diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:22:09 +0000 |
commit | 43a97878ce14b72f0981164f87f2e35e14151312 (patch) | |
tree | 620249daf56c0258faa40cbdcf9cfba06de2a846 /third_party/highway/hwy/ops/rvv-inl.h | |
parent | Initial commit. (diff) | |
download | firefox-43a97878ce14b72f0981164f87f2e35e14151312.tar.xz firefox-43a97878ce14b72f0981164f87f2e35e14151312.zip |
Adding upstream version 110.0.1.upstream/110.0.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/highway/hwy/ops/rvv-inl.h')
-rw-r--r-- | third_party/highway/hwy/ops/rvv-inl.h | 3405 |
1 files changed, 3405 insertions, 0 deletions
diff --git a/third_party/highway/hwy/ops/rvv-inl.h b/third_party/highway/hwy/ops/rvv-inl.h new file mode 100644 index 0000000000..bdf5238778 --- /dev/null +++ b/third_party/highway/hwy/ops/rvv-inl.h @@ -0,0 +1,3405 @@ +// Copyright 2021 Google LLC +// SPDX-License-Identifier: Apache-2.0 +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// RISC-V V vectors (length not known at compile time). +// External include guard in highway.h - see comment there. + +#include <riscv_vector.h> +#include <stddef.h> +#include <stdint.h> + +#include "hwy/base.h" +#include "hwy/ops/shared-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace hwy { +namespace HWY_NAMESPACE { + +template <class V> +struct DFromV_t {}; // specialized in macros +template <class V> +using DFromV = typename DFromV_t<RemoveConst<V>>::type; + +template <class V> +using TFromV = TFromD<DFromV<V>>; + +// Enables the overload if Pow2 is in [min, max]. +#define HWY_RVV_IF_POW2_IN(D, min, max) \ + hwy::EnableIf<(min) <= Pow2(D()) && Pow2(D()) <= (max)>* = nullptr + +template <typename T, size_t N, int kPow2> +constexpr size_t MLenFromD(Simd<T, N, kPow2> /* tag */) { + // Returns divisor = type bits / LMUL. Folding *8 into the ScaleByPower + // argument enables fractional LMUL < 1. Limit to 64 because that is the + // largest value for which vbool##_t are defined. + return HWY_MIN(64, sizeof(T) * 8 * 8 / detail::ScaleByPower(8, kPow2)); +} + +// ================================================== MACROS + +// Generate specializations and function definitions using X macros. Although +// harder to read and debug, writing everything manually is too bulky. + +namespace detail { // for code folding + +// For all mask sizes MLEN: (1/Nth of a register, one bit per lane) +// The first two arguments are SEW and SHIFT such that SEW >> SHIFT = MLEN. +#define HWY_RVV_FOREACH_B(X_MACRO, NAME, OP) \ + X_MACRO(64, 0, 64, NAME, OP) \ + X_MACRO(32, 0, 32, NAME, OP) \ + X_MACRO(16, 0, 16, NAME, OP) \ + X_MACRO(8, 0, 8, NAME, OP) \ + X_MACRO(8, 1, 4, NAME, OP) \ + X_MACRO(8, 2, 2, NAME, OP) \ + X_MACRO(8, 3, 1, NAME, OP) + +// For given SEW, iterate over one of LMULS: _TRUNC, _EXT, _ALL. This allows +// reusing type lists such as HWY_RVV_FOREACH_U for _ALL (the usual case) or +// _EXT (for Combine). To achieve this, we HWY_CONCAT with the LMULS suffix. +// +// Precompute SEW/LMUL => MLEN to allow token-pasting the result. For the same +// reason, also pass the double-width and half SEW and LMUL (suffixed D and H, +// respectively). "__" means there is no corresponding LMUL (e.g. LMULD for m8). +// Args: BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, MLEN, NAME, OP + +// LMULS = _TRUNC: truncatable (not the smallest LMUL) +#define HWY_RVV_FOREACH_08_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP) + +#define HWY_RVV_FOREACH_16_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP) + +#define HWY_RVV_FOREACH_32_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP) + +#define HWY_RVV_FOREACH_64_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP) + +// LMULS = _DEMOTE: can demote from SEW*LMUL to SEWH*LMULH. +#define HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP) + +#define HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP) + +#define HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP) + +#define HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP) + +// LMULS = _LE2: <= 2 +#define HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf8, mf4, __, -3, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP) + +#define HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP) + +#define HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP) + +#define HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) + +// LMULS = _EXT: not the largest LMUL +#define HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP) + +#define HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP) + +#define HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP) + +#define HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) + +// LMULS = _ALL (2^MinPow2() <= LMUL <= 8) +#define HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP) + +#define HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP) + +#define HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP) + +#define HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP) + +// 'Virtual' LMUL. This upholds the Highway guarantee that vectors are at least +// 128 bit and LowerHalf is defined whenever there are at least 2 lanes, even +// though RISC-V LMUL must be at least SEW/64 (notice that this rules out +// LMUL=1/2 for SEW=64). To bridge the gap, we add overloads for kPow2 equal to +// one less than should be supported, with all other parameters (vector type +// etc.) unchanged. For D with the lowest kPow2 ('virtual LMUL'), Lanes() +// returns half of what it usually would. +// +// Notice that we can only add overloads whenever there is a D argument: those +// are unique with respect to non-virtual-LMUL overloads because their kPow2 +// template argument differs. Otherwise, there is no actual vuint64mf2_t, and +// defining another overload with the same LMUL would be an error. Thus we have +// a separate _VIRT category for HWY_RVV_FOREACH*, and the common case is +// _ALL_VIRT (meaning the regular LMUL plus the VIRT overloads), used in most +// functions that take a D. + +#define HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -3, /*MLEN=*/64, NAME, OP) + +#define HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -2, /*MLEN=*/64, NAME, OP) + +#define HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, -1, /*MLEN=*/64, NAME, OP) + +// ALL + VIRT +#define HWY_RVV_FOREACH_08_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_16_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_32_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_64_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +// LE2 + VIRT +#define HWY_RVV_FOREACH_08_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_16_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_32_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_64_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +// EXT + VIRT +#define HWY_RVV_FOREACH_08_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_16_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_32_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_64_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +// DEMOTE + VIRT +#define HWY_RVV_FOREACH_08_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_16_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_32_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +#define HWY_RVV_FOREACH_64_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \ + HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) + +// SEW for unsigned: +#define HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, uint, u, NAME, OP) +#define HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, uint, u, NAME, OP) +#define HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, uint, u, NAME, OP) +#define HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, uint, u, NAME, OP) + +// SEW for signed: +#define HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, int, i, NAME, OP) +#define HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, int, i, NAME, OP) +#define HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, int, i, NAME, OP) +#define HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, int, i, NAME, OP) + +// SEW for float: +#if HWY_HAVE_FLOAT16 +#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, float, f, NAME, OP) +#else +#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) +#endif +#define HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, float, f, NAME, OP) +#define HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS) \ + HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, float, f, NAME, OP) + +// Commonly used type/SEW groups: +#define HWY_RVV_FOREACH_UI08(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_UI16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_UI3264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_UI163264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS) + +// For all combinations of SEW: +#define HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS) + +// Commonly used type categories: +#define HWY_RVV_FOREACH_UI(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) + +#define HWY_RVV_FOREACH(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) \ + HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS) + +// Assemble types for use in x-macros +#define HWY_RVV_T(BASE, SEW) BASE##SEW##_t +#define HWY_RVV_D(BASE, SEW, N, SHIFT) Simd<HWY_RVV_T(BASE, SEW), N, SHIFT> +#define HWY_RVV_V(BASE, SEW, LMUL) v##BASE##SEW##LMUL##_t +#define HWY_RVV_M(MLEN) vbool##MLEN##_t + +} // namespace detail + +// Until we have full intrinsic support for fractional LMUL, mixed-precision +// code can use LMUL 1..8 (adequate unless they need many registers). +#define HWY_SPECIALIZE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <> \ + struct DFromV_t<HWY_RVV_V(BASE, SEW, LMUL)> { \ + using Lane = HWY_RVV_T(BASE, SEW); \ + using type = ScalableTag<Lane, SHIFT>; \ + }; + +HWY_RVV_FOREACH(HWY_SPECIALIZE, _, _, _ALL) +#undef HWY_SPECIALIZE + +// ------------------------------ Lanes + +// WARNING: we want to query VLMAX/sizeof(T), but this actually changes VL! +// vlenb is not exposed through intrinsics and vreadvl is not VLMAX. +#define HWY_RVV_LANES(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API size_t NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) { \ + size_t actual = v##OP##SEW##LMUL(); \ + /* Common case of full vectors: avoid any extra instructions. */ \ + /* actual includes LMUL, so do not shift again. */ \ + if (detail::IsFull(d)) return actual; \ + /* Check for virtual LMUL, e.g. "uint16mf8_t" (not provided by */ \ + /* intrinsics). In this case the actual LMUL is 1/4, so divide by */ \ + /* another factor of two. */ \ + if (detail::ScaleByPower(128 / SEW, SHIFT) == 1) actual >>= 1; \ + return HWY_MIN(actual, N); \ + } + +HWY_RVV_FOREACH(HWY_RVV_LANES, Lanes, setvlmax_e, _ALL_VIRT) +#undef HWY_RVV_LANES + +template <size_t N, int kPow2> +HWY_API size_t Lanes(Simd<bfloat16_t, N, kPow2> /* tag*/) { + return Lanes(Simd<uint16_t, N, kPow2>()); +} + +// ------------------------------ Common x-macros + +// Last argument to most intrinsics. Use when the op has no d arg of its own, +// which means there is no user-specified cap. +#define HWY_RVV_AVL(SEW, SHIFT) \ + Lanes(ScalableTag<HWY_RVV_T(uint, SEW), SHIFT>()) + +// vector = f(vector), e.g. Not +#define HWY_RVV_RETV_ARGV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_v_##CHAR##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +// vector = f(vector, scalar), e.g. detail::AddS +#define HWY_RVV_RETV_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) { \ + return v##OP##_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +// vector = f(vector, vector), e.g. Add +#define HWY_RVV_RETV_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +// mask = f(mask) +#define HWY_RVV_RETM_ARGM(SEW, SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) m) { \ + return vm##OP##_m_b##MLEN(m, ~0ull); \ + } + +// ================================================== INIT + +// ------------------------------ Set + +#define