summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp')
-rw-r--r--js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp2027
1 files changed, 2027 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp b/js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp
new file mode 100644
index 0000000000..5c4a5ce145
--- /dev/null
+++ b/js/src/jit/arm64/vixl/MacroAssembler-vixl.cpp
@@ -0,0 +1,2027 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "jit/arm64/vixl/MacroAssembler-vixl.h"
+
+#include <ctype.h>
+
+namespace vixl {
+
+MacroAssembler::MacroAssembler()
+ : js::jit::Assembler(),
+ sp_(x28),
+ tmp_list_(ip0, ip1),
+ fptmp_list_(d31)
+{
+}
+
+
+void MacroAssembler::FinalizeCode() {
+ Assembler::FinalizeCode();
+}
+
+
+int MacroAssembler::MoveImmediateHelper(MacroAssembler* masm,
+ const Register &rd,
+ uint64_t imm) {
+ bool emit_code = (masm != NULL);
+ VIXL_ASSERT(IsUint32(imm) || IsInt32(imm) || rd.Is64Bits());
+ // The worst case for size is mov 64-bit immediate to sp:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction to move to sp
+ MacroEmissionCheckScope guard(masm);
+
+ // Immediates on Aarch64 can be produced using an initial value, and zero to
+ // three move keep operations.
+ //
+ // Initial values can be generated with:
+ // 1. 64-bit move zero (movz).
+ // 2. 32-bit move inverted (movn).
+ // 3. 64-bit move inverted.
+ // 4. 32-bit orr immediate.
+ // 5. 64-bit orr immediate.
+ // Move-keep may then be used to modify each of the 16-bit half words.
+ //
+ // The code below supports all five initial value generators, and
+ // applying move-keep operations to move-zero and move-inverted initial
+ // values.
+
+ // Try to move the immediate in one instruction, and if that fails, switch to
+ // using multiple instructions.
+ if (OneInstrMoveImmediateHelper(masm, rd, imm)) {
+ return 1;
+ } else {
+ int instruction_count = 0;
+ unsigned reg_size = rd.size();
+
+ // Generic immediate case. Imm will be represented by
+ // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
+ // A move-zero or move-inverted is generated for the first non-zero or
+ // non-0xffff immX, and a move-keep for subsequent non-zero immX.
+
+ uint64_t ignored_halfword = 0;
+ bool invert_move = false;
+ // If the number of 0xffff halfwords is greater than the number of 0x0000
+ // halfwords, it's more efficient to use move-inverted.
+ if (CountClearHalfWords(~imm, reg_size) >
+ CountClearHalfWords(imm, reg_size)) {
+ ignored_halfword = 0xffff;
+ invert_move = true;
+ }
+
+ // Mov instructions can't move values into the stack pointer, so set up a
+ // temporary register, if needed.
+ UseScratchRegisterScope temps;
+ Register temp;
+ if (emit_code) {
+ temps.Open(masm);
+ temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
+ }
+
+ // Iterate through the halfwords. Use movn/movz for the first non-ignored
+ // halfword, and movk for subsequent halfwords.
+ VIXL_ASSERT((reg_size % 16) == 0);
+ bool first_mov_done = false;
+ for (unsigned i = 0; i < (temp.size() / 16); i++) {
+ uint64_t imm16 = (imm >> (16 * i)) & 0xffff;
+ if (imm16 != ignored_halfword) {
+ if (!first_mov_done) {
+ if (invert_move) {
+ if (emit_code) masm->movn(temp, ~imm16 & 0xffff, 16 * i);
+ instruction_count++;
+ } else {
+ if (emit_code) masm->movz(temp, imm16, 16 * i);
+ instruction_count++;
+ }
+ first_mov_done = true;
+ } else {
+ // Construct a wider constant.
+ if (emit_code) masm->movk(temp, imm16, 16 * i);
+ instruction_count++;
+ }
+ }
+ }
+
+ VIXL_ASSERT(first_mov_done);
+
+ // Move the temporary if the original destination register was the stack
+ // pointer.
+ if (rd.IsSP()) {
+ if (emit_code) masm->mov(rd, temp);
+ instruction_count++;
+ }
+ return instruction_count;
+ }
+}
+
+
+bool MacroAssembler::OneInstrMoveImmediateHelper(MacroAssembler* masm,
+ const Register& dst,
+ int64_t imm) {
+ bool emit_code = masm != NULL;
+ unsigned n, imm_s, imm_r;
+ int reg_size = dst.size();
+
+ if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
+ // Immediate can be represented in a move zero instruction. Movz can't write
+ // to the stack pointer.
+ if (emit_code) {
+ masm->movz(dst, imm);
+ }
+ return true;
+ } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
+ // Immediate can be represented in a move negative instruction. Movn can't
+ // write to the stack pointer.
+ if (emit_code) {
+ masm->movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
+ }
+ return true;
+ } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be represented in a logical orr instruction.
+ VIXL_ASSERT(!dst.IsZero());
+ if (emit_code) {
+ masm->LogicalImmediate(
+ dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
+ }
+ return true;
+ }
+ return false;
+}
+
+
+void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
+ VIXL_ASSERT((reg.Is(NoReg) || (type >= kBranchTypeFirstUsingReg)) &&
+ ((bit == -1) || (type >= kBranchTypeFirstUsingBit)));
+ if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
+ B(static_cast<Condition>(type), label);
+ } else {
+ switch (type) {
+ case always: B(label); break;
+ case never: break;
+ case reg_zero: Cbz(reg, label); break;
+ case reg_not_zero: Cbnz(reg, label); break;
+ case reg_bit_clear: Tbz(reg, bit, label); break;
+ case reg_bit_set: Tbnz(reg, bit, label); break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ }
+}
+
+
+void MacroAssembler::B(Label* label) {
+ SingleEmissionCheckScope guard(this);
+ b(label);
+}
+
+
+void MacroAssembler::B(Label* label, Condition cond) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ EmissionCheckScope guard(this, 2 * kInstructionSize);
+
+ if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
+ Label done;
+ b(&done, InvertCondition(cond));
+ b(label);
+ bind(&done);
+ } else {
+ b(label, cond);
+ }
+}
+
+
+void MacroAssembler::Cbnz(const Register& rt, Label* label) {
+ VIXL_ASSERT(!rt.IsZero());
+ EmissionCheckScope guard(this, 2 * kInstructionSize);
+
+ if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
+ Label done;
+ cbz(rt, &done);
+ b(label);
+ bind(&done);
+ } else {
+ cbnz(rt, label);
+ }
+}
+
+
+void MacroAssembler::Cbz(const Register& rt, Label* label) {
+ VIXL_ASSERT(!rt.IsZero());
+ EmissionCheckScope guard(this, 2 * kInstructionSize);
+
+ if (label->bound() && LabelIsOutOfRange(label, CondBranchType)) {
+ Label done;
+ cbnz(rt, &done);
+ b(label);
+ bind(&done);
+ } else {
+ cbz(rt, label);
+ }
+}
+
+
+void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
+ VIXL_ASSERT(!rt.IsZero());
+ EmissionCheckScope guard(this, 2 * kInstructionSize);
+
+ if (label->bound() && LabelIsOutOfRange(label, TestBranchType)) {
+ Label done;
+ tbz(rt, bit_pos, &done);
+ b(label);
+ bind(&done);
+ } else {
+ tbnz(rt, bit_pos, label);
+ }
+}
+
+
+void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
+ VIXL_ASSERT(!rt.IsZero());
+ EmissionCheckScope guard(this, 2 * kInstructionSize);
+
+ if (label->bound() && LabelIsOutOfRange(label, TestBranchType)) {
+ Label done;
+ tbnz(rt, bit_pos, &done);
+ b(label);
+ bind(&done);
+ } else {
+ tbz(rt, bit_pos, label);
+ }
+}
+
+
+void MacroAssembler::And(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, AND);
+}
+
+
+void MacroAssembler::Ands(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, ANDS);
+}
+
+
+void MacroAssembler::Tst(const Register& rn,
+ const Operand& operand) {
+ Ands(AppropriateZeroRegFor(rn), rn, operand);
+}
+
+
+void MacroAssembler::Bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, BIC);
+}
+
+
+void MacroAssembler::Bics(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, BICS);
+}
+
+
+void MacroAssembler::Orr(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, ORR);
+}
+
+
+void MacroAssembler::Orn(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, ORN);
+}
+
+
+void MacroAssembler::Eor(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, EOR);
+}
+
+
+void MacroAssembler::Eon(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ LogicalMacro(rd, rn, operand, EON);
+}
+
+
+void MacroAssembler::LogicalMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op) {
+ // The worst case for size is logical immediate to sp:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction to do the operation
+ // * 1 instruction to move to sp
+ MacroEmissionCheckScope guard(this);
+ UseScratchRegisterScope temps(this);
+
+ if (operand.IsImmediate()) {
+ int64_t immediate = operand.immediate();
+ unsigned reg_size = rd.size();
+
+ // If the operation is NOT, invert the operation and immediate.
