src++; + float device_b = *src++; + float linear_r = lut_interp_linear_float(device_r, + transform->input_clut_table_r, transform->input_clut_table_length); + float linear_g = lut_interp_linear_float(device_g, + transform->input_clut_table_g, transform->input_clut_table_length); + float linear_b = lut_interp_linear_float(device_b, + transform->input_clut_table_b, transform->input_clut_table_length); + + int x = floorf(linear_r * (transform->grid_size-1)); + int y = floorf(linear_g * (transform->grid_size-1)); + int z = floorf(linear_b * (transform->grid_size-1)); + int x_n = ceilf(linear_r * (transform->grid_size-1)); + int y_n = ceilf(linear_g * (transform->grid_size-1)); + int z_n = ceilf(linear_b * (transform->grid_size-1)); + float rx = linear_r * (transform->grid_size-1) - x; + float ry = linear_g * (transform->grid_size-1) - y; + float rz = linear_b * (transform->grid_size-1) - z; + + c0_r = CLU(r_table, x, y, z); + c0_g = CLU(g_table, x, y, z); + c0_b = CLU(b_table, x, y, z); + if( rx >= ry ) { + if (ry >= rz) { //rx >= ry && ry >= rz + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (rx >= rz) { //rx >= rz && rz >= ry + c1_r = CLU(r_table, x_n, y, z) - c0_r; + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); + c1_g = CLU(g_table, x_n, y, z) - c0_g; + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); + c1_b = CLU(b_table, x_n, y, z) - c0_b; + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); + } else { //rz > rx && rx >= ry + c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); + c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); + c3_r = CLU(r_table, x, y, z_n) - c0_r; + c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); + c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); + c3_g = CLU(g_table, x, y, z_n) - c0_g; + c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); + c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); + c3_b = CLU(b_table, x, y, z_n) - c0_b; + } + } + } else { + if (rx >= rz) { //ry > rx && rx >= rz + c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); + c2_r = CLU(r_table, x_n, y_n, z) - c0_r; + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); + c2_g = CLU(g_table, x_n, y_n, z) - c0_g; + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); + c2_b = CLU(b_table, x_n, y_n, z) - c0_b; + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } else { + if (ry >= rz) { //ry >= rz && rz > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); + } else { //rz > ry && ry > rx + c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); + c2_r = CLU(r_table, x, y_n, z) - c0_r; + c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); + c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); + c2_g = CLU(g_table, x, y_n, z) - c0_g; + c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); + c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); + c2_b = CLU(b_table, x, y_n, z) - c0_b; + c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); + } + } + } + + clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; + clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; + clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; + + pcs_r = lut_interp_linear_float(clut_r, + transform->output_clut_table_r, transform->output_clut_table_length); + pcs_g = lut_interp_linear_float(clut_g, + transform->output_clut_table_g, transform->output_clut_table_length); + pcs_b = lut_interp_linear_float(clut_b, + transform->output_clut_table_b, transform->output_clut_table_length); + *dest++ = clamp_float(pcs_r); + *dest++ = clamp_float(pcs_g); + *dest++ = clamp_float(pcs_b); + } +} +*/ +#[derive(Default)] +struct GammaTable { + input_clut_table: [Option<Vec<f32>>; 3], +} +impl ModularTransform for GammaTable { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let mut out_r: f32; + let mut out_g: f32; + let mut out_b: f32; + let input_clut_table_r = self.input_clut_table[0].as_ref().unwrap(); + let input_clut_table_g = self.input_clut_table[1].as_ref().unwrap(); + let input_clut_table_b = self.input_clut_table[2].as_ref().unwrap(); + + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let in_r: f32 = src[0]; + let in_g: f32 = src[1]; + let in_b: f32 = src[2]; + out_r = lut_interp_linear_float(in_r, input_clut_table_r); + out_g = lut_interp_linear_float(in_g, input_clut_table_g); + out_b = lut_interp_linear_float(in_b, input_clut_table_b); + + dest[0] = clamp_float(out_r); + dest[1] = clamp_float(out_g); + dest[2] = clamp_float(out_b); + } + } +} +#[derive(Default)] +struct GammaLut { + output_gamma_lut_r: Option<Vec<u16>>, + output_gamma_lut_g: Option<Vec<u16>>, + output_gamma_lut_b: Option<Vec<u16>>, +} +impl ModularTransform for GammaLut { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let mut out_r: f32; + let mut out_g: f32; + let mut out_b: f32; + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let in_r: f32 = src[0]; + let in_g: f32 = src[1]; + let in_b: f32 = src[2]; + out_r = lut_interp_linear(in_r as f64, &self.output_gamma_lut_r.as_ref().unwrap()); + out_g = lut_interp_linear(in_g as f64, &self.output_gamma_lut_g.as_ref().unwrap()); + out_b = lut_interp_linear(in_b as f64, &self.output_gamma_lut_b.as_ref().unwrap()); + dest[0] = clamp_float(out_r); + dest[1] = clamp_float(out_g); + dest[2] = clamp_float(out_b); + } + } +} +#[derive(Default)] +struct MatrixTranslate { + matrix: Matrix, + tx: f32, + ty: f32, + tz: f32, +} +impl ModularTransform for MatrixTranslate { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] }; + /* store the results in column major mode + * this makes doing the multiplication with sse easier */ + mat.m[0][0] = self.matrix.m[0][0]; + mat.m[1][0] = self.matrix.m[0][1]; + mat.m[2][0] = self.matrix.m[0][2]; + mat.m[0][1] = self.matrix.m[1][0]; + mat.m[1][1] = self.matrix.m[1][1]; + mat.m[2][1] = self.matrix.m[1][2]; + mat.m[0][2] = self.matrix.m[2][0]; + mat.m[1][2] = self.matrix.m[2][1]; + mat.m[2][2] = self.matrix.m[2][2]; + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let in_r: f32 = src[0]; + let in_g: f32 = src[1]; + let in_b: f32 = src[2]; + let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b + self.tx; + let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b + self.ty; + let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b + self.tz; + dest[0] = clamp_float(out_r); + dest[1] = clamp_float(out_g); + dest[2] = clamp_float(out_b); + } + } +} +#[derive(Default)] +struct MatrixTransform { + matrix: Matrix, +} +impl ModularTransform for MatrixTransform { + fn transform(&self, src: &[f32], dest: &mut [f32]) { + let mut mat: Matrix = Matrix { m: [[0.; 3]; 3] }; + /* store the results in column major mode + * this makes doing the multiplication with sse easier */ + mat.m[0][0] = self.matrix.m[0][0]; + mat.m[1][0] = self.matrix.m[0][1]; + mat.m[2][0] = self.matrix.m[0][2]; + mat.m[0][1] = self.matrix.m[1][0]; + mat.m[1][1] = self.matrix.m[1][1]; + mat.m[2][1] = self.matrix.m[1][2]; + mat.m[0][2] = self.matrix.m[2][0]; + mat.m[1][2] = self.matrix.m[2][1]; + mat.m[2][2] = self.matrix.m[2][2]; + for (dest, src) in dest.chunks_exact_mut(3).zip(src.chunks_exact(3)) { + let in_r: f32 = src[0]; + let in_g: f32 = src[1]; + let in_b: f32 = src[2]; + let out_r: f32 = mat.m[0][0] * in_r + mat.m[1][0] * in_g + mat.m[2][0] * in_b; + let out_g: f32 = mat.m[0][1] * in_r + mat.m[1][1] * in_g + mat.m[2][1] * in_b; + let out_b: f32 = mat.m[0][2] * in_r + mat.m[1][2] * in_g + mat.m[2][2] * in_b; + dest[0] = clamp_float(out_r); + dest[1] = clamp_float(out_g); + dest[2] = clamp_float(out_b); + } + } +} + +fn modular_transform_create_mAB(lut: &lutmABType) -> Option<Vec<Box<dyn ModularTransform>>> { + let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new(); + if lut.a_curves[0].is_some() { + let clut_length: usize; + // If the A curve is present this also implies the + // presence of a CLUT. + lut.clut_table.as_ref()?; + + // Prepare A curve. + let mut transform = Box::new(GammaTable::default()); + transform.input_clut_table[0] = build_input_gamma_table(lut.a_curves[0].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[1] = build_input_gamma_table(lut.a_curves[1].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[2] = build_input_gamma_table(lut.a_curves[2].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + + if lut.num_grid_points[0] as i32 != lut.num_grid_points[1] as i32 + || lut.num_grid_points[1] as i32 != lut.num_grid_points[2] as i32 + { + //XXX: We don't currently support clut that are not squared! + return None; + } + transforms.push(transform); + + // Prepare CLUT + let mut transform = Box::new(ClutOnly::default()); + clut_length = (lut.num_grid_points[0] as usize).pow(3) * 3; + assert_eq!