HWY_RVV_SET(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_T(BASE, SEW) arg) { \ + return v##OP##_##CHAR##SEW##LMUL(arg, Lanes(d)); \ + } + +HWY_RVV_FOREACH_UI(HWY_RVV_SET, Set, mv_v_x, _ALL_VIRT) +HWY_RVV_FOREACH_F(HWY_RVV_SET, Set, fmv_v_f, _ALL_VIRT) +#undef HWY_RVV_SET + +// Treat bfloat16_t as uint16_t (using the previously defined Set overloads); +// required for Zero and VFromD. +template <size_t N, int kPow2> +decltype(Set(Simd<uint16_t, N, kPow2>(), 0)) Set(Simd<bfloat16_t, N, kPow2> d, + bfloat16_t arg) { + return Set(RebindToUnsigned<decltype(d)>(), arg.bits); +} + +template <class D> +using VFromD = decltype(Set(D(), TFromD<D>())); + +// ------------------------------ Zero + +template <class D> +HWY_API VFromD<D> Zero(D d) { + // Cast to support bfloat16_t. + const RebindToUnsigned<decltype(d)> du; + return BitCast(d, Set(du, 0)); +} + +// ------------------------------ Undefined + +// RVV vundefined is 'poisoned' such that even XORing a _variable_ initialized +// by it gives unpredictable results. It should only be used for maskoff, so +// keep it internal. For the Highway op, just use Zero (single instruction). +namespace detail { +#define HWY_RVV_UNDEFINED(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) /* tag */) { \ + return v##OP##_##CHAR##SEW##LMUL(); /* no AVL */ \ + } + +HWY_RVV_FOREACH(HWY_RVV_UNDEFINED, Undefined, undefined, _ALL) +#undef HWY_RVV_UNDEFINED +} // namespace detail + +template <class D> +HWY_API VFromD<D> Undefined(D d) { + return Zero(d); +} + +// ------------------------------ BitCast + +namespace detail { + +// Halves LMUL. (Use LMUL arg for the source so we can use _TRUNC.) +#define HWY_RVV_TRUNC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMULH) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULH(v); /* no AVL */ \ + } +HWY_RVV_FOREACH(HWY_RVV_TRUNC, Trunc, lmul_trunc, _TRUNC) +#undef HWY_RVV_TRUNC + +// Doubles LMUL to `d2` (the arg is only necessary for _VIRT). +#define HWY_RVV_EXT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMULD) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULD(v); /* no AVL */ \ + } +HWY_RVV_FOREACH(HWY_RVV_EXT, Ext, lmul_ext, _EXT) +#undef HWY_RVV_EXT + +// For virtual LMUL e.g. 'uint32mf4_t', the return type should be mf2, which is +// the same as the actual input type. +#define HWY_RVV_EXT_VIRT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v; \ + } +HWY_RVV_FOREACH(HWY_RVV_EXT_VIRT, Ext, lmul_ext, _VIRT) +#undef HWY_RVV_EXT_VIRT + +// For BitCastToByte, the D arg is only to prevent duplicate definitions caused +// by _ALL_VIRT. + +// There is no reinterpret from u8 <-> u8, so just return. +#define HWY_RVV_CAST_U8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + vuint8##LMUL##_t v) { \ + return v; \ + } \ + template <size_t N> \ + HWY_API vuint8##LMUL##_t BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \ + return v; \ + } + +// For i8, need a single reinterpret (HWY_RVV_CAST_IF does two). +#define HWY_RVV_CAST_I8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + vint8##LMUL##_t v) { \ + return vreinterpret_v_i8##LMUL##_u8##LMUL(v); \ + } \ + template <size_t N> \ + HWY_API vint8##LMUL##_t BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \ + return vreinterpret_v_u8##LMUL##_i8##LMUL(v); \ + } + +// Separate u/i because clang only provides signed <-> unsigned reinterpret for +// the same SEW. +#define HWY_RVV_CAST_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \ + return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v); \ + } + +// Signed/Float: first cast to/from unsigned +#define HWY_RVV_CAST_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_v_u##SEW##LMUL##_u8##LMUL( \ + v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v)); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \ + return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL( \ + v##OP##_v_u8##LMUL##_u##SEW##LMUL(v)); \ + } + +// Additional versions for virtual LMUL using LMULH for byte vectors. +#define HWY_RVV_CAST_VIRT_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return detail::Trunc(v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v)); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) { \ + HWY_RVV_D(uint, 8, N, SHIFT + 1) d2; \ + const vuint8##LMUL##_t v2 = detail::Ext(d2, v); \ + return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v2); \ + } + +// Signed/Float: first cast to/from unsigned +#define HWY_RVV_CAST_VIRT_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <typename T, size_t N> \ + HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return detail::Trunc(v##OP##_v_u##SEW##LMUL##_u8##LMUL( \ + v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v))); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) { \ + HWY_RVV_D(uint, 8, N, SHIFT + 1) d2; \ + const vuint8##LMUL##_t v2 = detail::Ext(d2, v); \ + return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL( \ + v##OP##_v_u8##LMUL##_u##SEW##LMUL(v2)); \ + } + +HWY_RVV_FOREACH_U08(HWY_RVV_CAST_U8, _, reinterpret, _ALL) +HWY_RVV_FOREACH_I08(HWY_RVV_CAST_I8, _, reinterpret, _ALL) +HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_U, _, reinterpret, _ALL) +HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_IF, _, reinterpret, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_CAST_IF, _, reinterpret, _ALL) +HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_VIRT_U, _, reinterpret, _VIRT) +HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT) +HWY_RVV_FOREACH_F(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT) + +#undef HWY_RVV_CAST_U8 +#undef HWY_RVV_CAST_I8 +#undef HWY_RVV_CAST_U +#undef HWY_RVV_CAST_IF +#undef HWY_RVV_CAST_VIRT_U +#undef HWY_RVV_CAST_VIRT_IF + +template <size_t N, int kPow2> +HWY_INLINE VFromD<Simd<uint16_t, N, kPow2>> BitCastFromByte( + Simd<bfloat16_t, N, kPow2> /* d */, VFromD<Simd<uint8_t, N, kPow2>> v) { + return BitCastFromByte(Simd<uint16_t, N, kPow2>(), v); +} + +} // namespace detail + +template <class D, class FromV> +HWY_API VFromD<D> BitCast(D d, FromV v) { + return detail::BitCastFromByte(d, detail::BitCastToByte(d, v)); +} + +namespace detail { + +template <class V, class DU = RebindToUnsigned<DFromV<V>>> +HWY_INLINE VFromD<DU> BitCastToUnsigned(V v) { + return BitCast(DU(), v); +} + +} // namespace detail + +// ------------------------------ Iota + +namespace detail { + +#define HWY_RVV_IOTA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) { \ + return v##OP##_##CHAR##SEW##LMUL(Lanes(d)); \ + } + +HWY_RVV_FOREACH_U(HWY_RVV_IOTA, Iota0, id_v, _ALL_VIRT) +#undef HWY_RVV_IOTA + +template <class D, class DU = RebindToUnsigned<D>> +HWY_INLINE VFromD<DU> Iota0(const D /*d*/) { + return BitCastToUnsigned(Iota0(DU())); +} + +} // namespace detail + +// ================================================== LOGICAL + +// ------------------------------ Not + +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGV, Not, not, _ALL) + +template <class V, HWY_IF_FLOAT_V(V)> +HWY_API V Not(const V v) { + using DF = DFromV<V>; + using DU = RebindToUnsigned<DF>; + return BitCast(DF(), Not(BitCast(DU(), v))); +} + +// ------------------------------ And + +// Non-vector version (ideally immediate) for use with Iota0 +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AndS, and_vx, _ALL) +} // namespace detail + +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, And, and, _ALL) + +template <class V, HWY_IF_FLOAT_V(V)> +HWY_API V And(const V a, const V b) { + using DF = DFromV<V>; + using DU = RebindToUnsigned<DF>; + return BitCast(DF(), And(BitCast(DU(), a), BitCast(DU(), b))); +} + +// ------------------------------ Or + +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Or, or, _ALL) + +template <class V, HWY_IF_FLOAT_V(V)> +HWY_API V Or(const V a, const V b) { + using DF = DFromV<V>; + using DU = RebindToUnsigned<DF>; + return BitCast(DF(), Or(BitCast(DU(), a), BitCast(DU(), b))); +} + +// ------------------------------ Xor + +// Non-vector version (ideally immediate) for use with Iota0 +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, XorS, xor_vx, _ALL) +} // namespace detail + +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Xor, xor, _ALL) + +template <class V, HWY_IF_FLOAT_V(V)> +HWY_API V Xor(const V a, const V b) { + using DF = DFromV<V>; + using DU = RebindToUnsigned<DF>; + return BitCast(DF(), Xor(BitCast(DU(), a), BitCast(DU(), b))); +} + +// ------------------------------ AndNot + +template <class V> +HWY_API V AndNot(const V not_a, const V b) { + return And(Not(not_a), b); +} + +// ------------------------------ Or3 + +template <class V> +HWY_API V Or3(V o1, V o2, V o3) { + return Or(o1, Or(o2, o3)); +} + +// ------------------------------ OrAnd + +template <class V> +HWY_API V OrAnd(const V o, const V a1, const V a2) { + return Or(o, And(a1, a2)); +} + +// ------------------------------ CopySign + +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, CopySign, fsgnj, _ALL) + +template <class V> +HWY_API V CopySignToAbs(const V abs, const V sign) { + // RVV can also handle abs < 0, so no extra action needed. + return CopySign(abs, sign); +} + +// ================================================== ARITHMETIC + +// ------------------------------ Add + +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AddS, add_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, AddS, fadd_vf, _ALL) +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, ReverseSubS, rsub_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, ReverseSubS, frsub_vf, _ALL) +} // namespace detail + +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Add, add, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Add, fadd, _ALL) + +// ------------------------------ Sub +HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Sub, sub, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Sub, fsub, _ALL) + +// ------------------------------ SaturatedAdd + +HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL) +HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL) + +HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL) +HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL) + +// ------------------------------ SaturatedSub + +HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL) +HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL) + +HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL) +HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL) + +// ------------------------------ AverageRound + +// TODO(janwas): check vxrm rounding mode +HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL) +HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL) + +// ------------------------------ ShiftLeft[Same] + +// Intrinsics do not define .vi forms, so use .vx instead. +#define HWY_RVV_SHIFT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <int kBits> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_vx_##CHAR##SEW##LMUL(v, kBits, HWY_RVV_AVL(SEW, SHIFT)); \ + } \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME##Same(HWY_RVV_V(BASE, SEW, LMUL) v, int bits) { \ + return v##OP##_vx_##CHAR##SEW##LMUL(v, static_cast<uint8_t>(bits), \ + HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_UI(HWY_RVV_SHIFT, ShiftLeft, sll, _ALL) + +// ------------------------------ ShiftRight[Same] + +HWY_RVV_FOREACH_U(HWY_RVV_SHIFT, ShiftRight, srl, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_SHIFT, ShiftRight, sra, _ALL) + +#undef HWY_RVV_SHIFT + +// ------------------------------ SumsOf8 (ShiftRight, Add) +template <class VU8> +HWY_API VFromD<Repartition<uint64_t, DFromV<VU8>>> SumsOf8(const VU8 v) { + const DFromV<VU8> du8; + const RepartitionToWide<decltype(du8)> du16; + const RepartitionToWide<decltype(du16)> du32; + const RepartitionToWide<decltype(du32)> du64; + using VU16 = VFromD<decltype(du16)>; + + const VU16 vFDB97531 = ShiftRight<8>(BitCast(du16, v)); + const VU16 vECA86420 = detail::AndS(BitCast(du16, v), 0xFF); + const VU16 sFE_DC_BA_98_76_54_32_10 = Add(vFDB97531, vECA86420); + + const VU16 szz_FE_zz_BA_zz_76_zz_32 = + BitCast(du16, ShiftRight<16>(BitCast(du32, sFE_DC_BA_98_76_54_32_10))); + const VU16 