+ if ((op & NOT) == NOT) {
+ op = static_cast<LogicalOp>(op & ~NOT);
+ immediate = ~immediate;
+ }
+
+ // Ignore the top 32 bits of an immediate if we're moving to a W register.
+ if (rd.Is32Bits()) {
+ // Check that the top 32 bits are consistent.
+ VIXL_ASSERT(((immediate >> kWRegSize) == 0) ||
+ ((immediate >> kWRegSize) == -1));
+ immediate &= kWRegMask;
+ }
+
+ VIXL_ASSERT(rd.Is64Bits() || IsUint32(immediate));
+
+ // Special cases for all set or all clear immediates.
+ if (immediate == 0) {
+ switch (op) {
+ case AND:
+ Mov(rd, 0);
+ return;
+ case ORR:
+ VIXL_FALLTHROUGH();
+ case EOR:
+ Mov(rd, rn);
+ return;
+ case ANDS:
+ VIXL_FALLTHROUGH();
+ case BICS:
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ } else if ((rd.Is64Bits() && (immediate == -1)) ||
+ (rd.Is32Bits() && (immediate == 0xffffffff))) {
+ switch (op) {
+ case AND:
+ Mov(rd, rn);
+ return;
+ case ORR:
+ Mov(rd, immediate);
+ return;
+ case EOR:
+ Mvn(rd, rn);
+ return;
+ case ANDS:
+ VIXL_FALLTHROUGH();
+ case BICS:
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ }
+
+ unsigned n, imm_s, imm_r;
+ if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
+ // Immediate can be encoded in the instruction.
+ LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
+ } else {
+ // Immediate can't be encoded: synthesize using move immediate.
+ Register temp = temps.AcquireSameSizeAs(rn);
+
+ // If the left-hand input is the stack pointer, we can't pre-shift the
+ // immediate, as the encoding won't allow the subsequent post shift.
+ PreShiftImmMode mode = rn.IsSP() ? kNoShift : kAnyShift;
+ Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate, mode);
+
+ // VIXL can acquire temp registers. Assert that the caller is aware.
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
+ VIXL_ASSERT(!temp.Is(operand.maybeReg()));
+
+ if (rd.Is(sp)) {
+ // If rd is the stack pointer we cannot use it as the destination
+ // register so we use the temp register as an intermediate again.
+ Logical(temp, rn, imm_operand, op);
+ Mov(sp, temp);
+ } else {
+ Logical(rd, rn, imm_operand, op);
+ }
+ }
+ } else if (operand.IsExtendedRegister()) {
+ VIXL_ASSERT(operand.reg().size() <= rd.size());
+ // Add/sub extended supports shift <= 4. We want to support exactly the
+ // same modes here.
+ VIXL_ASSERT(operand.shift_amount() <= 4);
+ VIXL_ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+
+ temps.Exclude(operand.reg());
+ Register temp = temps.AcquireSameSizeAs(rn);
+
+ // VIXL can acquire temp registers. Assert that the caller is aware.
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
+ VIXL_ASSERT(!temp.Is(operand.maybeReg()));
+
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ Logical(rd, rn, Operand(temp), op);
+ } else {
+ // The operand can be encoded in the instruction.
+ VIXL_ASSERT(operand.IsShiftedRegister());
+ Logical(rd, rn, operand, op);
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd,
+ const Operand& operand,
+ DiscardMoveMode discard_mode) {
+ // The worst case for size is mov immediate with up to 4 instructions.
+ MacroEmissionCheckScope guard(this);
+
+ if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mov(rd, operand.immediate());
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Emit a shift instruction if moving a shifted register. This operation
+ // could also be achieved using an orr instruction (like orn used by Mvn),
+ // but using a shift instruction makes the disassembly clearer.
+ EmitShift(rd, operand.reg(), operand.shift(), operand.shift_amount());
+ } else if (operand.IsExtendedRegister()) {
+ // Emit an extend instruction if moving an extended register. This handles
+ // extend with post-shift operations, too.
+ EmitExtendShift(rd, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ } else {
+ // Otherwise, emit a register move only if the registers are distinct, or
+ // if they are not X registers.
+ //
+ // Note that mov(w0, w0) is not a no-op because it clears the top word of
+ // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
+ // registers is not required to clear the top word of the X register. In
+ // this case, the instruction is discarded.
+ //
+ // If the sp is an operand, add #0 is emitted, otherwise, orr #0.
+ if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
+ (discard_mode == kDontDiscardForSameWReg))) {
+ mov(rd, operand.reg());
+ }
+ }
+}
+
+
+void MacroAssembler::Movi16bitHelper(const VRegister& vd, uint64_t imm) {
+ VIXL_ASSERT(IsUint16(imm));
+ int byte1 = (imm & 0xff);
+ int byte2 = ((imm >> 8) & 0xff);
+ if (byte1 == byte2) {
+ movi(vd.Is64Bits() ? vd.V8B() : vd.V16B(), byte1);
+ } else if (byte1 == 0) {
+ movi(vd, byte2, LSL, 8);
+ } else if (byte2 == 0) {
+ movi(vd, byte1);
+ } else if (byte1 == 0xff) {
+ mvni(vd, ~byte2 & 0xff, LSL, 8);
+ } else if (byte2 == 0xff) {
+ mvni(vd, ~byte1 & 0xff);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireW();
+ movz(temp, imm);
+ dup(vd, temp);
+ }
+}
+
+
+void MacroAssembler::Movi32bitHelper(const VRegister& vd, uint64_t imm) {
+ VIXL_ASSERT(IsUint32(imm));
+
+ uint8_t bytes[sizeof(imm)];
+ memcpy(bytes, &imm, sizeof(imm));
+
+ // All bytes are either 0x00 or 0xff.
+ {
+ bool all0orff = true;
+ for (int i = 0; i < 4; ++i) {
+ if ((bytes[i] != 0) && (bytes[i] != 0xff)) {
+ all0orff = false;
+ break;
+ }
+ }
+
+ if (all0orff == true) {
+ movi(vd.Is64Bits() ? vd.V1D() : vd.V2D(), ((imm << 32) | imm));
+ return;
+ }
+ }
+
+ // Of the 4 bytes, only one byte is non-zero.
+ for (int i = 0; i < 4; i++) {
+ if ((imm & (0xff << (i * 8))) == imm) {
+ movi(vd, bytes[i], LSL, i * 8);
+ return;
+ }
+ }
+
+ // Of the 4 bytes, only one byte is not 0xff.
+ for (int i = 0; i < 4; i++) {
+ uint32_t mask = ~(0xff << (i * 8));
+ if ((imm & mask) == mask) {
+ mvni(vd, ~bytes[i] & 0xff, LSL, i * 8);
+ return;
+ }
+ }
+
+ // Immediate is of the form 0x00MMFFFF.
+ if ((imm & 0xff00ffff) == 0x0000ffff) {
+ movi(vd, bytes[2], MSL, 16);
+ return;
+ }
+
+ // Immediate is of the form 0x0000MMFF.
+ if ((imm & 0xffff00ff) == 0x000000ff) {
+ movi(vd, bytes[1], MSL, 8);
+ return;
+ }
+
+ // Immediate is of the form 0xFFMM0000.
+ if ((imm & 0xff00ffff) == 0xff000000) {
+ mvni(vd, ~bytes[2] & 0xff, MSL, 16);
+ return;
+ }
+ // Immediate is of the form 0xFFFFMM00.
