summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/simd/arm/jidctred-neon.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:22:09 +0000
commit43a97878ce14b72f0981164f87f2e35e14151312 (patch)
tree620249daf56c0258faa40cbdcf9cfba06de2a846 /media/libjpeg/simd/arm/jidctred-neon.c
parentInitial commit. (diff)
downloadfirefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz
firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libjpeg/simd/arm/jidctred-neon.c')
-rw-r--r--media/libjpeg/simd/arm/jidctred-neon.c486
1 files changed, 486 insertions, 0 deletions
diff --git a/media/libjpeg/simd/arm/jidctred-neon.c b/media/libjpeg/simd/arm/jidctred-neon.c
new file mode 100644
index 0000000000..be9627e61d
--- /dev/null
+++ b/media/libjpeg/simd/arm/jidctred-neon.c
@@ -0,0 +1,486 @@
+/*
+ * jidctred-neon.c - reduced-size IDCT (Arm Neon)
+ *
+ * Copyright (C) 2020, Arm Limited. All Rights Reserved.
+ * Copyright (C) 2020, D. R. Commander. All Rights Reserved.
+ *
+ * This software is provided 'as-is', without any express or implied
+ * warranty. In no event will the authors be held liable for any damages
+ * arising from the use of this software.
+ *
+ * Permission is granted to anyone to use this software for any purpose,
+ * including commercial applications, and to alter it and redistribute it
+ * freely, subject to the following restrictions:
+ *
+ * 1. The origin of this software must not be misrepresented; you must not
+ * claim that you wrote the original software. If you use this software
+ * in a product, an acknowledgment in the product documentation would be
+ * appreciated but is not required.
+ * 2. Altered source versions must be plainly marked as such, and must not be
+ * misrepresented as being the original software.
+ * 3. This notice may not be removed or altered from any source distribution.
+ */
+
+#define JPEG_INTERNALS
+#include "../../jinclude.h"
+#include "../../jpeglib.h"
+#include "../../jsimd.h"
+#include "../../jdct.h"
+#include "../../jsimddct.h"
+#include "../jsimd.h"
+#include "align.h"
+#include "neon-compat.h"
+
+#include <arm_neon.h>
+
+
+#define CONST_BITS 13
+#define PASS1_BITS 2
+
+#define F_0_211 1730
+#define F_0_509 4176
+#define F_0_601 4926
+#define F_0_720 5906
+#define F_0_765 6270
+#define F_0_850 6967
+#define F_0_899 7373
+#define F_1_061 8697
+#define F_1_272 10426
+#define F_1_451 11893
+#define F_1_847 15137
+#define F_2_172 17799
+#define F_2_562 20995
+#define F_3_624 29692
+
+
+/* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size
+ * 2x2 output from an 8x8 DCT block. It uses the same calculations and
+ * produces exactly the same output as IJG's original jpeg_idct_2x2() function
+ * from jpeg-6b, which can be found in jidctred.c.
+ *
+ * Scaled integer constants are used to avoid floating-point arithmetic:
+ * 0.720959822 = 5906 * 2^-13
+ * 0.850430095 = 6967 * 2^-13
+ * 1.272758580 = 10426 * 2^-13
+ * 3.624509785 = 29692 * 2^-13
+ *
+ * See jidctred.c for further details of the 2x2 IDCT algorithm. Where
+ * possible, the variable names and comments here in jsimd_idct_2x2_neon()
+ * match up with those in jpeg_idct_2x2().