sxx_FC_xx_B8_xx_74_xx_30 = + Add(sFE_DC_BA_98_76_54_32_10, szz_FE_zz_BA_zz_76_zz_32); + const VU16 szz_zz_xx_FC_zz_zz_xx_74 = + BitCast(du16, ShiftRight<32>(BitCast(du64, sxx_FC_xx_B8_xx_74_xx_30))); + const VU16 sxx_xx_xx_F8_xx_xx_xx_70 = + Add(sxx_FC_xx_B8_xx_74_xx_30, szz_zz_xx_FC_zz_zz_xx_74); + return detail::AndS(BitCast(du64, sxx_xx_xx_F8_xx_xx_xx_70), 0xFFFFull); +} + +// ------------------------------ RotateRight +template <int kBits, class V> +HWY_API V RotateRight(const V v) { + constexpr size_t kSizeInBits = sizeof(TFromV<V>) * 8; + static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count"); + if (kBits == 0) return v; + return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v)); +} + +// ------------------------------ Shl +#define HWY_RVV_SHIFT_VV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(v, bits, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shl, sll, _ALL) + +#define HWY_RVV_SHIFT_II(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(v, detail::BitCastToUnsigned(bits), \ + HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shl, sll, _ALL) + +// ------------------------------ Shr + +HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shr, srl, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shr, sra, _ALL) + +#undef HWY_RVV_SHIFT_II +#undef HWY_RVV_SHIFT_VV + +// ------------------------------ Min + +HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Min, minu, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Min, min, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Min, fmin, _ALL) + +// ------------------------------ Max + +namespace detail { + +HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVS, MaxS, maxu_vx, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVS, MaxS, max_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, MaxS, fmax_vf, _ALL) + +} // namespace detail + +HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Max, maxu, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Max, max, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Max, fmax, _ALL) + +// ------------------------------ Mul + +HWY_RVV_FOREACH_UI163264(HWY_RVV_RETV_ARGVV, Mul, mul, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Mul, fmul, _ALL) + +// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*. +#ifdef HWY_NATIVE_I64MULLO +#undef HWY_NATIVE_I64MULLO +#else +#define HWY_NATIVE_I64MULLO +#endif + +// ------------------------------ MulHigh + +// Only for internal use (Highway only promises MulHigh for 16-bit inputs). +// Used by MulEven; vwmul does not work for m8. +namespace detail { +HWY_RVV_FOREACH_I32(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL) +HWY_RVV_FOREACH_U32(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL) +HWY_RVV_FOREACH_U64(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL) +} // namespace detail + +HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL) +HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL) + +// ------------------------------ MulFixedPoint15 +HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulFixedPoint15, smul, _ALL) + +// ------------------------------ Div +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Div, fdiv, _ALL) + +// ------------------------------ ApproximateReciprocal +HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocal, frec7, _ALL) + +// ------------------------------ Sqrt +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV, Sqrt, fsqrt, _ALL) + +// ------------------------------ ApproximateReciprocalSqrt +HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocalSqrt, frsqrt7, _ALL) + +// ------------------------------ MulAdd +// Note: op is still named vv, not vvv. +#define HWY_RVV_FMA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) mul, HWY_RVV_V(BASE, SEW, LMUL) x, \ + HWY_RVV_V(BASE, SEW, LMUL) add) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(add, mul, x, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulAdd, fmacc, _ALL) + +// ------------------------------ NegMulAdd +HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulAdd, fnmsac, _ALL) + +// ------------------------------ MulSub +HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulSub, fmsac, _ALL) + +// ------------------------------ NegMulSub +HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulSub, fnmacc, _ALL) + +#undef HWY_RVV_FMA + +// ================================================== COMPARE + +// Comparisons set a mask bit to 1 if the condition is true, else 0. The XX in +// vboolXX_t is a power of two divisor for vector bits. SLEN 8 / LMUL 1 = 1/8th +// of all bits; SLEN 8 / LMUL 4 = half of all bits. + +// mask = f(vector, vector) +#define HWY_RVV_RETM_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_M(MLEN) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \ + return v##OP##_vv_##CHAR##SEW##LMUL##_b##MLEN(a, b, \ + HWY_RVV_AVL(SEW, SHIFT)); \ + } + +// mask = f(vector, scalar) +#define HWY_RVV_RETM_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_M(MLEN) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) { \ + return v##OP##_##CHAR##SEW##LMUL##_b##MLEN(a, b, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +// ------------------------------ Eq +HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Eq, mseq, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Eq, mfeq, _ALL) + +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, EqS, mseq_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, EqS, mfeq_vf, _ALL) +} // namespace detail + +// ------------------------------ Ne +HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Ne, msne, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Ne, mfne, _ALL) + +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, NeS, msne_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, NeS, mfne_vf, _ALL) +} // namespace detail + +// ------------------------------ Lt +HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVV, Lt, msltu, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVV, Lt, mslt, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Lt, mflt, _ALL) + +namespace detail { +HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVS, LtS, mslt_vx, _ALL) +HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVS, LtS, msltu_vx, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, LtS, mflt_vf, _ALL) +} // namespace detail + +// ------------------------------ Le +HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Le, mfle, _ALL) + +#undef HWY_RVV_RETM_ARGVV +#undef HWY_RVV_RETM_ARGVS + +// ------------------------------ Gt/Ge + +template <class V> +HWY_API auto Ge(const V a, const V b) -> decltype(Le(a, b)) { + return Le(b, a); +} + +template <class V> +HWY_API auto Gt(const V a, const V b) -> decltype(Lt(a, b)) { + return Lt(b, a); +} + +// ------------------------------ TestBit +template <class V> +HWY_API auto TestBit(const V a, const V bit) -> decltype(Eq(a, bit)) { + return detail::NeS(And(a, bit), 0); +} + +// ------------------------------ Not +// NOLINTNEXTLINE +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, Not, not ) + +// ------------------------------ And + +// mask = f(mask_a, mask_b) (note arg2,arg1 order!) +#define HWY_RVV_RETM_ARGMM(SEW, SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) a, HWY_RVV_M(MLEN) b) { \ + return vm##OP##_mm_b##MLEN(b, a, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, And, and) + +// ------------------------------ AndNot +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, AndNot, andn) + +// ------------------------------ Or +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Or, or) + +// ------------------------------ Xor +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Xor, xor) + +// ------------------------------ ExclusiveNeither +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, ExclusiveNeither, xnor) + +#undef HWY_RVV_RETM_ARGMM + +// ------------------------------ IfThenElse +#define HWY_RVV_IF_THEN_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) yes, \ + HWY_RVV_V(BASE, SEW, LMUL) no) { \ + return v##OP##_vvm_##CHAR##SEW##LMUL(m, no, yes, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH(HWY_RVV_IF_THEN_ELSE, IfThenElse, merge, _ALL) + +#undef HWY_RVV_IF_THEN_ELSE + +// ------------------------------ IfThenElseZero +template <class M, class V> +HWY_API V IfThenElseZero(const M mask, const V yes) { + return IfThenElse(mask, yes, Zero(DFromV<V>())); +} + +// ------------------------------ IfThenZeroElse + +#define HWY_RVV_IF_THEN_ZERO_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, \ + LMULH, SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) no) { \ + return v##OP##_##CHAR##SEW##LMUL(m, no, 0, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_UI(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, merge_vxm, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, fmerge_vfm, _ALL) + +#undef HWY_RVV_IF_THEN_ZERO_ELSE + +// ------------------------------ MaskFromVec + +template <class V> +HWY_API auto MaskFromVec(const V v) -> decltype(Eq(v, v)) { + return detail::NeS(v, 0); +} + +template <class D> +using MFromD = decltype(MaskFromVec(Zero(D()))); + +template <class D, typename MFrom> +HWY_API MFromD<D> RebindMask(const D /*d*/, const MFrom mask) { + // No need to check lane size/LMUL are the same: if not, casting MFrom to + // MFromD<D> would fail. + return mask; +} + +// ------------------------------ VecFromMask + +namespace detail { +#define HWY_RVV_VEC_FROM_MASK(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_M(MLEN) m) { \ + return v##OP##_##CHAR##SEW##LMUL##_m(m, v0, v0, 1, \ + HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_UI(HWY_RVV_VEC_FROM_MASK, SubS, sub_vx, _ALL) +#undef HWY_RVV_VEC_FROM_MASK +} // namespace detail + +template <class D, HWY_IF_NOT_FLOAT_D(D)> +HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) { + return detail::SubS(Zero(d), mask); +} + +template <class D, HWY_IF_FLOAT_D(D)> +HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) { + return BitCast(d, VecFromMask(RebindToUnsigned<D>(), mask)); +} + +// ------------------------------ IfVecThenElse (MaskFromVec) + +template <class V> +HWY_API V IfVecThenElse(const V mask, const V yes, const V no) { + return IfThenElse(MaskFromVec(mask), yes, no); +} + +// ------------------------------ ZeroIfNegative +template <class V> +HWY_API V ZeroIfNegative(const V v) { + return IfThenZeroElse(detail::LtS(v, 0), v); +} + +// ------------------------------ BroadcastSignBit +template <class V> +HWY_API V BroadcastSignBit(const V v) { + return ShiftRight<sizeof(TFromV<V>) * 8 - 1>(v); +} + +// ------------------------------ IfNegativeThenElse (BroadcastSignBit) +template <class V> +HWY_API V IfNegativeThenElse(V v, V yes, V no) { + static_assert(IsSigned<TFromV<V>>(), "Only works for signed/float"); + const DFromV<V> d; + const RebindToSigned<decltype(d)> di; + + MFromD<decltype(d)> m = + MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v)))); + return IfThenElse(m, yes, no); +} + +// ------------------------------ FindFirstTrue + +#define HWY_RVV_FIND_FIRST_TRUE(SEW, SHIFT, MLEN, NAME, OP) \ + template <class D> \ + HWY_API intptr_t FindFirstTrue(D d, HWY_RVV_M(MLEN) m) { \ + static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \ + return vfirst_m_b##MLEN(m, Lanes(d)); \ + } \ + template <class D> \ + HWY_API size_t FindKnownFirstTrue(D d, HWY_RVV_M(MLEN) m) { \ + static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \ + return static_cast<size_t>(vfirst_m_b##MLEN(m, Lanes(d))); \ + } + +HWY_RVV_FOREACH_B(HWY_RVV_FIND_FIRST_TRUE, , _) +#undef HWY_RVV_FIND_FIRST_TRUE + +// ------------------------------ AllFalse +template <class D> +HWY_API bool AllFalse(D d, MFromD<D> m) { + return FindFirstTrue(d, m) < 0; +} + +// ------------------------------ AllTrue + +#define HWY_RVV_ALL_TRUE(SEW, SHIFT, MLEN, NAME, OP) \ + template <class D> \ + HWY_API bool AllTrue(D d, HWY_RVV_M(MLEN) m) { \ + static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \ + return AllFalse(d, vmnot_m_b##MLEN(m, Lanes(d))); \ + } + +HWY_RVV_FOREACH_B(HWY_RVV_ALL_TRUE, _, _) +#undef HWY_RVV_ALL_TRUE + +// ------------------------------ CountTrue + +#define HWY_RVV_COUNT_TRUE(SEW, SHIFT, MLEN, NAME, OP) \ + template <class D> \ + HWY_API size_t CountTrue(D d, HWY_RVV_M(MLEN) m) { \ + static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \ + return vcpop_m_b##MLEN(m, Lanes(d)); \ + } + +HWY_RVV_FOREACH_B(HWY_RVV_COUNT_TRUE, _, _) +#undef HWY_RVV_COUNT_TRUE + +// ================================================== MEMORY + +// ------------------------------ Load + +#define HWY_RVV_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \ + return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_LOAD, Load, le, _ALL_VIRT) +#undef HWY_RVV_LOAD + +// There is no native BF16, treat as uint16_t. +template <size_t N, int kPow2> +HWY_API VFromD<Simd<uint16_t, N, kPow2>> Load( + Simd<bfloat16_t, N, kPow2> d, const bfloat16_t* HWY_RESTRICT p) { + return Load(RebindToUnsigned<decltype(d)>(), + reinterpret_cast<const uint16_t * HWY_RESTRICT>(p)); +} + +template <size_t N, int kPow2> +HWY_API void Store(VFromD<Simd<uint16_t, N, kPow2>> v, + Simd<bfloat16_t, N, kPow2> d, bfloat16_t* HWY_RESTRICT p) { + Store(v, RebindToUnsigned<decltype(d)>(), + reinterpret_cast<uint16_t * HWY_RESTRICT>(p)); +} + +// ------------------------------ LoadU + +// RVV only requires lane alignment, not natural alignment of the entire vector. +template <class D> +HWY_API VFromD<D> LoadU(D d, const TFromD<D>* HWY_RESTRICT p) { + return Load(d, p); +} + +// ------------------------------ MaskedLoad + +#define HWY_RVV_MASKED_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_M(MLEN) m, HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \ + return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, Zero(d), p, Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_MASKED_LOAD, MaskedLoad, le, _ALL_VIRT) +#undef HWY_RVV_MASKED_LOAD + +// ------------------------------ Store + +#define HWY_RVV_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \ + return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_STORE, Store, se, _ALL_VIRT) +#undef HWY_RVV_STORE + +// ------------------------------ BlendedStore + +#define HWY_RVV_BLENDED_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) m, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \ + return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, p, v, Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_BLENDED_STORE, BlendedStore, se, _ALL_VIRT) +#undef HWY_RVV_BLENDED_STORE + +namespace detail { + +#define HWY_RVV_STOREN(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(size_t count, HWY_RVV_V(BASE, SEW, LMUL) v, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \ + return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, count); \ + } +HWY_RVV_FOREACH(HWY_RVV_STOREN, StoreN, se, _ALL_VIRT) +#undef HWY_RVV_STOREN + +} // namespace detail + +// ------------------------------ StoreU + +// RVV only requires lane alignment, not natural alignment of the entire vector. +template <class V, class D> +HWY_API void StoreU(const V v, D d, TFromD<D>* HWY_RESTRICT p) { + Store(v, d, p); +} + +// ------------------------------ Stream +template <class V, class D, typename T> +HWY_API void Stream(const V v, D d, T* HWY_RESTRICT aligned) { + Store(v, d, aligned); +} + +// ------------------------------ ScatterOffset + +#define HWY_RVV_SCATTER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base, \ + HWY_RVV_V(int, SEW, LMUL) offset) { \ + return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL( \ + base, detail::BitCastToUnsigned(offset), v, Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_SCATTER, ScatterOffset, sux, _ALL_VIRT) +#undef HWY_RVV_SCATTER + +// ------------------------------ ScatterIndex + +template <class D, HWY_IF_LANE_SIZE_D(D, 4)> +HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base, + const VFromD<RebindToSigned<D>> index) { + return ScatterOffset(v, d, base, ShiftLeft<2>(index)); +} + +template <class D, HWY_IF_LANE_SIZE_D(D, 8)> +HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base, + const VFromD<RebindToSigned<D>> index) { + return ScatterOffset(v, d, base, ShiftLeft<3>(index)); +} + +// ------------------------------ GatherOffset + +#define HWY_RVV_GATHER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base, \ + HWY_RVV_V(int, SEW, LMUL) offset) { \ + return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL( \ + base, detail::BitCastToUnsigned(offset), Lanes(d)); \ + } +HWY_RVV_FOREACH(HWY_RVV_GATHER, GatherOffset, lux, _ALL_VIRT) +#undef HWY_RVV_GATHER + +// ------------------------------ GatherIndex + +template <class D, HWY_IF_LANE_SIZE_D(D, 4)> +HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base, + const VFromD<RebindToSigned<D>> index) { + return GatherOffset(d, base, ShiftLeft<2>(index)); +} + +template <class D, HWY_IF_LANE_SIZE_D(D, 8)> +HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base, + const VFromD<RebindToSigned<D>> index) { + return GatherOffset(d, base, ShiftLeft<3>(index)); +} + +// ------------------------------ LoadInterleaved2 + +// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2. +#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED +#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED +#else +#define HWY_NATIVE_LOAD_STORE_INTERLEAVED +#endif + +#define HWY_RVV_LOAD2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned, \ + HWY_RVV_V(BASE, SEW, LMUL) & v0, \ + HWY_RVV_V(BASE, SEW, LMUL) & v1) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, unaligned, Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_LOAD2, LoadInterleaved2, lseg2, _LE2_VIRT) +#undef HWY_RVV_LOAD2 + +// ------------------------------ LoadInterleaved3 + +#define HWY_RVV_LOAD3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned, \ + HWY_RVV_V(BASE, SEW, LMUL) & v0, \ + HWY_RVV_V(BASE, SEW, LMUL) & v1, \ + HWY_RVV_V(BASE, SEW, LMUL) & v2) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, unaligned, Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_LOAD3, LoadInterleaved3, lseg3, _LE2_VIRT) +#undef HWY_RVV_LOAD3 + +// ------------------------------ LoadInterleaved4 + +#define HWY_RVV_LOAD4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned, \ + HWY_RVV_V(BASE, SEW, LMUL) & v0, HWY_RVV_V(BASE, SEW, LMUL) & v1, \ + HWY_RVV_V(BASE, SEW, LMUL) & v2, HWY_RVV_V(BASE, SEW, LMUL) & v3) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, &v3, aligned, \ + Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_LOAD4, LoadInterleaved4, lseg4, _LE2_VIRT) +#undef HWY_RVV_LOAD4 + +// ------------------------------ StoreInterleaved2 + +#define HWY_RVV_STORE2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v0, \ + HWY_RVV_V(BASE, SEW, LMUL) v1, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_STORE2, StoreInterleaved2, sseg2, _LE2_VIRT) +#undef HWY_RVV_STORE2 + +// ------------------------------ StoreInterleaved3 + +#define HWY_RVV_STORE3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME( \ + HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1, \ + HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, v2, Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_STORE3, StoreInterleaved3, sseg3, _LE2_VIRT) +#undef HWY_RVV_STORE3 + +// ------------------------------ StoreInterleaved4 + +#define HWY_RVV_STORE4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API void NAME( \ + HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1, \ + HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_V(BASE, SEW, LMUL) v3, \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, \ + HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned) { \ + v##OP##e##SEW##_v_##CHAR##SEW##LMUL(aligned, v0, v1, v2, v3, Lanes(d)); \ + } +// Segments are limited to 8 registers, so we can only go up to LMUL=2. +HWY_RVV_FOREACH(HWY_RVV_STORE4, StoreInterleaved4, sseg4, _LE2_VIRT) +#undef HWY_RVV_STORE4 + +// ================================================== CONVERT + +// ------------------------------ PromoteTo + +// SEW is for the input so we can use F16 (no-op if not supported). +#define HWY_RVV_PROMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME( \ + HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return OP##CHAR##SEWD##LMULD(v, Lanes(d)); \ + } + +HWY_RVV_FOREACH_U08(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_U16(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_U32(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_I08(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_I16(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_I32(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT) +HWY_RVV_FOREACH_F16(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT) +HWY_RVV_FOREACH_F32(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT) +#undef HWY_RVV_PROMOTE + +// The above X-macro cannot handle 4x promotion nor type switching. +// TODO(janwas): use BASE2 arg to allow the latter. +#define HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, LMUL, LMUL_IN, \ + SHIFT, ADD) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, BITS, LMUL) \ + PromoteTo(HWY_RVV_D(BASE, BITS, N, SHIFT + ADD) d, \ + HWY_RVV_V(BASE_IN, BITS_IN, LMUL_IN) v) { \ + return OP##CHAR##BITS##LMUL(v, Lanes(d)); \ + } + +#define HWY_RVV_PROMOTE_X2(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -2, 1) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -1, 1) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, m1, 0, 1) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m2, 1, 1) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m4, 2, 1) + +#define HWY_RVV_PROMOTE_X4(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, mf2, mf8, -3, 2) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf4, -2, 2) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, mf2, -1, 2) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m1, 0, 2) \ + HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m2, 1, 2) + +HWY_RVV_PROMOTE_X4(vzext_vf4_, uint, u, 32, uint, 8) +HWY_RVV_PROMOTE_X4(vsext_vf4_, int, i, 32, int, 8) + +// i32 to f64 +HWY_RVV_PROMOTE_X2(vfwcvt_f_x_v_, float, f, 64, int, 32) + +#undef HWY_RVV_PROMOTE_X4 +#undef HWY_RVV_PROMOTE_X2 +#undef HWY_RVV_PROMOTE + +// Unsigned to signed: cast for unsigned promote. +template <size_t N, int kPow2> +HWY_API auto PromoteTo(Simd<int16_t, N, kPow2> d, + VFromD<Rebind<uint8_t, decltype(d)>> v) + -> VFromD<decltype(d)> { + return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v)); +} + +template <size_t N, int kPow2> +HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d, + VFromD<Rebind<uint8_t, decltype(d)>> v) + -> VFromD<decltype(d)> { + return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v)); +} + +template <size_t N, int kPow2> +HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d, + VFromD<Rebind<uint16_t, decltype(d)>> v) + -> VFromD<decltype(d)> { + return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v)); +} + +template <size_t N, int kPow2> +HWY_API auto PromoteTo(Simd<float32_t, N, kPow2> d, + VFromD<Rebind<bfloat16_t, decltype(d)>> v) + -> VFromD<decltype(d)> { + const RebindToSigned<decltype(d)> di32; + const Rebind<uint16_t, decltype(d)> du16; + return BitCast(d, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v)))); +} + +// ------------------------------ DemoteTo U + +// SEW is for the source so we can use _DEMOTE. +#define HWY_RVV_DEMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME( \ + HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return OP##CHAR##SEWH##LMULH(v, 0, Lanes(d)); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME##Shr16( \ + HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return OP##CHAR##SEWH##LMULH(v, 16, Lanes(d)); \ + } + +// Unsigned -> unsigned (also used for bf16) +namespace detail { +HWY_RVV_FOREACH_U16(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT) +HWY_RVV_FOREACH_U32(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT) +} // namespace detail + +// SEW is for the source so we can use _DEMOTE. +#define HWY_RVV_DEMOTE_I_TO_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(uint, SEWH, LMULH) NAME( \ + HWY_RVV_D(uint, SEWH, N, SHIFT - 1) d, HWY_RVV_V(int, SEW, LMUL) v) { \ + /* First clamp negative numbers to zero to match x86 packus. */ \ + return detail::DemoteTo(d, detail::BitCastToUnsigned(detail::MaxS(v, 0))); \ + } +HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT) +HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT) +#undef HWY_RVV_DEMOTE_I_TO_U + +template <size_t N> +HWY_API vuint8mf8_t DemoteTo(Simd<uint8_t, N, -3> d, const vint32mf2_t v) { + return vnclipu_wx_u8mf8(DemoteTo(Simd<uint16_t, N, -2>(), v), 0, Lanes(d)); +} +template <size_t N> +HWY_API vuint8mf4_t DemoteTo(Simd<uint8_t, N, -2> d, const vint32m1_t v) { + return vnclipu_wx_u8mf4(DemoteTo(Simd<uint16_t, N, -1>(), v), 0, Lanes(d)); +} +template <size_t N> +HWY_API vuint8mf2_t DemoteTo(Simd<uint8_t, N, -1> d, const vint32m2_t v) { + return vnclipu_wx_u8mf2(DemoteTo(Simd<uint16_t, N, 0>(), v), 0, Lanes(d)); +} +template <size_t N> +HWY_API vuint8m1_t DemoteTo(Simd<uint8_t, N, 0> d, const vint32m4_t v) { + return vnclipu_wx_u8m1(DemoteTo(Simd<uint16_t, N, 1>(), v), 0, Lanes(d)); +} +template <size_t N> +HWY_API vuint8m2_t DemoteTo(Simd<uint8_t, N, 1> d, const vint32m8_t v) { + return vnclipu_wx_u8m2(DemoteTo(Simd<uint16_t, N, 2>(), v), 0, Lanes(d)); +} + +HWY_API vuint8mf8_t U8FromU32(const vuint32mf2_t v) { + const size_t avl = Lanes(ScalableTag<uint8_t, -3>()); + return vnclipu_wx_u8mf8(vnclipu_wx_u16mf4(v, 0, avl), 0, avl); +} +HWY_API vuint8mf4_t U8FromU32(const vuint32m1_t v) { + const size_t avl = Lanes(ScalableTag<uint8_t, -2>()); + return vnclipu_wx_u8mf4(vnclipu_wx_u16mf2(v, 0, avl), 0, avl); +} +HWY_API vuint8mf2_t U8FromU32(const vuint32m2_t v) { + const size_t avl = Lanes(ScalableTag<uint8_t, -1>()); + return vnclipu_wx_u8mf2(vnclipu_wx_u16m1(v, 0, avl), 0, avl); +} +HWY_API vuint8m1_t U8FromU32(const vuint32m4_t v) { + const size_t avl = Lanes(ScalableTag<uint8_t, 0>()); + return vnclipu_wx_u8m1(vnclipu_wx_u16m2(v, 0, avl), 0, avl); +} +HWY_API vuint8m2_t U8FromU32(const vuint32m8_t v) { + const size_t avl = Lanes(ScalableTag<uint8_t, 1>()); + return vnclipu_wx_u8m2(vnclipu_wx_u16m4(v, 0, avl), 0, avl); +} + +// ------------------------------ Truncations + +template <size_t N> +HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d, + const VFromD<Simd<uint64_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint64m1_t v1 = vand(v, 0xFF, avl); + const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl); + const vuint16mf4_t v3 = vnclipu_wx_u16mf4(v2, 0, avl); + return vnclipu_wx_u8mf8(v3, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d, + const VFromD<Simd<uint64_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint64m2_t v1 = vand(v, 0xFF, avl); + const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl); + const vuint16mf2_t v3 = vnclipu_wx_u16mf2(v2, 0, avl); + return vnclipu_wx_u8mf4(v3, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d, + const VFromD<Simd<uint64_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint64m4_t v1 = vand(v, 0xFF, avl); + const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl); + const vuint16m1_t v3 = vnclipu_wx_u16m1(v2, 0, avl); + return vnclipu_wx_u8mf2(v3, 0, avl); +} + +template <size_t N> +HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d, + const VFromD<Simd<uint64_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint64m8_t v1 = vand(v, 0xFF, avl); + const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl); + const vuint16m2_t v3 = vnclipu_wx_u16m2(v2, 0, avl); + return vnclipu_wx_u8m1(v3, 0, avl); +} + +template <size_t N> +HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d, + const VFromD<Simd<uint64_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint64m1_t v1 = vand(v, 0xFFFF, avl); + const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl); + return vnclipu_wx_u16mf4(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d, + const VFromD<Simd<uint64_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint64m2_t v1 = vand(v, 0xFFFF, avl); + const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl); + return vnclipu_wx_u16mf2(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d, + const VFromD<Simd<uint64_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint64m4_t v1 = vand(v, 0xFFFF, avl); + const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl); + return vnclipu_wx_u16m1(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d, + const VFromD<Simd<uint64_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint64m8_t v1 = vand(v, 0xFFFF, avl); + const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl); + return vnclipu_wx_u16m2(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint32mf2_t TruncateTo(Simd<uint32_t, N, -1> d, + const VFromD<Simd<uint64_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint64m1_t v1 = vand(v, 0xFFFFFFFFu, avl); + return vnclipu_wx_u32mf2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint32m1_t TruncateTo(Simd<uint32_t, N, 0> d, + const VFromD<Simd<uint64_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint64m2_t v1 = vand(v, 0xFFFFFFFFu, avl); + return vnclipu_wx_u32m1(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint32m2_t TruncateTo(Simd<uint32_t, N, 1> d, + const VFromD<Simd<uint64_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint64m4_t v1 = vand(v, 0xFFFFFFFFu, avl); + return vnclipu_wx_u32m2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint32m4_t TruncateTo(Simd<uint32_t, N, 2> d, + const VFromD<Simd<uint64_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint64m8_t v1 = vand(v, 0xFFFFFFFFu, avl); + return vnclipu_wx_u32m4(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d, + const VFromD<Simd<uint32_t, N, -1>> v) { + const size_t avl = Lanes(d); + const vuint32mf2_t v1 = vand(v, 0xFF, avl); + const vuint16mf4_t v2 = vnclipu_wx_u16mf4(v1, 0, avl); + return vnclipu_wx_u8mf8(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d, + const VFromD<Simd<uint32_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint32m1_t v1 = vand(v, 0xFF, avl); + const vuint16mf2_t v2 = vnclipu_wx_u16mf2(v1, 0, avl); + return vnclipu_wx_u8mf4(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d, + const VFromD<Simd<uint32_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint32m2_t v1 = vand(v, 0xFF, avl); + const vuint16m1_t v2 = vnclipu_wx_u16m1(v1, 0, avl); + return vnclipu_wx_u8mf2(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d, + const VFromD<Simd<uint32_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint32m4_t v1 = vand(v, 0xFF, avl); + const vuint16m2_t v2 = vnclipu_wx_u16m2(v1, 0, avl); + return vnclipu_wx_u8m1(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d, + const VFromD<Simd<uint32_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint32m8_t v1 = vand(v, 0xFF, avl); + const vuint16m4_t v2 = vnclipu_wx_u16m4(v1, 0, avl); + return vnclipu_wx_u8m2(v2, 0, avl); +} + +template <size_t N> +HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d, + const VFromD<Simd<uint32_t, N, -1>> v) { + const size_t avl = Lanes(d); + const vuint32mf2_t v1 = vand(v, 0xFFFF, avl); + return vnclipu_wx_u16mf4(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d, + const VFromD<Simd<uint32_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint32m1_t v1 = vand(v, 0xFFFF, avl); + return vnclipu_wx_u16mf2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d, + const VFromD<Simd<uint32_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint32m2_t v1 = vand(v, 0xFFFF, avl); + return vnclipu_wx_u16m1(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d, + const VFromD<Simd<uint32_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint32m4_t v1 = vand(v, 0xFFFF, avl); + return vnclipu_wx_u16m2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint16m4_t TruncateTo(Simd<uint16_t, N, 2> d, + const VFromD<Simd<uint32_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint32m8_t v1 = vand(v, 0xFFFF, avl); + return vnclipu_wx_u16m4(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d, + const VFromD<Simd<uint16_t, N, -2>> v) { + const size_t avl = Lanes(d); + const vuint16mf4_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8mf8(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d, + const VFromD<Simd<uint16_t, N, -1>> v) { + const size_t avl = Lanes(d); + const vuint16mf2_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8mf4(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d, + const VFromD<Simd<uint16_t, N, 0>> v) { + const size_t avl = Lanes(d); + const vuint16m1_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8mf2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d, + const VFromD<Simd<uint16_t, N, 1>> v) { + const size_t avl = Lanes(d); + const vuint16m2_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8m1(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d, + const VFromD<Simd<uint16_t, N, 2>> v) { + const size_t avl = Lanes(d); + const vuint16m4_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8m2(v1, 0, avl); +} + +template <size_t N> +HWY_API vuint8m4_t TruncateTo(Simd<uint8_t, N, 2> d, + const VFromD<Simd<uint16_t, N, 3>> v) { + const size_t avl = Lanes(d); + const vuint16m8_t v1 = vand(v, 0xFF, avl); + return vnclipu_wx_u8m4(v1, 0, avl); +} + +// ------------------------------ DemoteTo I + +HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT) +HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT) + +template <size_t N> +HWY_API vint8mf8_t DemoteTo(Simd<int8_t, N, -3> d, const vint32mf2_t v) { + return DemoteTo(d, DemoteTo(Simd<int16_t, N, -2>(), v)); +} +template <size_t N> +HWY_API vint8mf4_t DemoteTo(Simd<int8_t, N, -2> d, const vint32m1_t v) { + return DemoteTo(d, DemoteTo(Simd<int16_t, N, -1>(), v)); +} +template <size_t N> +HWY_API vint8mf2_t DemoteTo(Simd<int8_t, N, -1> d, const vint32m2_t v) { + return DemoteTo(d, DemoteTo(Simd<int16_t, N, 0>(), v)); +} +template <size_t N> +HWY_API vint8m1_t DemoteTo(Simd<int8_t, N, 0> d, const vint32m4_t v) { + return DemoteTo(d, DemoteTo(Simd<int16_t, N, 1>(), v)); +} +template <size_t N> +HWY_API vint8m2_t DemoteTo(Simd<int8_t, N, 1> d, const vint32m8_t v) { + return DemoteTo(d, DemoteTo(Simd<int16_t, N, 2>(), v)); +} + +#undef HWY_RVV_DEMOTE + +// ------------------------------ DemoteTo F + +// SEW is for the source so we can use _DEMOTE. +#define HWY_RVV_DEMOTE_F(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME( \ + HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return OP##SEWH##LMULH(v, Lanes(d)); \ + } + +#if HWY_HAVE_FLOAT16 +HWY_RVV_FOREACH_F32(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f, + _DEMOTE_VIRT) +#endif +HWY_RVV_FOREACH_F64(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f, + _DEMOTE_VIRT) +#undef HWY_RVV_DEMOTE_F + +// TODO(janwas): add BASE2 arg to allow generating this via DEMOTE_F. +template <size_t N> +HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -2> d, const vfloat64m1_t v) { + return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d)); +} +template <size_t N> +HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -1> d, const vfloat64m1_t v) { + return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d)); +} +template <size_t N> +HWY_API vint32m1_t DemoteTo(Simd<int32_t, N, 0> d, const vfloat64m2_t v) { + return vfncvt_rtz_x_f_w_i32m1(v, Lanes(d)); +} +template <size_t N> +HWY_API vint32m2_t DemoteTo(Simd<int32_t, N, 1> d, const vfloat64m4_t v) { + return vfncvt_rtz_x_f_w_i32m2(v, Lanes(d)); +} +template <size_t N> +HWY_API vint32m4_t DemoteTo(Simd<int32_t, N, 2> d, const vfloat64m8_t v) { + return vfncvt_rtz_x_f_w_i32m4(v, Lanes(d)); +} + +template <size_t N, int kPow2> +HWY_API VFromD<Simd<uint16_t, N, kPow2>> DemoteTo( + Simd<bfloat16_t, N, kPow2> d, VFromD<Simd<float, N, kPow2 + 1>> v) { + const RebindToUnsigned<decltype(d)> du16; + const Rebind<uint32_t, decltype(d)> du32; + return detail::DemoteToShr16(du16, BitCast(du32, v)); +} + +// ------------------------------ ConvertTo F + +#define HWY_RVV_CONVERT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(int, SEW, LMUL) v) { \ + return