+ if ((imm & 0xffff00ff) == 0xffff0000) {
+ mvni(vd, ~bytes[1] & 0xff, MSL, 8);
+ return;
+ }
+
+ // Top and bottom 16-bits are equal.
+ if (((imm >> 16) & 0xffff) == (imm & 0xffff)) {
+ Movi16bitHelper(vd.Is64Bits() ? vd.V4H() : vd.V8H(), imm & 0xffff);
+ return;
+ }
+
+ // Default case.
+ {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireW();
+ Mov(temp, imm);
+ dup(vd, temp);
+ }
+}
+
+
+void MacroAssembler::Movi64bitHelper(const VRegister& vd, uint64_t imm) {
+ // All bytes are either 0x00 or 0xff.
+ {
+ bool all0orff = true;
+ for (int i = 0; i < 8; ++i) {
+ int byteval = (imm >> (i * 8)) & 0xff;
+ if (byteval != 0 && byteval != 0xff) {
+ all0orff = false;
+ break;
+ }
+ }
+ if (all0orff == true) {
+ movi(vd, imm);
+ return;
+ }
+ }
+
+ // Top and bottom 32-bits are equal.
+ if (((imm >> 32) & 0xffffffff) == (imm & 0xffffffff)) {
+ Movi32bitHelper(vd.Is64Bits() ? vd.V2S() : vd.V4S(), imm & 0xffffffff);
+ return;
+ }
+
+ // Default case.
+ {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireX();
+ Mov(temp, imm);
+ if (vd.Is1D()) {
+ mov(vd.D(), 0, temp);
+ } else {
+ dup(vd.V2D(), temp);
+ }
+ }
+}
+
+
+void MacroAssembler::Movi(const VRegister& vd,
+ uint64_t imm,
+ Shift shift,
+ int shift_amount) {
+ MacroEmissionCheckScope guard(this);
+ if (shift_amount != 0 || shift != LSL) {
+ movi(vd, imm, shift, shift_amount);
+ } else if (vd.Is8B() || vd.Is16B()) {
+ // 8-bit immediate.
+ VIXL_ASSERT(IsUint8(imm));
+ movi(vd, imm);
+ } else if (vd.Is4H() || vd.Is8H()) {
+ // 16-bit immediate.
+ Movi16bitHelper(vd, imm);
+ } else if (vd.Is2S() || vd.Is4S()) {
+ // 32-bit immediate.
+ Movi32bitHelper(vd, imm);
+ } else {
+ // 64-bit immediate.
+ Movi64bitHelper(vd, imm);
+ }
+}
+
+
+void MacroAssembler::Movi(const VRegister& vd,
+ uint64_t hi,
+ uint64_t lo) {
+ VIXL_ASSERT(vd.Is128Bits());
+ UseScratchRegisterScope temps(this);
+
+ // When hi == lo, the following generates good code.
+ //
+ // In situations where the constants are complex and hi != lo, the following
+ // can turn into up to 10 instructions: 2*(mov + 3*movk + dup/insert). To do
+ // any better, we could try to estimate whether splatting the high value and
+ // updating the low value would generate fewer instructions than vice versa
+ // (what we do now).
+ //
+ // (A PC-relative load from memory to the vector register (ADR + LD2) is going
+ // to have fairly high latency but is fairly compact; not clear what the best
+ // tradeoff is.)
+
+ Movi(vd.V2D(), lo);
+ if (hi != lo) {
+ Register temp = temps.AcquireX();
+ Mov(temp, hi);
+ Ins(vd.V2D(), 1, temp);
+ }
+}
+
+
+void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
+ // The worst case for size is mvn immediate with up to 4 instructions.
+ MacroEmissionCheckScope guard(this);
+
+ if (operand.IsImmediate()) {
+ // Call the macro assembler for generic immediates.
+ Mvn(rd, operand.immediate());
+ } else if (operand.IsExtendedRegister()) {
+ UseScratchRegisterScope temps(this);
+ temps.Exclude(operand.reg());
+
+ // Emit two instructions for the extend case. This differs from Mov, as
+ // the extend and invert can't be achieved in one instruction.
+ Register temp = temps.AcquireSameSizeAs(rd);
+
+ // VIXL can acquire temp registers. Assert that the caller is aware.
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(operand.maybeReg()));
+
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ mvn(rd, Operand(temp));
+ } else {
+ // Otherwise, register and shifted register cases can be handled by the
+ // assembler directly, using orn.
+ mvn(rd, operand);
+ }
+}
+
+
+void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
+ MoveImmediateHelper(this, rd, imm);
+}
+
+
+void MacroAssembler::Ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ if (operand.IsImmediate() && (operand.immediate() < 0)) {
+ ConditionalCompareMacro(rn, -operand.immediate(), nzcv, cond, CCMN);
+ } else {
+ ConditionalCompareMacro(rn, operand, nzcv, cond, CCMP);
+ }
+}
+
+
+void MacroAssembler::Ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond) {
+ if (operand.IsImmediate() && (operand.immediate() < 0)) {
+ ConditionalCompareMacro(rn, -operand.immediate(), nzcv, cond, CCMP);
+ } else {
+ ConditionalCompareMacro(rn, operand, nzcv, cond, CCMN);
+ }
+}
+
+
+void MacroAssembler::ConditionalCompareMacro(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op) {
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ // The worst case for size is ccmp immediate:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction for ccmp
+ MacroEmissionCheckScope guard(this);
+
+ if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
+ (operand.IsImmediate() && IsImmConditionalCompare(operand.immediate()))) {
+ // The immediate can be encoded in the instruction, or the operand is an
+ // unshifted register: call the assembler.
+ ConditionalCompare(rn, operand, nzcv, cond, op);
+ } else {
+ UseScratchRegisterScope temps(this);
+ // The operand isn't directly supported by the instruction: perform the
+ // operation on a temporary register.
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rn) && !temp.Is(operand.maybeReg()));
+ Mov(temp, operand);
+ ConditionalCompare(rn, temp, nzcv, cond, op);
+ }
+}
+
+
+void MacroAssembler::Csel(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ Condition cond) {
+ VIXL_ASSERT(!rd.IsZero());
+ VIXL_ASSERT(!rn.IsZero());
+ VIXL_ASSERT((cond != al) && (cond != nv));
+ // The worst case for size is csel immediate:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction for csel
+ MacroEmissionCheckScope guard(this);
+
+ if (operand.IsImmediate()) {
+ // Immediate argument. Handle special cases of 0, 1 and -1 using zero
+ // register.
+ int64_t imm = operand.immediate();
+ Register zr = AppropriateZeroRegFor(rn);
+ if (imm == 0) {
+ csel(rd, rn, zr, cond);
+ } else if (imm == 1) {
+ csinc(rd, rn, zr, cond);
+ } else if (imm == -1) {
+ csinv(rd, rn, zr, cond);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
+ VIXL_ASSERT(!temp.Is(operand.maybeReg()));
+ Mov(temp, operand.immediate());
+ csel(rd, rn, temp, cond);
+ }
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
+ // Unshifted register argument.
+ csel(rd, rn, operand.reg(), cond);
+ } else {
+ // All other arguments.