+ */
+
+ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = {
+ -F_0_720, F_0_850, -F_1_272, F_3_624
+};
+
+void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ ISLOW_MULT_TYPE *quantptr = dct_table;
+
+ /* Load DCT coefficients. */
+ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
+ int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
+ int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
+ int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
+ int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
+
+ /* Load quantization table values. */
+ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
+ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
+ int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
+ int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
+ int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
+
+ /* Dequantize DCT coefficients. */
+ row0 = vmulq_s16(row0, quant_row0);
+ row1 = vmulq_s16(row1, quant_row1);
+ row3 = vmulq_s16(row3, quant_row3);
+ row5 = vmulq_s16(row5, quant_row5);
+ row7 = vmulq_s16(row7, quant_row7);
+
+ /* Load IDCT conversion constants. */
+ const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts);
+
+ /* Pass 1: process columns from input, put results in vectors row0 and
+ * row1.
+ */
+
+ /* Even part */
+ int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2);
+ int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2);
+
+ /* Odd part */
+ int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0);
+ int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0);
+
+ /* Final output stage: descale and narrow to 16-bit. */
+ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS),
+ vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS));
+ row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS),
+ vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS));
+
+ /* Transpose two rows, ready for second pass. */
+ int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1);
+ int16x8_t cols_0246 = cols_0246_1357.val[0];
+ int16x8_t cols_1357 = cols_0246_1357.val[1];
+ /* Duplicate columns such that each is accessible in its own vector. */
+ int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357),
+ vreinterpretq_s32_s16(cols_1357));
+ int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]);
+ int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]);
+
+ /* Pass 2: process two rows, store to output array. */
+
+ /* Even part: we're only interested in col0; the top half of tmp10 is "don't
+ * care."
+ */
+ int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2);
+
+ /* Odd part: we're only interested in the bottom half of tmp0. */
+ int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3);
+ tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2);
+ tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1);
+ tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0);
+
+ /* Final output stage: descale and clamp to range [0-255]. */
+ int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0),
+ vsubhn_s32(tmp10, tmp0));
+ output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16,
+ CONST_BITS + PASS1_BITS + 3 + 2 - 16);
+ /* Narrow to 8-bit and convert to unsigned. */
+ uint8x8_t output_u8 = vqmovun_s16(output_s16);
+
+ /* Store 2x2 block to memory. */
+ vst1_lane_u8(output_buf[0] + output_col, output_u8, 0);
+ vst1_lane_u8(output_buf[1] + output_col, output_u8, 1);
+ vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4);
+ vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5);
+}
+
+
+/* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size
+ * 4x4 output from an 8x8 DCT block. It uses the same calculations and
+ * produces exactly the same output as IJG's original jpeg_idct_4x4() function
+ * from jpeg-6b, which can be found in jidctred.c.
+ *
+ * Scaled integer constants are used to avoid floating-point arithmetic:
+ * 0.211164243 = 1730 * 2^-13
+ * 0.509795579 = 4176 * 2^-13
+ * 0.601344887 = 4926 * 2^-13
+ * 0.765366865 = 6270 * 2^-13
+ * 0.899976223 = 7373 * 2^-13
+ * 1.061594337 = 8697 * 2^-13
+ * 1.451774981 = 11893 * 2^-13
+ * 1.847759065 = 15137 * 2^-13
+ * 2.172734803 = 17799 * 2^-13
+ * 2.562915447 = 20995 * 2^-13
+ *
+ * See jidctred.c for further details of the 4x4 IDCT algorithm. Where
+ * possible, the variable names and comments here in jsimd_idct_4x4_neon()
+ * match up with those in jpeg_idct_4x4().