(clut_length, lut.clut_table.as_ref().unwrap().len()); + transform.clut = lut.clut_table.clone(); + transform.grid_size = lut.num_grid_points[0] as u16; + transforms.push(transform); + } + + if lut.m_curves[0].is_some() { + // M curve imples the presence of a Matrix + + // Prepare M curve + let mut transform = Box::new(GammaTable::default()); + transform.input_clut_table[0] = build_input_gamma_table(lut.m_curves[0].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[1] = build_input_gamma_table(lut.m_curves[1].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[2] = build_input_gamma_table(lut.m_curves[2].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transforms.push(transform); + + // Prepare Matrix + let mut transform = Box::new(MatrixTranslate::default()); + transform.matrix = build_mAB_matrix(lut); + transform.tx = s15Fixed16Number_to_float(lut.e03); + transform.ty = s15Fixed16Number_to_float(lut.e13); + transform.tz = s15Fixed16Number_to_float(lut.e23); + transforms.push(transform); + } + + if lut.b_curves[0].is_some() { + // Prepare B curve + let mut transform = Box::new(GammaTable::default()); + transform.input_clut_table[0] = build_input_gamma_table(lut.b_curves[0].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[1] = build_input_gamma_table(lut.b_curves[1].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[2] = build_input_gamma_table(lut.b_curves[2].as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transforms.push(transform); + } else { + // B curve is mandatory + return None; + } + + if lut.reversed { + // mBA are identical to mAB except that the transformation order + // is reversed + transforms.reverse(); + } + Some(transforms) +} + +fn modular_transform_create_lut(lut: &lutType) -> Option<Vec<Box<dyn ModularTransform>>> { + let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new(); + + let clut_length: usize; + let mut transform = Box::new(MatrixTransform::default()); + + transform.matrix = build_lut_matrix(lut); + if true { + transforms.push(transform); + + // Prepare input curves + let mut transform = Box::new(Clut3x3::default()); + transform.input_clut_table[0] = + Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec()); + transform.input_clut_table[1] = Some( + lut.input_table + [lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2] + .to_vec(), + ); + transform.input_clut_table[2] = Some( + lut.input_table[lut.num_input_table_entries as usize * 2 + ..lut.num_input_table_entries as usize * 3] + .to_vec(), + ); + // Prepare table + clut_length = (lut.num_clut_grid_points as usize).pow(3) * 3; + assert_eq!(clut_length, lut.clut_table.len()); + transform.clut = Some(lut.clut_table.clone()); + + transform.grid_size = lut.num_clut_grid_points as u16; + // Prepare output curves + transform.output_clut_table[0] = + Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec()); + transform.output_clut_table[1] = Some( + lut.output_table + [lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2] + .to_vec(), + ); + transform.output_clut_table[2] = Some( + lut.output_table[lut.num_output_table_entries as usize * 2 + ..lut.num_output_table_entries as usize * 3] + .to_vec(), + ); + transforms.push(transform); + return Some(transforms); + } + None +} + +fn modular_transform_create_lut4x3(lut: &lutType) -> Vec<Box<dyn ModularTransform>> { + let mut transforms: Vec<Box<dyn ModularTransform>> = Vec::new(); + + let clut_length: usize; + // the matrix of lutType is only used when the input color space is XYZ. + + // Prepare input curves + let mut transform = Box::new(Clut4x3::default()); + transform.input_clut_table[0] = + Some(lut.input_table[0..lut.num_input_table_entries as usize].to_vec()); + transform.input_clut_table[1] = Some( + lut.input_table + [lut.num_input_table_entries as usize..lut.num_input_table_entries as usize * 2] + .to_vec(), + ); + transform.input_clut_table[2] = Some( + lut.input_table + [lut.num_input_table_entries as usize * 2..lut.num_input_table_entries as usize * 3] + .to_vec(), + ); + transform.input_clut_table[3] = Some( + lut.input_table + [lut.num_input_table_entries as usize * 3..lut.num_input_table_entries as usize * 4] + .to_vec(), + ); + // Prepare table + clut_length = (lut.num_clut_grid_points as usize).pow(lut.num_input_channels as u32) + * lut.num_output_channels as usize; + assert_eq!