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn));
+ VIXL_ASSERT(!temp.Is(operand.maybeReg()));
+ Mov(temp, operand);
+ csel(rd, rn, temp, cond);
+ }
+}
+
+
+void MacroAssembler::Add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ if (operand.IsImmediate() && (operand.immediate() < 0) &&
+ IsImmAddSub(-operand.immediate())) {
+ AddSubMacro(rd, rn, -operand.immediate(), S, SUB);
+ } else {
+ AddSubMacro(rd, rn, operand, S, ADD);
+ }
+}
+
+
+void MacroAssembler::Adds(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Add(rd, rn, operand, SetFlags);
+}
+
+
+void MacroAssembler::Sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S) {
+ if (operand.IsImmediate() && (operand.immediate() < 0) &&
+ IsImmAddSub(-operand.immediate())) {
+ AddSubMacro(rd, rn, -operand.immediate(), S, ADD);
+ } else {
+ AddSubMacro(rd, rn, operand, S, SUB);
+ }
+}
+
+
+void MacroAssembler::Subs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ Sub(rd, rn, operand, SetFlags);
+}
+
+
+void MacroAssembler::Cmn(const Register& rn, const Operand& operand) {
+ Adds(AppropriateZeroRegFor(rn), rn, operand);
+}
+
+
+void MacroAssembler::Cmp(const Register& rn, const Operand& operand) {
+ Subs(AppropriateZeroRegFor(rn), rn, operand);
+}
+
+
+void MacroAssembler::Fcmp(const FPRegister& fn, double value,
+ FPTrapFlags trap) {
+ // The worst case for size is:
+ // * 1 to materialise the constant, using literal pool if necessary
+ // * 1 instruction for fcmp{e}
+ MacroEmissionCheckScope guard(this);
+ if (value != 0.0) {
+ UseScratchRegisterScope temps(this);
+ FPRegister tmp = temps.AcquireSameSizeAs(fn);
+ VIXL_ASSERT(!tmp.Is(fn));
+ Fmov(tmp, value);
+ FPCompareMacro(fn, tmp, trap);
+ } else {
+ FPCompareMacro(fn, value, trap);
+ }
+}
+
+
+void MacroAssembler::Fcmpe(const FPRegister& fn, double value) {
+ Fcmp(fn, value, EnableTrap);
+}
+
+
+void MacroAssembler::Fmov(VRegister vd, double imm) {
+ // Floating point immediates are loaded through the literal pool.
+ MacroEmissionCheckScope guard(this);
+
+ if (vd.Is1S() || vd.Is2S() || vd.Is4S()) {
+ Fmov(vd, static_cast<float>(imm));
+ return;
+ }
+
+ VIXL_ASSERT(vd.Is1D() || vd.Is2D());
+ if (IsImmFP64(imm)) {
+ fmov(vd, imm);
+ } else {
+ uint64_t rawbits = DoubleToRawbits(imm);
+ if (vd.IsScalar()) {
+ if (rawbits == 0) {
+ fmov(vd, xzr);
+ } else {
+ Assembler::fImmPool64(vd, imm);
+ }
+ } else {
+ // TODO: consider NEON support for load literal.
+ Movi(vd, rawbits);
+ }
+ }
+}
+
+
+void MacroAssembler::Fmov(VRegister vd, float imm) {
+ // Floating point immediates are loaded through the literal pool.
+ MacroEmissionCheckScope guard(this);
+
+ if (vd.Is1D() || vd.Is2D()) {
+ Fmov(vd, static_cast<double>(imm));
+ return;
+ }
+
+ VIXL_ASSERT(vd.Is1S() || vd.Is2S() || vd.Is4S());
+ if (IsImmFP32(imm)) {
+ fmov(vd, imm);
+ } else {
+ uint32_t rawbits = FloatToRawbits(imm);
+ if (vd.IsScalar()) {
+ if (rawbits == 0) {
+ fmov(vd, wzr);
+ } else {
+ Assembler::fImmPool32(vd, imm);
+ }
+ } else {
+ // TODO: consider NEON support for load literal.
+ Movi(vd, rawbits);
+ }
+ }
+}
+
+
+
+void MacroAssembler::Neg(const Register& rd,
+ const Operand& operand) {
+ if (operand.IsImmediate()) {
+ Mov(rd, -operand.immediate());
+ } else {
+ Sub(rd, AppropriateZeroRegFor(rd), operand);
+ }
+}
+
+
+void MacroAssembler::Negs(const Register& rd,
+ const Operand& operand) {
+ Subs(rd, AppropriateZeroRegFor(rd), operand);
+}
+
+
+bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
+ int64_t imm) {
+ return OneInstrMoveImmediateHelper(this, dst, imm);
+}
+
+
+Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
+ int64_t imm,
+ PreShiftImmMode mode) {
+ int reg_size = dst.size();
+
+ // Encode the immediate in a single move instruction, if possible.
+ if (TryOneInstrMoveImmediate(dst, imm)) {
+ // The move was successful; nothing to do here.
+ } else {
+ // Pre-shift the immediate to the least-significant bits of the register.
+ int shift_low = CountTrailingZeros(imm, reg_size);
+ if (mode == kLimitShiftForSP) {
+ // When applied to the stack pointer, the subsequent arithmetic operation
+ // can use the extend form to shift left by a maximum of four bits. Right
+ // shifts are not allowed, so we filter them out later before the new
+ // immediate is tested.
+ shift_low = std::min(shift_low, 4);
+ }
+
+ int64_t imm_low = imm >> shift_low;
+
+ // Pre-shift the immediate to the most-significant bits of the register,
+ // inserting set bits in the least-significant bits.
+ int shift_high = CountLeadingZeros(imm, reg_size);
+ int64_t imm_high = (imm << shift_high) | ((INT64_C(1) << shift_high) - 1);
+
+ if ((mode != kNoShift) && TryOneInstrMoveImmediate(dst, imm_low)) {
+ // The new immediate has been moved into the destination's low bits:
+ // return a new leftward-shifting operand.
+ return Operand(dst, LSL, shift_low);
+ } else if ((mode == kAnyShift) && TryOneInstrMoveImmediate(dst, imm_high)) {
+ // The new immediate has been moved into the destination's high bits:
+ // return a new rightward-shifting operand.
+ return Operand(dst, LSR, shift_high);
+ } else {
+ Mov(dst, imm);
+ }
+ }
+ return Operand(dst);
+}
+
+
+void MacroAssembler::ComputeAddress(const Register& dst,
+ const MemOperand& mem_op) {
+ // We cannot handle pre-indexing or post-indexing.
+ VIXL_ASSERT(mem_op.addrmode() == Offset);
+ Register base = mem_op.base();
+ if (mem_op.IsImmediateOffset()) {
+ Add(dst, base, mem_op.offset());
+ } else {
+ VIXL_ASSERT(mem_op.IsRegisterOffset());
+ Register reg_offset = mem_op.regoffset();
+ Shift shift = mem_op.shift();
+ Extend extend = mem_op.extend();
+ if (shift == NO_SHIFT) {
+ VIXL_ASSERT(extend != NO_EXTEND);
+ Add(dst, base, Operand(reg_offset, extend, mem_op.shift_amount()));
+ } else {
+ VIXL_ASSERT(extend == NO_EXTEND);
+ Add(dst, base, Operand(reg_offset, shift, mem_op.shift_amount()));
+ }
+ }
+}
+
+
+void MacroAssembler::AddSubMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op) {
+ // Worst case is add/sub immediate:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction for add/sub
+ MacroEmissionCheckScope guard(this);
+
+ if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
+ (S == LeaveFlags)) {
+ // The instruction would be a nop. Avoid generating useless code.
+ return;
+ }
+
+ if ((operand.IsImmediate() && !IsImmAddSub(operand.immediate())) ||
+ (rn.IsZero() && !operand.IsShiftedRegister()) ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(rn);
+ if (operand.IsImmediate()) {
+ PreShiftImmMode mode = kAnyShift;
+
+ // If the destination or source register is the stack pointer, we can
+ // only pre-shift the immediate right by values supported in the add/sub
+ // extend encoding.
+ if (rd.IsSP()) {
+ // If the destination is SP and flags will be set, we can't pre-shift
+ // the immediate at all.
+ mode = (S == SetFlags) ? kNoShift : kLimitShiftForSP;
+ } else if (rn.IsSP()) {
+ mode = kLimitShiftForSP;
+ }
+
+ Operand imm_operand =
+ MoveImmediateForShiftedOp(temp, operand.immediate(), mode);
+ AddSub(rd, rn, imm_operand, S, op);
+ } else {
+ Mov(temp, operand);
+ AddSub(rd, rn, temp, S, op);
+ }
+ } else {
+ AddSub(rd, rn, operand, S, op);
+ }
+}
+
+
+void MacroAssembler::Adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, ADC);
+}
+
+
+void MacroAssembler::Adcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarryMacro(rd, rn, operand, SetFlags, ADC);
+}
+
+
+void MacroAssembler::Sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarryMacro(rd, rn, operand, LeaveFlags, SBC);
+}
+
+
+void MacroAssembler::Sbcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand) {
+ AddSubWithCarryMacro(rd, rn, operand, SetFlags, SBC);
+}
+
+
+void MacroAssembler::Ngc(const Register& rd,
+ const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ Sbc(rd, zr, operand);
+}
+
+
+void MacroAssembler::Ngcs(const Register& rd,
+ const Operand& operand) {
+ Register zr = AppropriateZeroRegFor(rd);
+ Sbcs(rd, zr, operand);
+}
+
+
+void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op) {
+ VIXL_ASSERT(rd.size() == rn.size());
+ // Worst case is addc/subc immediate:
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction for add/sub
+ MacroEmissionCheckScope guard(this);
+ UseScratchRegisterScope temps(this);
+
+ if (operand.IsImmediate() ||
+ (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
+ // Add/sub with carry (immediate or ROR shifted register.)