vfcvt_f_x_v_f##SEW##LMUL(v, Lanes(d)); \ + } \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo( \ + HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(uint, SEW, LMUL) v) {\ + return vfcvt_f_xu_v_f##SEW##LMUL(v, Lanes(d)); \ + } \ + /* Truncates (rounds toward zero). */ \ + template <size_t N> \ + HWY_API HWY_RVV_V(int, SEW, LMUL) ConvertTo(HWY_RVV_D(int, SEW, N, SHIFT) d, \ + HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return vfcvt_rtz_x_f_v_i##SEW##LMUL(v, Lanes(d)); \ + } \ +// API only requires f32 but we provide f64 for internal use. +HWY_RVV_FOREACH_F(HWY_RVV_CONVERT, _, _, _ALL_VIRT) +#undef HWY_RVV_CONVERT + +// Uses default rounding mode. Must be separate because there is no D arg. +#define HWY_RVV_NEAREST(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(int, SEW, LMUL) NearestInt(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return vfcvt_x_f_v_i##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT)); \ + } +HWY_RVV_FOREACH_F(HWY_RVV_NEAREST, _, _, _ALL) +#undef HWY_RVV_NEAREST + +// ================================================== COMBINE + +namespace detail { + +// For x86-compatible behaviour mandated by Highway API: TableLookupBytes +// offsets are implicitly relative to the start of their 128-bit block. +template <typename T, size_t N, int kPow2> +size_t LanesPerBlock(Simd<T, N, kPow2> d) { + size_t lpb = 16 / sizeof(T); + if (IsFull(d)) return lpb; + // Also honor the user-specified (constexpr) N limit. + lpb = HWY_MIN(lpb, N); + // No fraction, we're done. + if (kPow2 >= 0) return lpb; + // Fractional LMUL: Lanes(d) may be smaller than lpb, so honor that. + return HWY_MIN(lpb, Lanes(d)); +} + +template <class D, class V> +HWY_INLINE V OffsetsOf128BitBlocks(const D d, const V iota0) { + using T = MakeUnsigned<TFromD<D>>; + return AndS(iota0, static_cast<T>(~(LanesPerBlock(d) - 1))); +} + +template <size_t kLanes, class D> +HWY_INLINE MFromD<D> FirstNPerBlock(D /* tag */) { + const RebindToUnsigned<D> du; + const RebindToSigned<D> di; + using TU = TFromD<decltype(du)>; + const auto idx_mod = AndS(Iota0(du), static_cast<TU>(LanesPerBlock(du) - 1)); + return LtS(BitCast(di, idx_mod), static_cast<TFromD<decltype(di)>>(kLanes)); +} + +// vector = f(vector, vector, size_t) +#define HWY_RVV_SLIDE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) dst, HWY_RVV_V(BASE, SEW, LMUL) src, \ + size_t lanes) { \ + return v##OP##_vx_##CHAR##SEW##LMUL(dst, src, lanes, \ + HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideUp, slideup, _ALL) +HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideDown, slidedown, _ALL) + +#undef HWY_RVV_SLIDE + +} // namespace detail + +// ------------------------------ ConcatUpperLower +template <class D, class V> +HWY_API V ConcatUpperLower(D d, const V hi, const V lo) { + return IfThenElse(FirstN(d, Lanes(d) / 2), lo, hi); +} + +// ------------------------------ ConcatLowerLower +template <class D, class V> +HWY_API V ConcatLowerLower(D d, const V hi, const V lo) { + return detail::SlideUp(lo, hi, Lanes(d) / 2); +} + +// ------------------------------ ConcatUpperUpper +template <class D, class V> +HWY_API V ConcatUpperUpper(D d, const V hi, const V lo) { + // Move upper half into lower + const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2); + return ConcatUpperLower(d, hi, lo_down); +} + +// ------------------------------ ConcatLowerUpper +template <class D, class V> +HWY_API V ConcatLowerUpper(D d, const V hi, const V lo) { + // Move half of both inputs to the other half + const auto hi_up = detail::SlideUp(hi, hi, Lanes(d) / 2); + const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2); + return ConcatUpperLower(d, hi_up, lo_down); +} + +// ------------------------------ Combine +template <class D2, class V> +HWY_API VFromD<D2> Combine(D2 d2, const V hi, const V lo) { + return detail::SlideUp(detail::Ext(d2, lo), detail::Ext(d2, hi), + Lanes(d2) / 2); +} + +// ------------------------------ ZeroExtendVector + +template <class D2, class V> +HWY_API VFromD<D2> ZeroExtendVector(D2 d2, const V lo) { + return Combine(d2, Xor(lo, lo), lo); +} + +// ------------------------------ Lower/UpperHalf + +namespace detail { + +// RVV may only support LMUL >= SEW/64; returns whether that holds for D. Note +// that SEW = sizeof(T)*8 and LMUL = 1 << Pow2(). +template <class D> +constexpr bool IsSupportedLMUL(D d) { + return (size_t{1} << (Pow2(d) + 3)) >= sizeof(TFromD<D>); +} + +} // namespace detail + +// If IsSupportedLMUL, just 'truncate' i.e. halve LMUL. +template <class DH, hwy::EnableIf<detail::IsSupportedLMUL(DH())>* = nullptr> +HWY_API VFromD<DH> LowerHalf(const DH /* tag */, const VFromD<Twice<DH>> v) { + return detail::Trunc(v); +} + +// Otherwise, there is no corresponding intrinsic type (e.g. vuint64mf2_t), and +// the hardware may set "vill" if we attempt such an LMUL. However, the V +// extension on application processors requires Zvl128b, i.e. VLEN >= 128, so it +// still makes sense to have half of an SEW=64 vector. We instead just return +// the vector, and rely on the kPow2 in DH to halve the return value of Lanes(). +template <class DH, class V, + hwy::EnableIf<!detail::IsSupportedLMUL(DH())>* = nullptr> +HWY_API V LowerHalf(const DH /* tag */, const V v) { + return v; +} + +// Same, but without D arg +template <class V> +HWY_API VFromD<Half<DFromV<V>>> LowerHalf(const V v) { + return LowerHalf(Half<DFromV<V>>(), v); +} + +template <class DH> +HWY_API VFromD<DH> UpperHalf(const DH d2, const VFromD<Twice<DH>> v) { + return LowerHalf(d2, detail::SlideDown(v, v, Lanes(d2))); +} + +// ================================================== SWIZZLE + +namespace detail { +// Special instruction for 1 lane is presumably faster? +#define HWY_RVV_SLIDE1(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_##CHAR##SEW##LMUL(v, 0, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Up, slide1up_vx, _ALL) +HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Up, fslide1up_vf, _ALL) +HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Down, slide1down_vx, _ALL) +HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Down, fslide1down_vf, _ALL) +#undef HWY_RVV_SLIDE1 +} // namespace detail + +// ------------------------------ GetLane + +#define HWY_RVV_GET_LANE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_T(BASE, SEW) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_s_##CHAR##SEW##LMUL##_##CHAR##SEW(v); /* no AVL */ \ + } + +HWY_RVV_FOREACH_UI(HWY_RVV_GET_LANE, GetLane, mv_x, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_GET_LANE, GetLane, fmv_f, _ALL) +#undef HWY_RVV_GET_LANE + +// ------------------------------ ExtractLane +template <class V> +HWY_API TFromV<V> ExtractLane(const V v, size_t i) { + return GetLane(detail::SlideDown(v, v, i)); +} + +// ------------------------------ InsertLane + +template <class V, HWY_IF_NOT_LANE_SIZE_V(V, 1)> +HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) { + const DFromV<V> d; + const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only + using TU = TFromD<decltype(du)>; + const auto is_i = detail::EqS(detail::Iota0(du), static_cast<TU>(i)); + return IfThenElse(RebindMask(d, is_i), Set(d, t), v); +} + +namespace detail { +HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, SetOnlyFirst, sof) +} // namespace detail + +// For 8-bit lanes, Iota0 might overflow. +template <class V, HWY_IF_LANE_SIZE_V(V, 1)> +HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) { + const DFromV<V> d; + const auto zero = Zero(d); + const auto one = Set(d, 1); + const auto ge_i = Eq(detail::SlideUp(zero, one, i), one); + const auto is_i = detail::SetOnlyFirst(ge_i); + return IfThenElse(RebindMask(d, is_i), Set(d, t), v); +} + +// ------------------------------ OddEven +template <class V> +HWY_API V OddEven(const V a, const V b) { + const RebindToUnsigned<DFromV<V>> du; // Iota0 is unsigned only + const auto is_even = detail::EqS(detail::AndS(detail::Iota0(du), 1), 0); + return IfThenElse(is_even, b, a); +} + +// ------------------------------ DupEven (OddEven) +template <class V> +HWY_API V DupEven(const V v) { + const V up = detail::Slide1Up(v); + return OddEven(up, v); +} + +// ------------------------------ DupOdd (OddEven) +template <class V> +HWY_API V DupOdd(const V v) { + const V down = detail::Slide1Down(v); + return OddEven(v, down); +} + +// ------------------------------ OddEvenBlocks +template <class V> +HWY_API V OddEvenBlocks(const V a, const V b) { + const RebindToUnsigned<DFromV<V>> du; // Iota0 is unsigned only + constexpr size_t kShift = CeilLog2(16 / sizeof(TFromV<V>)); + const auto idx_block = ShiftRight<kShift>(detail::Iota0(du)); + const auto is_even = detail::EqS(detail::AndS(idx_block, 1), 0); + return IfThenElse(is_even, b, a); +} + +// ------------------------------ SwapAdjacentBlocks + +template <class V> +HWY_API V SwapAdjacentBlocks(const V v) { + const DFromV<V> d; + const size_t lpb = detail::LanesPerBlock(d); + const V down = detail::SlideDown(v, v, lpb); + const V up = detail::SlideUp(v, v, lpb); + return OddEvenBlocks(up, down); +} + +// ------------------------------ TableLookupLanes + +template <class D, class VI> +HWY_API VFromD<RebindToUnsigned<D>> IndicesFromVec(D d, VI vec) { + static_assert(sizeof(TFromD<D>) == sizeof(TFromV<VI>), "Index != lane"); + const RebindToUnsigned<decltype(d)> du; // instead of <D>: avoids unused d. + const auto indices = BitCast(du, vec); +#if HWY_IS_DEBUG_BUILD + HWY_DASSERT(AllTrue(du, detail::LtS(indices, Lanes(d)))); +#endif + return indices; +} + +template <class D, typename TI> +HWY_API VFromD<RebindToUnsigned<D>> SetTableIndices(D d, const TI* idx) { + static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index size must match lane"); + return IndicesFromVec(d, LoadU(Rebind<TI, D>(), idx)); +} + +// <32bit are not part of Highway API, but used in Broadcast. This limits VLMAX +// to 2048! We could instead use vrgatherei16. +#define HWY_RVV_TABLE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(uint, SEW, LMUL) idx) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(v, idx, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH(HWY_RVV_TABLE, TableLookupLanes, rgather, _ALL) +#undef HWY_RVV_TABLE + +// ------------------------------ ConcatOdd (TableLookupLanes) +template <class D, class V> +HWY_API V ConcatOdd(D d, const V hi, const V lo) { + const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only + const auto iota = detail::Iota0(du); + const auto idx = detail::AddS(Add(iota, iota), 1); + const auto lo_odd = TableLookupLanes(lo, idx); + const auto hi_odd = TableLookupLanes(hi, idx); + return detail::SlideUp(lo_odd, hi_odd, Lanes(d) / 2); +} + +// ------------------------------ ConcatEven (TableLookupLanes) +template <class D, class V> +HWY_API V ConcatEven(D d, const V hi, const V lo) { + const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only + const auto iota = detail::Iota0(du); + const auto idx = Add(iota, iota); + const auto lo_even = TableLookupLanes(lo, idx); + const auto hi_even = TableLookupLanes(hi, idx); + return detail::SlideUp(lo_even, hi_even, Lanes(d) / 2); +} + +// ------------------------------ Reverse (TableLookupLanes) +template <class D> +HWY_API VFromD<D> Reverse(D /* tag */, VFromD<D> v) { + const RebindToUnsigned<D> du; + using TU = TFromD<decltype(du)>; + const size_t N = Lanes(du); + const auto idx = + detail::ReverseSubS(detail::Iota0(du), static_cast<TU>(N - 1)); + return TableLookupLanes(v, idx); +} + +// ------------------------------ Reverse2 (RotateRight, OddEven) + +// Shifting and adding requires fewer instructions than blending, but casting to +// u32 only works for LMUL in [1/2, 8]. +template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -1, 3)> +HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { + const Repartition<uint32_t, D> du32; + return BitCast(d, RotateRight<16>(BitCast(du32, v))); +} +// For LMUL < 1/2, we can extend and then truncate. +template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -3, -2)> +HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { + const Twice<decltype(d)> d2; + const Twice<decltype(d2)> d4; + const Repartition<uint32_t, decltype(d4)> du32; + const auto vx = detail::Ext(d4, detail::Ext(d2, v)); + const auto rx = BitCast(d4, RotateRight<16>(BitCast(du32, vx))); + return detail::Trunc(detail::Trunc(rx)); +} + +// Shifting and adding requires fewer instructions than blending, but casting to +// u64 does not work for LMUL < 1. +template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, 0, 3)> +HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { + const Repartition<uint64_t, decltype(d)> du64; + return BitCast(d, RotateRight<32>(BitCast(du64, v))); +} + +// For fractions, we can extend and then truncate. +template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, -2, -1)> +HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { + const Twice<decltype(d)> d2; + const Twice<decltype(d2)> d4; + const Repartition<uint64_t, decltype(d4)> du64; + const auto vx = detail::Ext(d4, detail::Ext(d2, v)); + const auto rx = BitCast(d4, RotateRight<32>(BitCast(du64, vx))); + return detail::Trunc(detail::Trunc(rx)); +} + +template <class D, class V = VFromD<D>, HWY_IF_LANE_SIZE_D(D, 8)> +HWY_API V Reverse2(D /* tag */, const V v) { + const V up = detail::Slide1Up(v); + const V down = detail::Slide1Down(v); + return OddEven(up, down); +} + +// ------------------------------ Reverse4 (TableLookupLanes) + +template <class D> +HWY_API VFromD<D> Reverse4(D d, const VFromD<D> v) { + const RebindToUnsigned<D> du; + const auto idx = detail::XorS(detail::Iota0(du), 3); + return BitCast(d, TableLookupLanes(BitCast(du, v), idx)); +} + +// ------------------------------ Reverse8 (TableLookupLanes) + +template <class D> +HWY_API VFromD<D> Reverse8(D d, const VFromD<D> v) { + const RebindToUnsigned<D> du; + const auto idx = detail::XorS(detail::Iota0(du), 7); + return BitCast(d, TableLookupLanes(BitCast(du, v), idx)); +} + +// ------------------------------ ReverseBlocks (Reverse, Shuffle01) +template <class D, class V = VFromD<D>> +HWY_API V ReverseBlocks(D d, V v) { + const Repartition<uint64_t, D> du64; + const size_t N = Lanes(du64); + const auto rev = + detail::ReverseSubS(detail::Iota0(du64), static_cast<uint64_t>(N - 1)); + // Swap lo/hi u64 within each block + const auto idx = detail::XorS(rev, 1); + return BitCast(d, TableLookupLanes(BitCast(du64, v), idx)); +} + +// ------------------------------ Compress + +template <typename T> +struct CompressIsPartition { + enum { value = 0 }; +}; + +#define HWY_RVV_COMPRESS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) mask) { \ + return v##OP##_vm_##CHAR##SEW##LMUL(mask, v, v, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_UI163264(HWY_RVV_COMPRESS, Compress, compress, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_COMPRESS, Compress, compress, _ALL) +#undef HWY_RVV_COMPRESS + +// ------------------------------ CompressNot +template <class V, class M> +HWY_API V CompressNot(V v, const M mask) { + return Compress(v, Not(mask)); +} + +// ------------------------------ CompressBlocksNot +template <class V, class M> +HWY_API V CompressBlocksNot(V v, const M mask) { + return CompressNot(v, mask); +} + +// ------------------------------ CompressStore +template <class V, class M, class D> +HWY_API size_t CompressStore(const V v, const M mask, const D d, + TFromD<D>* HWY_RESTRICT unaligned) { + StoreU(Compress(v, mask), d, unaligned); + return CountTrue(d, mask); +} + +// ------------------------------ CompressBlendedStore +template <class V, class M, class D> +HWY_API size_t CompressBlendedStore(const V v, const M mask, const D d, + TFromD<D>* HWY_RESTRICT unaligned) { + const size_t count = CountTrue(d, mask); + detail::StoreN(count, Compress(v, mask), d, unaligned); + return count; +} + +// ================================================== BLOCKWISE + +// ------------------------------ CombineShiftRightBytes +template <size_t kBytes, class D, class V = VFromD<D>> +HWY_API V CombineShiftRightBytes(const D d, const V hi, V lo) { + const Repartition<uint8_t, decltype(d)> d8; + const auto hi8 = BitCast(d8, hi); + const auto lo8 = BitCast(d8, lo); + const auto hi_up = detail::SlideUp(hi8, hi8, 16 - kBytes); + const auto lo_down = detail::SlideDown(lo8, lo8, kBytes); + const auto is_lo = detail::FirstNPerBlock<16 - kBytes>(d8); + return BitCast(d, IfThenElse(is_lo, lo_down, hi_up)); +} + +// ------------------------------ CombineShiftRightLanes +template <size_t kLanes, class D, class V = VFromD<D>> +HWY_API V CombineShiftRightLanes(const D d, const V hi, V lo) { + constexpr size_t kLanesUp = 16 / sizeof(TFromV<V>) - kLanes; + const auto hi_up = detail::SlideUp(hi, hi, kLanesUp); + const auto lo_down = detail::SlideDown(lo, lo, kLanes); + const auto is_lo = detail::FirstNPerBlock<kLanesUp>(d); + return IfThenElse(is_lo, lo_down, hi_up); +} + +// ------------------------------ Shuffle2301 (ShiftLeft) +template <class V> +HWY_API V Shuffle2301(const V v) { + const DFromV<V> d; + static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types"); + const Repartition<uint64_t, decltype(d)> du64; + const auto v64 = BitCast(du64, v); + return BitCast(d, Or(ShiftRight<32>(v64), ShiftLeft<32>(v64))); +} + +// ------------------------------ Shuffle2103 +template <class V> +HWY_API V Shuffle2103(const V v) { + const DFromV<V> d; + static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types"); + return CombineShiftRightLanes<3>(d, v, v); +} + +// ------------------------------ Shuffle0321 +template <class V> +HWY_API V Shuffle0321(const V v) { + const DFromV<V> d; + static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types"); + return CombineShiftRightLanes<1>(d, v, v); +} + +// ------------------------------ Shuffle1032 +template <class V> +HWY_API V Shuffle1032(const V v) { + const DFromV<V> d; + static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types"); + return CombineShiftRightLanes<2>(d, v, v); +} + +// ------------------------------ Shuffle01 +template <class V> +HWY_API V Shuffle01(const V v) { + const DFromV<V> d; + static_assert(sizeof(TFromD<decltype(d)>) == 8, "Defined for 64-bit types"); + return CombineShiftRightLanes<1>(d, v, v); +} + +// ------------------------------ Shuffle0123 +template <class V> +HWY_API V Shuffle0123(const V v) { + return Shuffle2301(Shuffle1032(v)); +} + +// ------------------------------ TableLookupBytes + +// Extends or truncates a vector to match the given d. +namespace detail { + +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 3>> v) + -> VFromD<decltype(d)> { + const Simd<T, N, kPow2 - 1> dh; + const Simd<T, N, kPow2 - 2> dhh; + return Ext(d, Ext(dh, Ext(dhh, v))); +} +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 2>> v) + -> VFromD<decltype(d)> { + const Simd<T, N, kPow2 - 1> dh; + return Ext(d, Ext(dh, v)); +} +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 1>> v) + -> VFromD<decltype(d)> { + return Ext(d, v); +} + +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<decltype(d)> v) + -> VFromD<decltype(d)> { + return v; +} + +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 1>> v) + -> VFromD<decltype(d)> { + return Trunc(v); +} +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 2>> v) + -> VFromD<decltype(d)> { + return Trunc(Trunc(v)); +} +template <typename T, size_t N, int kPow2> +HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 3>> v) + -> VFromD<decltype(d)> { + return Trunc(Trunc(Trunc(v))); +} + +} // namespace detail + +template <class VT, class VI> +HWY_API VI TableLookupBytes(const VT vt, const VI vi) { + const DFromV<VT> dt; // T=table, I=index. + const DFromV<VI> di; + const Repartition<uint8_t, decltype(dt)> dt8; + const Repartition<uint8_t, decltype(di)> di8; + // Required for producing half-vectors with table lookups from a full vector. + // If we instead run at the LMUL of the index vector, lookups into the table + // would be truncated. Thus we run at the larger of the two LMULs and truncate + // the result vector to the original index LMUL. + constexpr int kPow2T = Pow2(dt8); + constexpr int kPow2I = Pow2(di8); + const Simd<uint8_t, MaxLanes(di8), HWY_MAX(kPow2T, kPow2I)> dm8; // m=max + const auto vmt = detail::ChangeLMUL(dm8, BitCast(dt8, vt)); + const auto vmi = detail::ChangeLMUL(dm8, BitCast(di8, vi)); + auto offsets = detail::OffsetsOf128BitBlocks(dm8, detail::Iota0(dm8)); + // If the table is shorter, wrap around offsets so they do not reference + // undefined lanes in the newly extended vmt. + if (kPow2T < kPow2I) { + offsets = detail::AndS(offsets, static_cast<uint8_t>(Lanes(dt8) - 1)); + } + const auto out = TableLookupLanes(vmt, Add(vmi, offsets)); + return BitCast(di, detail::ChangeLMUL(di8, out)); +} + +template <class VT, class VI> +HWY_API VI TableLookupBytesOr0(const VT vt, const VI idx) { + const DFromV<VI> di; + const Repartition<int8_t, decltype(di)> di8; + const auto idx8 = BitCast(di8, idx); + const auto lookup = TableLookupBytes(vt, idx8); + return BitCast(di, IfThenZeroElse(detail::LtS(idx8, 0), lookup)); +} + +// ------------------------------ Broadcast +template <int kLane, class V> +HWY_API V Broadcast(const V v) { + const DFromV<V> d; + HWY_DASSERT(0 <= kLane && kLane < detail::LanesPerBlock(d)); + auto idx = detail::OffsetsOf128BitBlocks(d, detail::Iota0(d)); + if (kLane != 0) { + idx = detail::AddS(idx, kLane); + } + return TableLookupLanes(v, idx); +} + +// ------------------------------ ShiftLeftLanes + +template <size_t kLanes, class D, class V = VFromD<D>> +HWY_API V ShiftLeftLanes(const D d, const V v) { + const RebindToSigned<decltype(d)> di; + using TI = TFromD<decltype(di)>; + const auto shifted = detail::SlideUp(v, v, kLanes); + // Match x86 semantics by zeroing lower lanes in 128-bit blocks + const auto idx_mod = + detail::AndS(BitCast(di, detail::Iota0(di)), + static_cast<TI>(detail::LanesPerBlock(di) - 1)); + const auto clear = detail::LtS(idx_mod, static_cast<TI>(kLanes)); + return IfThenZeroElse(clear, shifted); +} + +template <size_t kLanes, class V> +HWY_API V ShiftLeftLanes(const V v) { + return ShiftLeftLanes<kLanes>(DFromV<V>(), v); +} + +// ------------------------------ ShiftLeftBytes + +template <int kBytes, class D> +HWY_API VFromD<D> ShiftLeftBytes(D d, const VFromD<D> v) { + const Repartition<uint8_t, decltype(d)> d8; + return BitCast(d, ShiftLeftLanes<kBytes>(BitCast(d8, v))); +} + +template <int kBytes, class V> +HWY_API V ShiftLeftBytes(const V v) { + return ShiftLeftBytes<kBytes>(DFromV<V>(), v); +} + +// ------------------------------ ShiftRightLanes +template <size_t kLanes, typename T, size_t N, int kPow2, + class V = VFromD<Simd<T, N, kPow2>>> +HWY_API V ShiftRightLanes(const Simd<T, N, kPow2> d, V v) { + const RebindToSigned<decltype(d)> di; + using TI = TFromD<decltype(di)>; + // For partial vectors, clear upper lanes so we shift in zeros. + if (N <= 16 / sizeof(T)) { + v = IfThenElseZero(FirstN(d, N), v); + } + + const auto shifted = detail::SlideDown(v, v, kLanes); + // Match x86 semantics by zeroing upper lanes in 128-bit blocks + const size_t lpb = detail::LanesPerBlock(di); + const auto idx_mod = + detail::AndS(BitCast(di, detail::Iota0(di)), static_cast<TI>(lpb - 1)); + const auto keep = detail::LtS(idx_mod, static_cast<TI>(lpb - kLanes)); + return IfThenElseZero(keep, shifted); +} + +// ------------------------------ ShiftRightBytes +template <int kBytes, class D, class V = VFromD<D>> +HWY_API V ShiftRightBytes(const D d, const V v) { + const Repartition<uint8_t, decltype(d)> d8; + return BitCast(d, ShiftRightLanes<kBytes>(d8, BitCast(d8, v))); +} + +// ------------------------------ InterleaveLower + +template <class D, class V> +HWY_API V InterleaveLower(D d, const V a, const V b) { + static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch"); + const RebindToUnsigned<decltype(d)> du; + using TU = TFromD<decltype(du)>; + const auto i = detail::Iota0(du); + const auto idx_mod = ShiftRight<1>( + detail::AndS(i, static_cast<TU>(detail::LanesPerBlock(du) - 1))); + const auto idx = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i)); + const auto is_even = detail::EqS(detail::AndS(i, 1), 