(clut_length, lut.clut_table.len()); + transform.clut = Some(lut.clut_table.clone()); + + transform.grid_size = lut.num_clut_grid_points as u16; + // Prepare output curves + transform.output_clut_table[0] = + Some(lut.output_table[0..lut.num_output_table_entries as usize].to_vec()); + transform.output_clut_table[1] = Some( + lut.output_table + [lut.num_output_table_entries as usize..lut.num_output_table_entries as usize * 2] + .to_vec(), + ); + transform.output_clut_table[2] = Some( + lut.output_table + [lut.num_output_table_entries as usize * 2..lut.num_output_table_entries as usize * 3] + .to_vec(), + ); + transforms.push(transform); + transforms +} + +fn modular_transform_create_input(input: &Profile) -> Option<Vec<Box<dyn ModularTransform>>> { + let mut transforms = Vec::new(); + if let Some(A2B0) = &input.A2B0 { + let lut_transform; + if A2B0.num_input_channels == 4 { + lut_transform = Some(modular_transform_create_lut4x3(&A2B0)); + } else { + lut_transform = modular_transform_create_lut(&A2B0); + } + if let Some(lut_transform) = lut_transform { + transforms.extend(lut_transform); + } else { + return None; + } + } else if input.mAB.is_some() + && (*input.mAB.as_deref().unwrap()).num_in_channels == 3 + && (*input.mAB.as_deref().unwrap()).num_out_channels == 3 + { + let mAB_transform = modular_transform_create_mAB(input.mAB.as_deref().unwrap()); + if let Some(mAB_transform) = mAB_transform { + transforms.extend(mAB_transform); + } else { + return None; + } + } else { + let mut transform = Box::new(GammaTable::default()); + transform.input_clut_table[0] = + build_input_gamma_table(input.redTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[1] = build_input_gamma_table(input.greenTRC.as_deref()) + .map(|x| (x as Box<[f32]>).into_vec()); + transform.input_clut_table[2] = + build_input_gamma_table(input.blueTRC.as_deref()).map(|x| (x as Box<[f32]>).into_vec()); + if transform.input_clut_table[0].is_none() + || transform.input_clut_table[1].is_none() + || transform.input_clut_table[2].is_none() + { + return None; + } else { + transforms.push(transform); + + let mut transform = Box::new(MatrixTransform::default()); + transform.matrix.m[0][0] = 1. / 1.999_969_5; + transform.matrix.m[0][1] = 0.0; + transform.matrix.m[0][2] = 0.0; + transform.matrix.m[1][0] = 0.0; + transform.matrix.m[1][1] = 1. / 1.999_969_5; + transform.matrix.m[1][2] = 0.0; + transform.matrix.m[2][0] = 0.0; + transform.matrix.m[2][1] = 0.0; + transform.matrix.m[2][2] = 1. / 1.999_969_5; + transforms.push(transform); + + let mut transform = Box::new(MatrixTransform::default()); + transform.matrix = build_colorant_matrix(input); + transforms.push(transform); + } + } + Some(transforms) +} +fn modular_transform_create_output(out: &Profile) -> Option<Vec<Box<dyn ModularTransform>>> { + let mut transforms = Vec::new(); + if let Some(B2A0) = &out.B2A0 { + if B2A0.num_input_channels != 3 || B2A0.num_output_channels != 3 { + return None; + } + let lut_transform = modular_transform_create_lut(B2A0); + if let Some(lut_transform) = lut_transform { + transforms.extend(lut_transform); + } else { + return None; + } + } else if out.mBA.is_some() + && (*out.mBA.as_deref().unwrap()).num_in_channels == 3 + && (*out.mBA.as_deref().unwrap()).num_out_channels == 3 + { + let lut_transform = modular_transform_create_mAB(out.mBA.as_deref().unwrap()); + if let Some(lut_transform) = lut_transform { + transforms.extend(lut_transform) + } else { + return None; + } + } else if let (Some(redTRC), Some(greenTRC), Some(blueTRC)) = + (&out.redTRC, &out.greenTRC, &out.blueTRC) + { + let mut transform = Box::new(MatrixTransform::default()); + transform.matrix = build_colorant_matrix(out).invert()?; + transforms.push(transform); + + let mut transform = Box::new(MatrixTransform::default()); + transform.matrix.m[0][0] = 1.999_969_5; + transform.matrix.m[0][1] = 0.0; + transform.matrix.m[0][2] = 0.0; + transform.matrix.m[1][0] = 0.0; + transform.matrix.m[1][1] = 1.999_969_5; + transform.matrix.m[1][2] = 0.0; + transform.matrix.m[2][0] = 0.0; + transform.matrix.m[2][1] = 0.0; + transform.matrix.m[2][2] = 1.999_969_5; + transforms.push(transform); + + let mut transform = Box::new(GammaLut::default()); + transform.output_gamma_lut_r = Some(build_output_lut(redTRC)?); + transform.output_gamma_lut_g = Some(build_output_lut(greenTRC)?); + transform.output_gamma_lut_b = Some(build_output_lut(blueTRC)?); + transforms.push(transform); + } else { + debug_assert!