+ */
+
+ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = {
+ F_1_847, -F_0_765, -F_0_211, F_1_451,
+ -F_2_172, F_1_061, -F_0_509, -F_0_601,
+ F_0_899, F_2_562, 0, 0
+};
+
+void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ ISLOW_MULT_TYPE *quantptr = dct_table;
+
+ /* Load DCT coefficients. */
+ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE);
+ int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE);
+ int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE);
+ int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE);
+ int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE);
+ int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE);
+ int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE);
+
+ /* Load quantization table values for DC coefficients. */
+ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE);
+ /* Dequantize DC coefficients. */
+ row0 = vmulq_s16(row0, quant_row0);
+
+ /* Construct bitmap to test if all AC coefficients are 0. */
+ int16x8_t bitmap = vorrq_s16(row1, row2);
+ bitmap = vorrq_s16(bitmap, row3);
+ bitmap = vorrq_s16(bitmap, row5);
+ bitmap = vorrq_s16(bitmap, row6);
+ bitmap = vorrq_s16(bitmap, row7);
+
+ int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0);
+ int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1);
+
+ /* Load constants for IDCT computation. */
+#ifdef HAVE_VLD1_S16_X3
+ const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts);
+#else
+ /* GCC does not currently support the intrinsic vld1_<type>_x3(). */
+ const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts);
+ const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4);
+ const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8);
+ const int16x4x3_t consts = { { consts1, consts2, consts3 } };
+#endif
+
+ if (left_ac_bitmap == 0 && right_ac_bitmap == 0) {
+ /* All AC coefficients are zero.
+ * Compute DC values and duplicate into row vectors 0, 1, 2, and 3.
+ */
+ int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS);
+ row0 = dcval;
+ row1 = dcval;
+ row2 = dcval;
+ row3 = dcval;
+ } else if (left_ac_bitmap == 0) {
+ /* AC coefficients are zero for columns 0, 1, 2, and 3.
+ * Compute DC values for these columns.
+ */
+ int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS);
+
+ /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */
+
+ /* Load quantization table. */
+ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
+ int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
+ int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
+ int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
+ int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
+ int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
+
+ /* Even part */
+ int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
+
+ int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2);
+ int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6);
+
+ int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
+ tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
+
+ int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
+ int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
+
+ /* Odd part */
+ int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7);
+ z2 = vmul_s16(vget_high_s16(row5), quant_row5);
+ z3 = vmul_s16(vget_high_s16(row3), quant_row3);
+ int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1);
+
+ tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
+ tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
+ tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
+ tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
+
+ tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
+ tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
+ tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
+ tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
+
+ /* Final output stage: descale and narrow to 16-bit. */
+ row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
+ CONST_BITS - PASS1_BITS + 1));
+ row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
+ CONST_BITS - PASS1_BITS + 1));
+ row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
+ CONST_BITS - PASS1_BITS + 1));
+ row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
+ CONST_BITS - PASS1_BITS + 1));
+ } else if (right_ac_bitmap == 0) {
+ /* AC coefficients are zero for columns 4, 5, 6, and 7.
+ * Compute DC values for these columns.
+ */
+ int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS);
+
+ /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */
+
+ /* Load quantization table. */
+ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
+ int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
+ int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
+ int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
+ int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
+ int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
+
+ /* Even part */
+ int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
+
+ int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2);
+ int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6);
+
+ int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0);
+ tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1);
+
+ int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
+ int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
+
+ /* Odd part */
+ int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7);
+ z2 = vmul_s16(vget_low_s16(row5), quant_row5);
+ z3 = vmul_s16(vget_low_s16(row3), quant_row3);
+ int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1);
+
+ tmp0 = vmull_lane_s16(z1, consts.val[0], 2);
+ tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3);
+ tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0);
+ tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1);
+
+ tmp2 = vmull_lane_s16(z1, consts.val[1], 2);
+ tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3);
+ tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0);
+ tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1);
+
+ /* Final output stage: descale and narrow to 16-bit. */
+ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2),
+ CONST_BITS - PASS1_BITS + 1), dcval);
+ row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2),
+ CONST_BITS - PASS1_BITS + 1), dcval);
+ row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0),
+ CONST_BITS - PASS1_BITS + 1), dcval);
+ row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0),
+ CONST_BITS - PASS1_BITS + 1), dcval);
+ } else {
+ /* All AC coefficients are non-zero; full IDCT calculation required. */
+ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE);
+ int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE);
+ int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE);
+ int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE);
+ int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE);
+ int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE);
+
+ /* Even part */
+ int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1);
+ int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1);
+
+ int16x8_t z2 = vmulq_s16(row2, quant_row2);
+ int16x8_t z3 = vmulq_s16(row6, quant_row6);
+
+ int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0);
+ int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0);
+ tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1);
+ tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1);
+
+ int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l);
+ int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h);
+ int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l);
+ int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h);
+
+ /* Odd part */
+ int16x8_t z1 = vmulq_s16(row7, quant_row7);
+ z2 = vmulq_s16(row5, quant_row5);
+ z3 = vmulq_s16(row3, quant_row3);
+ int16x8_t z4 = vmulq_s16(row1, quant_row1);
+
+ tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0);
+ tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1);
+ tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0);
+ tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1);
+
+ tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2);
+ tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3);
+ tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0);
+ tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1);
+ tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2);
+ tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3);
+ tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0);
+ tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1);
+
+ /* Final output stage: descale and narrow to 16-bit. */
+ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l),
+ CONST_BITS - PASS1_BITS + 1),
+ vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h),
+ CONST_BITS - PASS1_BITS + 1));
+ row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l),
+ CONST_BITS - PASS1_BITS + 1),
+ vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h),
+ CONST_BITS - PASS1_BITS + 1));
+ row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l),
+ CONST_BITS - PASS1_BITS + 1),
+ vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h),
+ CONST_BITS - PASS1_BITS + 1));
+ row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l),
+ CONST_BITS - PASS1_BITS + 1),
+ vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h),
+ CONST_BITS - PASS1_BITS + 1));
+ }
+
+ /* Transpose 8x4 block to perform IDCT on rows in second pass. */
+ int16x8x2_t row_01 = vtrnq_s16(row0, row1);
+ int16x8x2_t row_23 = vtrnq_s16(row2, row3);
+
+ int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]),
+ vreinterpretq_s32_s16(row_23.val[0]));
+ int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]),
+ vreinterpretq_s32_s16(row_23.val[1]));
+
+ int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0]));
+ int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0]));
+ int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1]));
+ int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1]));
+ int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0]));
+ int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1]));
+ int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1]));
+
+ /* Commence second pass of IDCT. */
+
+ /* Even part */
+ int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1);
+ int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0);
+ tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1);
+
+ int32x4_t tmp10 = vaddq_s32(tmp0, tmp2);
+ int32x4_t tmp12 = vsubq_s32(tmp0, tmp2);
+
+ /* Odd part */
+ tmp0 = vmull_lane_s16(col7, consts.val[0], 2);
+ tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3);
+ tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0);
+ tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1);
+
+ tmp2 = vmull_lane_s16(col7, consts.val[1], 2);
+ tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3);
+ tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0);
+ tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1);
+
+ /* Final output stage: descale and clamp to range [0-255]. */
+ int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2),
+ vsubhn_s32(tmp12, tmp0));
+ int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0),
+ vsubhn_s32(tmp10, tmp2));
+ output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02,
+ CONST_BITS + PASS1_BITS + 3 + 1 - 16);
+ output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13,
+ CONST_BITS + PASS1_BITS + 3 + 1 - 16);
+ /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements.
+ * An interleaving store completes the transpose.
+ */
+ uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02),
+ vqmovun_s16(output_cols_13));
+ uint16x4x2_t output_01_23 = { {
+ vreinterpret_u16_u8(output_0123.val[0]),
+ vreinterpret_u16_u8(output_0123.val[1])
+ } };
+
+ /* Store 4x4 block to memory. */
+ JSAMPROW outptr0 = output_buf[0] + output_col;
+ JSAMPROW outptr1 = output_buf[1] + output_col;
+ JSAMPROW outptr2 = output_buf[2] + output_col;
+ JSAMPROW outptr3 = output_buf[3] + output_col;
+ vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0);
+ vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1);
+ vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2);
+ vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3);
+}