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
+ Mov(temp, operand);
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
+ // Add/sub with carry (shifted register).
+ VIXL_ASSERT(operand.reg().size() == rd.size());
+ VIXL_ASSERT(operand.shift() != ROR);
+ VIXL_ASSERT(IsUintN(rd.size() == kXRegSize ? kXRegSizeLog2 : kWRegSizeLog2,
+ operand.shift_amount()));
+ temps.Exclude(operand.reg());
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
+ EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else if (operand.IsExtendedRegister()) {
+ // Add/sub with carry (extended register).
+ VIXL_ASSERT(operand.reg().size() <= rd.size());
+ // Add/sub extended supports a shift <= 4. We want to support exactly the
+ // same modes.
+ VIXL_ASSERT(operand.shift_amount() <= 4);
+ VIXL_ASSERT(operand.reg().Is64Bits() ||
+ ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
+ temps.Exclude(operand.reg());
+ Register temp = temps.AcquireSameSizeAs(rn);
+ VIXL_ASSERT(!temp.Is(rd) && !temp.Is(rn) && !temp.Is(operand.maybeReg()));
+ EmitExtendShift(temp, operand.reg(), operand.extend(),
+ operand.shift_amount());
+ AddSubWithCarry(rd, rn, Operand(temp), S, op);
+ } else {
+ // The addressing mode is directly supported by the instruction.
+ AddSubWithCarry(rd, rn, operand, S, op);
+ }
+}
+
+
+#define DEFINE_FUNCTION(FN, REGTYPE, REG, OP) \
+void MacroAssembler::FN(const REGTYPE REG, const MemOperand& addr) { \
+ LoadStoreMacro(REG, addr, OP); \
+}
+LS_MACRO_LIST(DEFINE_FUNCTION)
+#undef DEFINE_FUNCTION
+
+
+void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op) {
+ // Worst case is ldr/str pre/post index:
+ // * 1 instruction for ldr/str
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction to update the base
+ MacroEmissionCheckScope guard(this);
+
+ int64_t offset = addr.offset();
+ unsigned access_size = CalcLSDataSize(op);
+
+ // Check if an immediate offset fits in the immediate field of the
+ // appropriate instruction. If not, emit two instructions to perform
+ // the operation.
+ if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, access_size) &&
+ !IsImmLSUnscaled(offset)) {
+ // Immediate offset that can't be encoded using unsigned or unscaled
+ // addressing modes.
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(addr.base());
+ VIXL_ASSERT(!temp.Is(rt));
+ VIXL_ASSERT(!temp.Is(addr.base()) && !temp.Is(addr.regoffset()));
+ Mov(temp, addr.offset());
+ LoadStore(rt, MemOperand(addr.base(), temp), op);
+ } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
+ // Post-index beyond unscaled addressing range.
+ LoadStore(rt, MemOperand(addr.base()), op);
+ Add(addr.base(), addr.base(), Operand(offset));
+ } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
+ // Pre-index beyond unscaled addressing range.
+ Add(addr.base(), addr.base(), Operand(offset));
+ LoadStore(rt, MemOperand(addr.base()), op);
+ } else {
+ // Encodable in one load/store instruction.
+ LoadStore(rt, addr, op);
+ }
+}
+
+
+#define DEFINE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
+void MacroAssembler::FN(const REGTYPE REG, \
+ const REGTYPE REG2, \
+ const MemOperand& addr) { \
+ LoadStorePairMacro(REG, REG2, addr, OP); \
+}
+LSPAIR_MACRO_LIST(DEFINE_FUNCTION)
+#undef DEFINE_FUNCTION
+
+void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op) {
+ // TODO(all): Should we support register offset for load-store-pair?
+ VIXL_ASSERT(!addr.IsRegisterOffset());
+ // Worst case is ldp/stp immediate:
+ // * 1 instruction for ldp/stp
+ // * up to 4 instructions to materialise the constant
+ // * 1 instruction to update the base
+ MacroEmissionCheckScope guard(this);
+
+ int64_t offset = addr.offset();
+ unsigned access_size = CalcLSPairDataSize(op);
+
+ // Check if the offset fits in the immediate field of the appropriate
+ // instruction. If not, emit two instructions to perform the operation.
+ if (IsImmLSPair(offset, access_size)) {
+ // Encodable in one load/store pair instruction.
+ LoadStorePair(rt, rt2, addr, op);
+ } else {
+ Register base = addr.base();
+ if (addr.IsImmediateOffset()) {
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(base);
+ Add(temp, base, offset);
+ LoadStorePair(rt, rt2, MemOperand(temp), op);
+ } else if (addr.IsPostIndex()) {
+ LoadStorePair(rt, rt2, MemOperand(base), op);
+ Add(base, base, offset);
+ } else {
+ VIXL_ASSERT(addr.IsPreIndex());
+ Add(base, base, offset);
+ LoadStorePair(rt, rt2, MemOperand(base), op);
+ }
+ }
+}
+
+
+void MacroAssembler::Prfm(PrefetchOperation op, const MemOperand& addr) {
+ MacroEmissionCheckScope guard(this);
+
+ // There are no pre- or post-index modes for prfm.
+ VIXL_ASSERT(addr.IsImmediateOffset() || addr.IsRegisterOffset());
+
+ // The access size is implicitly 8 bytes for all prefetch operations.
+ unsigned size = kXRegSizeInBytesLog2;
+
+ // Check if an immediate offset fits in the immediate field of the
+ // appropriate instruction. If not, emit two instructions to perform
+ // the operation.
+ if (addr.IsImmediateOffset() && !IsImmLSScaled(addr.offset(), size) &&
+ !IsImmLSUnscaled(addr.offset())) {
+ // Immediate offset that can't be encoded using unsigned or unscaled
+ // addressing modes.
+ UseScratchRegisterScope temps(this);
+ Register temp = temps.AcquireSameSizeAs(addr.base());
+ Mov(temp, addr.offset());
+ Prefetch(op, MemOperand(addr.base(), temp));
+ } else {
+ // Simple register-offsets are encodable in one instruction.
+ Prefetch(op, addr);
+ }
+}
+
+
+void MacroAssembler::PushStackPointer() {
+ PrepareForPush(1, 8);
+
+ // Pushing a stack pointer leads to implementation-defined
+ // behavior, which may be surprising. In particular,
+ // str x28, [x28, #-8]!
+ // pre-decrements the stack pointer, storing the decremented value.
+ // Additionally, sp is read as xzr in this context, so it cannot be pushed.
+ // So we must use a scratch register.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.AcquireX();
+
+ Mov(scratch, GetStackPointer64());
+ str(scratch, MemOperand(GetStackPointer64(), -8, PreIndex));
+}
+
+
+void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
+ const CPURegister& src2, const CPURegister& src3) {
+ VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ VIXL_ASSERT(src0.IsValid());
+
+ int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
+ int size = src0.SizeInBytes();
+
+ if (src0.Is(GetStackPointer64())) {
+ VIXL_ASSERT(count == 1);
+ VIXL_ASSERT(size == 8);
+ PushStackPointer();
+ return;
+ }
+
+ PrepareForPush(count, size);
+ PushHelper(count, size, src0, src1, src2, src3);
+}
+
+
+void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
+ const CPURegister& dst2, const CPURegister& dst3) {
+ // It is not valid to pop into the same register more than once in one
+ // instruction, not even into the zero register.