(false, "Unsupported output profile workflow."); + return None; + } + Some(transforms) +} +/* Not Completed +// Simplify the transformation chain to an equivalent transformation chain +static struct qcms_modular_transform* qcms_modular_transform_reduce(struct qcms_modular_transform *transform) +{ + struct qcms_modular_transform *first_transform = NULL; + struct qcms_modular_transform *curr_trans = transform; + struct qcms_modular_transform *prev_trans = NULL; + while (curr_trans) { + struct qcms_modular_transform *next_trans = curr_trans->next_transform; + if (curr_trans->transform_module_fn == qcms_transform_module_matrix) { + if (next_trans && next_trans->transform_module_fn == qcms_transform_module_matrix) { + curr_trans->matrix = matrix_multiply(curr_trans->matrix, next_trans->matrix); + goto remove_next; + } + } + if (curr_trans->transform_module_fn == qcms_transform_module_gamma_table) { + bool isLinear = true; + uint16_t i; + for (i = 0; isLinear && i < 256; i++) { + isLinear &= (int)(curr_trans->input_clut_table_r[i] * 255) == i; + isLinear &= (int)(curr_trans->input_clut_table_g[i] * 255) == i; + isLinear &= (int)(curr_trans->input_clut_table_b[i] * 255) == i; + } + goto remove_current; + } + +next_transform: + if (!next_trans) break; + prev_trans = curr_trans; + curr_trans = next_trans; + continue; +remove_current: + if (curr_trans == transform) { + //Update head + transform = next_trans; + } else { + prev_trans->next_transform = next_trans; + } + curr_trans->next_transform = NULL; + qcms_modular_transform_release(curr_trans); + //return transform; + return qcms_modular_transform_reduce(transform); +remove_next: + curr_trans->next_transform = next_trans->next_transform; + next_trans->next_transform = NULL; + qcms_modular_transform_release(next_trans); + continue; + } + return transform; +} +*/ +fn modular_transform_create( + input: &Profile, + output: &Profile, +) -> Option<Vec<Box<dyn ModularTransform>>> { + let mut transforms = Vec::new(); + if input.color_space == RGB_SIGNATURE || input.color_space == CMYK_SIGNATURE { + let rgb_to_pcs = modular_transform_create_input(input); + if let Some(rgb_to_pcs) = rgb_to_pcs { + transforms.extend(rgb_to_pcs); + } else { + return None; + } + } else { + debug_assert!(false, "input color space not supported"); + return None; + } + + if input.pcs == LAB_SIGNATURE && output.pcs == XYZ_SIGNATURE { + transforms.push(Box::new(LABtoXYZ {})); + } + + // This does not improve accuracy in practice, something is wrong here. + //if (in->chromaticAdaption.invalid == false) { + // struct qcms_modular_transform* chromaticAdaption; + // chromaticAdaption = qcms_modular_transform_alloc(); + // if (!chromaticAdaption) + // goto fail; + // append_transform(chromaticAdaption, &next_transform); + // chromaticAdaption->matrix = matrix_invert(in->chromaticAdaption); + // chromaticAdaption->transform_module_fn = qcms_transform_module_matrix; + //} + + if input.pcs == XYZ_SIGNATURE && output.pcs == LAB_SIGNATURE { + transforms.push(Box::new(XYZtoLAB {})); + } + + if output.color_space == RGB_SIGNATURE { + let pcs_to_rgb = modular_transform_create_output(output); + if let Some(pcs_to_rgb) = pcs_to_rgb { + transforms.extend(pcs_to_rgb); + } else { + return None; + } + } else if output.color_space == CMYK_SIGNATURE { + let pcs_to_cmyk = modular_transform_create_output(output)?; + transforms.extend(pcs_to_cmyk); + } else { + debug_assert!(false, "output color space not supported"); + } + + // Not Completed + //return qcms_modular_transform_reduce(first_transform); + Some(transforms) +} +fn modular_transform_data( + transforms: Vec<Box<dyn ModularTransform>>, + mut src: Vec<f32>, + mut dest: Vec<f32>, + _len: usize, +) -> Vec<f32> { + for transform in transforms { + // Keep swaping src/dest when performing a transform to use less memory. + transform.transform(&src, &mut dest); + std::mem::swap(&mut src, &mut dest); + } + // The results end up in the src buffer because of the switching + src +} + +pub fn chain_transform( + input: &Profile, + output: &Profile, + src: Vec<f32>, + dest: Vec<f32>, + lutSize: usize, +) -> Option<Vec<f32>> { + let transform_list = modular_transform_create(input, output); + if let Some(transform_list) = transform_list { + let lut = modular_transform_data(transform_list, src, dest, lutSize / 3); + return Some(lut); + } + None +} |