+ VIXL_ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
+ VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ VIXL_ASSERT(dst0.IsValid());
+
+ int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
+ int size = dst0.SizeInBytes();
+
+ PrepareForPop(count, size);
+ PopHelper(count, size, dst0, dst1, dst2, dst3);
+}
+
+
+void MacroAssembler::PushCPURegList(CPURegList registers) {
+ VIXL_ASSERT(!registers.Overlaps(*TmpList()));
+ VIXL_ASSERT(!registers.Overlaps(*FPTmpList()));
+
+ int reg_size = registers.RegisterSizeInBytes();
+ PrepareForPush(registers.Count(), reg_size);
+
+ // Bump the stack pointer and store two registers at the bottom.
+ int size = registers.TotalSizeInBytes();
+ const CPURegister& bottom_0 = registers.PopLowestIndex();
+ const CPURegister& bottom_1 = registers.PopLowestIndex();
+ if (bottom_0.IsValid() && bottom_1.IsValid()) {
+ Stp(bottom_0, bottom_1, MemOperand(GetStackPointer64(), -size, PreIndex));
+ } else if (bottom_0.IsValid()) {
+ Str(bottom_0, MemOperand(GetStackPointer64(), -size, PreIndex));
+ }
+
+ int offset = 2 * reg_size;
+ while (!registers.IsEmpty()) {
+ const CPURegister& src0 = registers.PopLowestIndex();
+ const CPURegister& src1 = registers.PopLowestIndex();
+ if (src1.IsValid()) {
+ Stp(src0, src1, MemOperand(GetStackPointer64(), offset));
+ } else {
+ Str(src0, MemOperand(GetStackPointer64(), offset));
+ }
+ offset += 2 * reg_size;
+ }
+}
+
+
+void MacroAssembler::PopCPURegList(CPURegList registers) {
+ VIXL_ASSERT(!registers.Overlaps(*TmpList()));
+ VIXL_ASSERT(!registers.Overlaps(*FPTmpList()));
+
+ int reg_size = registers.RegisterSizeInBytes();
+ PrepareForPop(registers.Count(), reg_size);
+
+
+ int size = registers.TotalSizeInBytes();
+ const CPURegister& bottom_0 = registers.PopLowestIndex();
+ const CPURegister& bottom_1 = registers.PopLowestIndex();
+
+ int offset = 2 * reg_size;
+ while (!registers.IsEmpty()) {
+ const CPURegister& dst0 = registers.PopLowestIndex();
+ const CPURegister& dst1 = registers.PopLowestIndex();
+ if (dst1.IsValid()) {
+ Ldp(dst0, dst1, MemOperand(GetStackPointer64(), offset));
+ } else {
+ Ldr(dst0, MemOperand(GetStackPointer64(), offset));
+ }
+ offset += 2 * reg_size;
+ }
+
+ // Load the two registers at the bottom and drop the stack pointer.
+ if (bottom_0.IsValid() && bottom_1.IsValid()) {
+ Ldp(bottom_0, bottom_1, MemOperand(GetStackPointer64(), size, PostIndex));
+ } else if (bottom_0.IsValid()) {
+ Ldr(bottom_0, MemOperand(GetStackPointer64(), size, PostIndex));
+ }
+}
+
+
+void MacroAssembler::PushMultipleTimes(int count, Register src) {
+ int size = src.SizeInBytes();
+
+ PrepareForPush(count, size);
+ // Push up to four registers at a time if possible because if the current
+ // stack pointer is sp and the register size is 32, registers must be pushed
+ // in blocks of four in order to maintain the 16-byte alignment for sp.
+ while (count >= 4) {
+ PushHelper(4, size, src, src, src, src);
+ count -= 4;
+ }
+ if (count >= 2) {
+ PushHelper(2, size, src, src, NoReg, NoReg);
+ count -= 2;
+ }
+ if (count == 1) {
+ PushHelper(1, size, src, NoReg, NoReg, NoReg);
+ count -= 1;
+ }
+ VIXL_ASSERT(count == 0);
+}
+
+
+void MacroAssembler::PushHelper(int count, int size,
+ const CPURegister& src0,
+ const CPURegister& src1,
+ const CPURegister& src2,
+ const CPURegister& src3) {
+ // Ensure that we don't unintentionally modify scratch or debug registers.
+ // Worst case for size is 2 stp.
+ InstructionAccurateScope scope(this, 2,
+ InstructionAccurateScope::kMaximumSize);
+
+ VIXL_ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
+ VIXL_ASSERT(size == src0.SizeInBytes());
+
+ // Pushing the stack pointer has unexpected behavior. See PushStackPointer().
+ VIXL_ASSERT(!src0.Is(GetStackPointer64()) && !src0.Is(sp));
+ VIXL_ASSERT(!src1.Is(GetStackPointer64()) && !src1.Is(sp));
+ VIXL_ASSERT(!src2.Is(GetStackPointer64()) && !src2.Is(sp));
+ VIXL_ASSERT(!src3.Is(GetStackPointer64()) && !src3.Is(sp));
+
+ // The JS engine should never push 4 bytes.
+ VIXL_ASSERT(size >= 8);
+
+ // When pushing multiple registers, the store order is chosen such that
+ // Push(a, b) is equivalent to Push(a) followed by Push(b).
+ switch (count) {
+ case 1:
+ VIXL_ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
+ str(src0, MemOperand(GetStackPointer64(), -1 * size, PreIndex));
+ break;
+ case 2:
+ VIXL_ASSERT(src2.IsNone() && src3.IsNone());
+ stp(src1, src0, MemOperand(GetStackPointer64(), -2 * size, PreIndex));
+ break;
+ case 3:
+ VIXL_ASSERT(src3.IsNone());
+ stp(src2, src1, MemOperand(GetStackPointer64(), -3 * size, PreIndex));
+ str(src0, MemOperand(GetStackPointer64(), 2 * size));
+ break;
+ case 4:
+ // Skip over 4 * size, then fill in the gap. This allows four W registers
+ // to be pushed using sp, whilst maintaining 16-byte alignment for sp at
+ // all times.
+ stp(src3, src2, MemOperand(GetStackPointer64(), -4 * size, PreIndex));
+ stp(src1, src0, MemOperand(GetStackPointer64(), 2 * size));
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PopHelper(int count, int size,
+ const CPURegister& dst0,
+ const CPURegister& dst1,
+ const CPURegister& dst2,
+ const CPURegister& dst3) {
+ // Ensure that we don't unintentionally modify scratch or debug registers.
+ // Worst case for size is 2 ldp.
+ InstructionAccurateScope scope(this, 2,
+ InstructionAccurateScope::kMaximumSize);
+
+ VIXL_ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
+ VIXL_ASSERT(size == dst0.SizeInBytes());
+
+ // When popping multiple registers, the load order is chosen such that
+ // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
+ switch (count) {
+ case 1:
+ VIXL_ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
+ ldr(dst0, MemOperand(GetStackPointer64(), 1 * size, PostIndex));
+ break;
+ case 2:
+ VIXL_ASSERT(dst2.IsNone() && dst3.IsNone());
+ ldp(dst0, dst1, MemOperand(GetStackPointer64(), 2 * size, PostIndex));
+ break;
+ case 3:
+ VIXL_ASSERT(dst3.IsNone());
+ ldr(dst2, MemOperand(GetStackPointer64(), 2 * size));
+ ldp(dst0, dst1, MemOperand(GetStackPointer64(), 3 * size, PostIndex));
+ break;
+ case 4:
+ // Load the higher addresses first, then load the lower addresses and skip
+ // the whole block in the second instruction. This allows four W registers
+ // to be popped using sp, whilst maintaining 16-byte alignment for sp at
+ // all times.
+ ldp(dst2, dst3, MemOperand(GetStackPointer64(), 2 * size));
+ ldp(dst0, dst1, MemOperand(GetStackPointer64(), 4 * size, PostIndex));
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+}
+
+
+void MacroAssembler::PrepareForPush(int count, int size) {
+ if (sp.Is(GetStackPointer64())) {
+ // If the current stack pointer is sp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ VIXL_ASSERT((count * size) % 16 == 0);
+ } else {
+ // Even if the current stack pointer is not the system stack pointer (sp),
+ // the system stack pointer will still be modified in order to comply with
+ // ABI rules about accessing memory below the system stack pointer.
+ BumpSystemStackPointer(count * size);
+ }
+}
+
+
+void MacroAssembler::PrepareForPop(int count, int size) {
+ USE(count, size);
+ if (sp.Is(GetStackPointer64())) {
+ // If the current stack pointer is sp, then it must be aligned to 16 bytes
+ // on entry and the total size of the specified registers must also be a
+ // multiple of 16 bytes.
+ VIXL_ASSERT((count * size) % 16 == 0);
+ }
+}
+
+void MacroAssembler::Poke(const Register& src, const Operand& offset) {
+ if (offset.IsImmediate()) {
+ VIXL_ASSERT(offset.immediate() >= 0);
+ }
+
+ Str(src, MemOperand(GetStackPointer64(), offset));
+}
+
+
+void MacroAssembler::Peek(const Register& dst, const Operand& offset) {
+ if (offset.IsImmediate()) {
+ VIXL_ASSERT(offset.immediate() >= 0);
+ }
+
+ Ldr(dst, MemOperand(GetStackPointer64(), offset));
+}
+
+
+void MacroAssembler::Claim(const Operand& size) {
+
+ if (size.IsZero()) {
+ return;
+ }
+
+ if (size.IsImmediate()) {
+ VIXL_ASSERT(size.immediate() > 0);
+ if (sp.Is(GetStackPointer64())) {
+ VIXL_ASSERT((size.immediate() % 16) == 0);
+ }
+ }
+
+ Sub(GetStackPointer64(), GetStackPointer64(), size);
+
+ // Make sure the real stack pointer reflects the claimed stack space.
+ // We can't use stack memory below the stack pointer, it could be clobbered by
+ // interupts and signal handlers.
+ if (!sp.Is(GetStackPointer64())) {
+ Mov(sp, GetStackPointer64());
+ }
+}
+
+
+void MacroAssembler::Drop(const Operand& size) {
+
+ if (size.IsZero()) {
+ return;
+ }
+
+ if (size.IsImmediate()) {
+ VIXL_ASSERT(size.immediate() > 0);
+ if (sp.Is(GetStackPointer64())) {
+ VIXL_ASSERT((size.immediate() % 16) == 0);
+ }
+ }
+
+ Add(GetStackPointer64(), GetStackPointer64(), size);
+}
+
+
+void MacroAssembler::PushCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ // 10 stp will be emitted.
+ // TODO(all): Should we use GetCalleeSaved and SavedFP.
+ InstructionAccurateScope scope(this, 10);
+
+ // This method must not be called unless the current stack pointer is sp.
+ VIXL_ASSERT(sp.Is(GetStackPointer64()));
+
+ MemOperand tos(sp, -2 * static_cast<int>(kXRegSizeInBytes), PreIndex);
+
+ stp(x29, x30, tos);
+ stp(x27, x28, tos);
+ stp(x25, x26, tos);
+ stp(x23, x24, tos);
+ stp(x21, x22, tos);
+ stp(x19, x20, tos);
+
+ stp(d14, d15, tos);
+ stp(d12, d13, tos);
+ stp(d10, d11, tos);
+ stp(d8, d9, tos);
+}
+
+
+void MacroAssembler::PopCalleeSavedRegisters() {
+ // Ensure that the macro-assembler doesn't use any scratch registers.
+ // 10 ldp will be emitted.
+ // TODO(all): Should we use GetCalleeSaved and SavedFP.
+ InstructionAccurateScope scope(this, 10);
+
+ // This method must not be called unless the current stack pointer is sp.
+ VIXL_ASSERT(sp.Is(GetStackPointer64()));
+
+ MemOperand tos(sp, 2 * kXRegSizeInBytes, PostIndex);
+
+ ldp(d8, d9, tos);
+ ldp(d10, d11, tos);
+ ldp(d12, d13, tos);
+ ldp(d14, d15, tos);
+
+ ldp(x19, x20, tos);
+ ldp(x21, x22, tos);
+ ldp(x23, x24, tos);
+ ldp(x25, x26, tos);
+ ldp(x27, x28, tos);
+ ldp(x29, x30, tos);
+}
+
+void MacroAssembler::LoadCPURegList(CPURegList registers,
+ const MemOperand& src) {
+ LoadStoreCPURegListHelper(kLoad, registers, src);
+}
+
+void MacroAssembler::StoreCPURegList(CPURegList registers,
+ const MemOperand& dst) {
+ LoadStoreCPURegListHelper(kStore, registers, dst);
+}
+
+
+void MacroAssembler::LoadStoreCPURegListHelper(LoadStoreCPURegListAction op,
+ CPURegList registers,
+ const MemOperand& mem) {
+ // We do not handle pre-indexing or post-indexing.
+ VIXL_ASSERT(!(mem.IsPreIndex() || mem.IsPostIndex()));
+ VIXL_ASSERT(!registers.Overlaps(tmp_list_));
+ VIXL_ASSERT(!registers.Overlaps(fptmp_list_));
+ VIXL_ASSERT(!registers.IncludesAliasOf(sp));
+
+ UseScratchRegisterScope temps(this);
+
+ MemOperand loc = BaseMemOperandForLoadStoreCPURegList(registers,
+ mem,
+ &temps);
+
+ while (registers.Count() >= 2) {
+ const CPURegister& dst0 = registers.PopLowestIndex();
+ const CPURegister& dst1 = registers.PopLowestIndex();
+ if (op == kStore) {
+ Stp(dst0, dst1, loc);
+ } else {
+ VIXL_ASSERT(op == kLoad);
+ Ldp(dst0, dst1, loc);
+ }
+ loc.AddOffset(2 * registers.RegisterSizeInBytes());
+ }
+ if (!registers.IsEmpty()) {
+ if (op == kStore) {
+ Str(registers.PopLowestIndex(), loc);
+ } else {
+ VIXL_ASSERT(op == kLoad);
+ Ldr(registers.PopLowestIndex(), loc);
+ }
+ }
+}
+
+MemOperand MacroAssembler::BaseMemOperandForLoadStoreCPURegList(
+ const CPURegList& registers,
+ const MemOperand& mem,
+ UseScratchRegisterScope* scratch_scope) {
+ // If necessary, pre-compute the base address for the accesses.
+ if (mem.IsRegisterOffset()) {
+ Register reg_base = scratch_scope->AcquireX();
+ ComputeAddress(reg_base, mem);
+ return MemOperand(reg_base);
+
+ } else if (mem.IsImmediateOffset()) {
+ int reg_size = registers.RegisterSizeInBytes();
+ int total_size = registers.TotalSizeInBytes();
+ int64_t min_offset = mem.offset();
+ int64_t max_offset = mem.offset() + std::max(0, total_size - 2 * reg_size);
+ if ((registers.Count() >= 2) &&
+ (!Assembler::IsImmLSPair(min_offset, WhichPowerOf2(reg_size)) ||
+ !Assembler::IsImmLSPair(max_offset, WhichPowerOf2(reg_size)))) {
+ Register reg_base = scratch_scope->AcquireX();
+ ComputeAddress(reg_base, mem);
+ return MemOperand(reg_base);
+ }
+ }
+
+ return mem;
+}
+
+void MacroAssembler::BumpSystemStackPointer(const Operand& space) {
+ VIXL_ASSERT(!sp.Is(GetStackPointer64()));
+ // TODO: Several callers rely on this not using scratch registers, so we use
+ // the assembler directly here. However, this means that large immediate
+ // values of 'space' cannot be handled.
+ InstructionAccurateScope scope(this, 1);
+ sub(sp, GetStackPointer64(), space);
+}
+
+
+void MacroAssembler::Trace(TraceParameters parameters, TraceCommand command) {
+
+#ifdef JS_SIMULATOR_ARM64
+ // The arguments to the trace pseudo instruction need to be contiguous in
+ // memory, so make sure we don't try to emit a literal pool.
+ InstructionAccurateScope scope(this, kTraceLength / kInstructionSize);
+
+ Label start;
+ bind(&start);
+
+ // Refer to simulator-a64.h for a description of the marker and its
+ // arguments.
+ hlt(kTraceOpcode);
+
+ // VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceParamsOffset);
+ dc32(parameters);
+
+ // VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kTraceCommandOffset);
+ dc32(command);
+#else
+ // Emit nothing on real hardware.
+ USE(parameters, command);
+#endif
+}
+
+
+void MacroAssembler::Log(TraceParameters parameters) {
+
+#ifdef JS_SIMULATOR_ARM64
+ // The arguments to the log pseudo instruction need to be contiguous in
+ // memory, so make sure we don't try to emit a literal pool.
+ InstructionAccurateScope scope(this, kLogLength / kInstructionSize);
+
+ Label start;
+ bind(&start);
+
+ // Refer to simulator-a64.h for a description of the marker and its
+ // arguments.
+ hlt(kLogOpcode);
+
+ // VIXL_ASSERT(SizeOfCodeGeneratedSince(&start) == kLogParamsOffset);
+ dc32(parameters);
+#else
+ // Emit nothing on real hardware.
+ USE(parameters);
+#endif
+}
+
+
+void MacroAssembler::EnableInstrumentation() {
+ VIXL_ASSERT(!isprint(InstrumentStateEnable));
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, InstrumentStateEnable);
+}
+
+
+void MacroAssembler::DisableInstrumentation() {
+ VIXL_ASSERT(!isprint(InstrumentStateDisable));
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, InstrumentStateDisable);
+}
+
+
+void MacroAssembler::AnnotateInstrumentation(const char* marker_name) {
+ VIXL_ASSERT(strlen(marker_name) == 2);
+
+ // We allow only printable characters in the marker names. Unprintable
+ // characters are reserved for controlling features of the instrumentation.
+ VIXL_ASSERT(isprint(marker_name[0]) && isprint(marker_name[1]));
+
+ InstructionAccurateScope scope(this, 1);
+ movn(xzr, (marker_name[1] << 8) | marker_name[0]);
+}
+
+
+void UseScratchRegisterScope::Open(MacroAssembler* masm) {
+ VIXL_ASSERT(!initialised_);
+ available_ = masm->TmpList();
+ availablefp_ = masm->FPTmpList();
+ old_available_ = available_->list();
+ old_availablefp_ = availablefp_->list();
+ VIXL_ASSERT(available_->type() == CPURegister::kRegister);
+ VIXL_ASSERT(availablefp_->type() == CPURegister::kVRegister);
+#ifdef DEBUG
+ initialised_ = true;
+#endif
+}
+
+
+void UseScratchRegisterScope::Close() {
+ if (available_) {
+ available_->set_list(old_available_);
+ available_ = NULL;
+ }
+ if (availablefp_) {
+ availablefp_->set_list(old_availablefp_);
+ availablefp_ = NULL;
+ }
+#ifdef DEBUG
+ initialised_ = false;
+#endif
+}
+
+
+UseScratchRegisterScope::UseScratchRegisterScope(MacroAssembler* masm) {
+#ifdef DEBUG
+ initialised_ = false;
+#endif
+ Open(masm);
+}
+
+// This allows deferred (and optional) initialisation of the scope.
+UseScratchRegisterScope::UseScratchRegisterScope()
+ : available_(NULL), availablefp_(NULL),
+ old_available_(0), old_availablefp_(0) {
+#ifdef DEBUG
+ initialised_ = false;
+#endif
+}
+
+UseScratchRegisterScope::~UseScratchRegisterScope() {
+ Close();
+}
+
+
+bool UseScratchRegisterScope::IsAvailable(const CPURegister& reg) const {
+ return available_->IncludesAliasOf(reg) || availablefp_->IncludesAliasOf(reg);
+}
+
+
+Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
+ int code = AcquireNextAvailable(available_).code();
+ return Register(code, reg.size());
+}
+
+
+FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
+ int code = AcquireNextAvailable(availablefp_).code();
+ return FPRegister(code, reg.size());
+}
+
+
+void UseScratchRegisterScope::Release(const CPURegister& reg) {
+ VIXL_ASSERT(initialised_);
+ if (reg.IsRegister()) {
+ ReleaseByCode(available_, reg.code());
+ } else if (reg.IsFPRegister()) {
+ ReleaseByCode(availablefp_, reg.code());
+ } else {
+ VIXL_ASSERT(reg.IsNone());
+ }
+}
+
+
+void UseScratchRegisterScope::Include(const CPURegList& list) {
+ VIXL_ASSERT(initialised_);
+ if (list.type() == CPURegister::kRegister) {
+ // Make sure that neither sp nor xzr are included the list.
+ IncludeByRegList(available_, list.list() & ~(xzr.Bit() | sp.Bit()));
+ } else {
+ VIXL_ASSERT(list.type() == CPURegister::kVRegister);
+ IncludeByRegList(availablefp_, list.list());
+ }
+}
+
+
+void UseScratchRegisterScope::Include(const Register& reg1,
+ const Register& reg2,
+ const Register& reg3,
+ const Register& reg4) {
+ VIXL_ASSERT(initialised_);
+ RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
+ // Make sure that neither sp nor xzr are included the list.
+ include &= ~(xzr.Bit() | sp.Bit());
+
+ IncludeByRegList(available_, include);
+}
+
+
+void UseScratchRegisterScope::Include(const FPRegister& reg1,
+ const FPRegister& reg2,
+ const FPRegister& reg3,
+ const FPRegister& reg4) {
+ RegList include = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
+ IncludeByRegList(availablefp_, include);
+}
+
+
+void UseScratchRegisterScope::Exclude(const CPURegList& list) {
+ if (list.type() == CPURegister::kRegister) {
+ ExcludeByRegList(available_, list.list());
+ } else {
+ VIXL_ASSERT(list.type() == CPURegister::kVRegister);
+ ExcludeByRegList(availablefp_, list.list());
+ }
+}
+
+
+void UseScratchRegisterScope::Exclude(const Register& reg1,
+ const Register& reg2,
+ const Register& reg3,
+ const Register& reg4) {
+ RegList exclude = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
+ ExcludeByRegList(available_, exclude);
+}
+
+
+void UseScratchRegisterScope::Exclude(const FPRegister& reg1,
+ const FPRegister& reg2,
+ const FPRegister& reg3,
+ const FPRegister& reg4) {
+ RegList excludefp = reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit();
+ ExcludeByRegList(availablefp_, excludefp);
+}
+
+
+void UseScratchRegisterScope::Exclude(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3,
+ const CPURegister& reg4) {
+ RegList exclude = 0;
+ RegList excludefp = 0;
+
+ const CPURegister regs[] = {reg1, reg2, reg3, reg4};
+
+ for (unsigned i = 0; i < (sizeof(regs) / sizeof(regs[0])); i++) {
+ if (regs[i].IsRegister()) {
+ exclude |= regs[i].Bit();
+ } else if (regs[i].IsFPRegister()) {
+ excludefp |= regs[i].Bit();
+ } else {
+ VIXL_ASSERT(regs[i].IsNone());
+ }
+ }
+
+ ExcludeByRegList(available_, exclude);
+ ExcludeByRegList(availablefp_, excludefp);
+}
+
+
+void UseScratchRegisterScope::ExcludeAll() {
+ ExcludeByRegList(available_, available_->list());
+ ExcludeByRegList(availablefp_, availablefp_->list());
+}
+
+
+CPURegister UseScratchRegisterScope::AcquireNextAvailable(
+ CPURegList* available) {
+ VIXL_CHECK(!available->IsEmpty());
+ CPURegister result = available->PopLowestIndex();
+ VIXL_ASSERT(!AreAliased(result, xzr, sp));
+ return result;
+}
+
+
+void UseScratchRegisterScope::ReleaseByCode(CPURegList* available, int code) {
+ ReleaseByRegList(available, static_cast<RegList>(1) << code);
+}
+
+
+void UseScratchRegisterScope::ReleaseByRegList(CPURegList* available,
+ RegList regs) {
+ available->set_list(available->list() | regs);
+}
+
+
+void UseScratchRegisterScope::IncludeByRegList(CPURegList* available,
+ RegList regs) {
+ available->set_list(available->list() | regs);
+}
+
+
+void UseScratchRegisterScope::ExcludeByRegList(CPURegList* available,
+ RegList exclude) {
+ available->set_list(available->list() & ~exclude);
+}
+
+} // namespace vixl