0u); + return IfThenElse(is_even, TableLookupLanes(a, idx), + TableLookupLanes(b, idx)); +} + +template <class V> +HWY_API V InterleaveLower(const V a, const V b) { + return InterleaveLower(DFromV<V>(), a, b); +} + +// ------------------------------ InterleaveUpper + +template <class D, class V> +HWY_API V InterleaveUpper(const D d, const V a, const V b) { + static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch"); + const RebindToUnsigned<decltype(d)> du; + using TU = TFromD<decltype(du)>; + const size_t lpb = detail::LanesPerBlock(du); + const auto i = detail::Iota0(du); + const auto idx_mod = ShiftRight<1>(detail::AndS(i, static_cast<TU>(lpb - 1))); + const auto idx_lower = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i)); + const auto idx = detail::AddS(idx_lower, static_cast<TU>(lpb / 2)); + const auto is_even = detail::EqS(detail::AndS(i, 1), 0u); + return IfThenElse(is_even, TableLookupLanes(a, idx), + TableLookupLanes(b, idx)); +} + +// ------------------------------ ZipLower + +template <class V, class DW = RepartitionToWide<DFromV<V>>> +HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) { + const RepartitionToNarrow<DW> dn; + static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch"); + return BitCast(dw, InterleaveLower(dn, a, b)); +} + +template <class V, class DW = RepartitionToWide<DFromV<V>>> +HWY_API VFromD<DW> ZipLower(V a, V b) { + return BitCast(DW(), InterleaveLower(a, b)); +} + +// ------------------------------ ZipUpper +template <class DW, class V> +HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) { + const RepartitionToNarrow<DW> dn; + static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch"); + return BitCast(dw, InterleaveUpper(dn, a, b)); +} + +// ================================================== REDUCE + +// vector = f(vector, zero_m1) +#define HWY_RVV_REDUCE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \ + MLEN, NAME, OP) \ + template <class D> \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) \ + NAME(D d, HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, m1) v0) { \ + return Set(d, GetLane(v##OP##_vs_##CHAR##SEW##LMUL##_##CHAR##SEW##m1( \ + v0, v, v0, Lanes(d)))); \ + } + +// ------------------------------ SumOfLanes + +namespace detail { +HWY_RVV_FOREACH_UI(HWY_RVV_REDUCE, RedSum, redsum, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedSum, fredusum, _ALL) +} // namespace detail + +template <class D> +HWY_API VFromD<D> SumOfLanes(D d, const VFromD<D> v) { + const auto v0 = Zero(ScalableTag<TFromD<D>>()); // always m1 + return detail::RedSum(d, v, v0); +} + +// ------------------------------ MinOfLanes +namespace detail { +HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMin, redminu, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMin, redmin, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMin, fredmin, _ALL) +} // namespace detail + +template <class D> +HWY_API VFromD<D> MinOfLanes(D d, const VFromD<D> v) { + using T = TFromD<D>; + const ScalableTag<T> d1; // always m1 + const auto neutral = Set(d1, HighestValue<T>()); + return detail::RedMin(d, v, neutral); +} + +// ------------------------------ MaxOfLanes +namespace detail { +HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMax, redmaxu, _ALL) +HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMax, redmax, _ALL) +HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMax, fredmax, _ALL) +} // namespace detail + +template <class D> +HWY_API VFromD<D> MaxOfLanes(D d, const VFromD<D> v) { + using T = TFromD<D>; + const ScalableTag<T> d1; // always m1 + const auto neutral = Set(d1, LowestValue<T>()); + return detail::RedMax(d, v, neutral); +} + +#undef HWY_RVV_REDUCE + +// ================================================== Ops with dependencies + +// ------------------------------ PopulationCount (ShiftRight) + +// Handles LMUL >= 2 or capped vectors, which generic_ops-inl cannot. +template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 1), + hwy::EnableIf<Pow2(D()) < 1 || MaxLanes(D()) < 16>* = nullptr> +HWY_API V PopulationCount(V v) { + // See https://arxiv.org/pdf/1611.07612.pdf, Figure 3 + v = Sub(v, detail::AndS(ShiftRight<1>(v), 0x55)); + v = Add(detail::AndS(ShiftRight<2>(v), 0x33), detail::AndS(v, 0x33)); + return detail::AndS(Add(v, ShiftRight<4>(v)), 0x0F); +} + +// ------------------------------ LoadDup128 + +template <class D> +HWY_API VFromD<D> LoadDup128(D d, const TFromD<D>* const HWY_RESTRICT p) { + const VFromD<D> loaded = Load(d, p); + // idx must be unsigned for TableLookupLanes. + using TU = MakeUnsigned<TFromD<D>>; + const TU mask = static_cast<TU>(detail::LanesPerBlock(d) - 1); + // Broadcast the first block. + const VFromD<RebindToUnsigned<D>> idx = detail::AndS(detail::Iota0(d), mask); + return TableLookupLanes(loaded, idx); +} + +// ------------------------------ LoadMaskBits + +// Support all combinations of T and SHIFT(LMUL) without explicit overloads for +// each. First overload for MLEN=1..64. +namespace detail { + +// Maps D to MLEN (wrapped in SizeTag), such that #mask_bits = VLEN/MLEN. MLEN +// increases with lane size and decreases for increasing LMUL. Cap at 64, the +// largest supported by HWY_RVV_FOREACH_B (and intrinsics), for virtual LMUL +// e.g. vuint16mf8_t: (8*2 << 3) == 128. +template <class D> +using MaskTag = hwy::SizeTag<HWY_MIN( + 64, detail::ScaleByPower(8 * sizeof(TFromD<D>), -Pow2(D())))>; + +#define HWY_RVV_LOAD_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP) \ + HWY_INLINE HWY_RVV_M(MLEN) \ + NAME(hwy::SizeTag<MLEN> /* tag */, const uint8_t* bits, size_t N) { \ + return OP##_v_b##MLEN(bits, N); \ + } +HWY_RVV_FOREACH_B(HWY_RVV_LOAD_MASK_BITS, LoadMaskBits, vlm) +#undef HWY_RVV_LOAD_MASK_BITS +} // namespace detail + +template <class D, class MT = detail::MaskTag<D>> +HWY_API auto LoadMaskBits(D d, const uint8_t* bits) + -> decltype(detail::LoadMaskBits(MT(), bits, Lanes(d))) { + return detail::LoadMaskBits(MT(), bits, Lanes(d)); +} + +// ------------------------------ StoreMaskBits +#define HWY_RVV_STORE_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP) \ + template <class D> \ + HWY_API size_t NAME(D d, HWY_RVV_M(MLEN) m, uint8_t* bits) { \ + const size_t N = Lanes(d); \ + OP##_v_b##MLEN(bits, m, N); \ + /* Non-full byte, need to clear the undefined upper bits. */ \ + /* Use MaxLanes and sizeof(T) to move some checks to compile-time. */ \ + constexpr bool kLessThan8 = \ + detail::ScaleByPower(16 / sizeof(TFromD<D>), Pow2(d)) < 8; \ + if (MaxLanes(d) < 8 || (kLessThan8 && N < 8)) { \ + const int mask = (1 << N) - 1; \ + bits[0] = static_cast<uint8_t>(bits[0] & mask); \ + } \ + return (N + 7) / 8; \ + } +HWY_RVV_FOREACH_B(HWY_RVV_STORE_MASK_BITS, StoreMaskBits, vsm) +#undef HWY_RVV_STORE_MASK_BITS + +// ------------------------------ CompressBits, CompressBitsStore (LoadMaskBits) + +template <class V> +HWY_INLINE V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) { + return Compress(v, LoadMaskBits(DFromV<V>(), bits)); +} + +template <class D> +HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits, + D d, TFromD<D>* HWY_RESTRICT unaligned) { + return CompressStore(v, LoadMaskBits(d, bits), d, unaligned); +} + +// ------------------------------ FirstN (Iota0, Lt, RebindMask, SlideUp) + +// Disallow for 8-bit because Iota is likely to overflow. +template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)> +HWY_API MFromD<D> FirstN(const D d, const size_t n) { + const RebindToSigned<D> di; + using TI = TFromD<decltype(di)>; + return RebindMask( + d, detail::LtS(BitCast(di, detail::Iota0(d)), static_cast<TI>(n))); +} + +template <class D, HWY_IF_LANE_SIZE_D(D, 1)> +HWY_API MFromD<D> FirstN(const D d, const size_t n) { + const auto zero = Zero(d); + const auto one = Set(d, 1); + return Eq(detail::SlideUp(one, zero, n), one); +} + +// ------------------------------ Neg (Sub) + +template <class V, HWY_IF_SIGNED_V(V)> +HWY_API V Neg(const V v) { + return detail::ReverseSubS(v, 0); +} + +// vector = f(vector), but argument is repeated +#define HWY_RVV_RETV_ARGV2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \ + return v##OP##_vv_##CHAR##SEW##LMUL(v, v, HWY_RVV_AVL(SEW, SHIFT)); \ + } + +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Neg, fsgnjn, _ALL) + +// ------------------------------ Abs (Max, Neg) + +template <class V, HWY_IF_SIGNED_V(V)> +HWY_API V Abs(const V v) { + return Max(v, Neg(v)); +} + +HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Abs, fsgnjx, _ALL) + +#undef HWY_RVV_RETV_ARGV2 + +// ------------------------------ AbsDiff (Abs, Sub) +template <class V> +HWY_API V AbsDiff(const V a, const V b) { + return Abs(Sub(a, b)); +} + +// ------------------------------ Round (NearestInt, ConvertTo, CopySign) + +// IEEE-754 roundToIntegralTiesToEven returns floating-point, but we do not have +// a dedicated instruction for that. Rounding to integer and converting back to +// float is correct except when the input magnitude is large, in which case the +// input was already an integer (because mantissa >> exponent is zero). + +namespace detail { +enum RoundingModes { kNear, kTrunc, kDown, kUp }; + +template <class V> +HWY_INLINE auto UseInt(const V v) -> decltype(MaskFromVec(v)) { + return detail::LtS(Abs(v), MantissaEnd<TFromV<V>>()); +} + +} // namespace detail + +template <class V> +HWY_API V Round(const V v) { + const DFromV<V> df; + + const auto integer = NearestInt(v); // round using current mode + const auto int_f = ConvertTo(df, integer); + + return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v); +} + +// ------------------------------ Trunc (ConvertTo) +template <class V> +HWY_API V Trunc(const V v) { + const DFromV<V> df; + const RebindToSigned<decltype(df)> di; + + const auto integer = ConvertTo(di, v); // round toward 0 + const auto int_f = ConvertTo(df, integer); + + return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v); +} + +// ------------------------------ Ceil +template <class V> +HWY_API V Ceil(const V v) { + asm volatile("fsrm %0" ::"r"(detail::kUp)); + const auto ret = Round(v); + asm volatile("fsrm %0" ::"r"(detail::kNear)); + return ret; +} + +// ------------------------------ Floor +template <class V> +HWY_API V Floor(const V v) { + asm volatile("fsrm %0" ::"r"(detail::kDown)); + const auto ret = Round(v); + asm volatile("fsrm %0" ::"r"(detail::kNear)); + return ret; +} + +// ------------------------------ Floating-point classification (Ne) + +// vfclass does not help because it would require 3 instructions (to AND and +// then compare the bits), whereas these are just 1-3 integer instructions. + +template <class V> +HWY_API MFromD<DFromV<V>> IsNaN(const V v) { + return Ne(v, v); +} + +template <class V, class D = DFromV<V>> +HWY_API MFromD<D> IsInf(const V v) { + const D d; + const RebindToSigned<decltype(d)> di; + using T = TFromD<D>; + const VFromD<decltype(di)> vi = BitCast(di, v); + // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0. + return RebindMask(d, detail::EqS(Add(vi, vi), hwy::MaxExponentTimes2<T>())); +} + +// Returns whether normal/subnormal/zero. +template <class V, class D = DFromV<V>> +HWY_API MFromD<D> IsFinite(const V v) { + const D d; + const RebindToUnsigned<decltype(d)> du; + const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison + using T = TFromD<D>; + const VFromD<decltype(du)> vu = BitCast(du, v); + // 'Shift left' to clear the sign bit, then right so we can compare with the + // max exponent (cannot compare with MaxExponentTimes2 directly because it is + // negative and non-negative floats would be greater). + const VFromD<decltype(di)> exp = + BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu))); + return RebindMask(d, detail::LtS(exp, hwy::MaxExponentField<T>())); +} + +// ------------------------------ Iota (ConvertTo) + +template <class D, HWY_IF_UNSIGNED_D(D)> +HWY_API VFromD<D> Iota(const D d, TFromD<D> first) { + return detail::AddS(detail::Iota0(d), first); +} + +template <class D, HWY_IF_SIGNED_D(D)> +HWY_API VFromD<D> Iota(const D d, TFromD<D> first) { + const RebindToUnsigned<D> du; + return detail::AddS(BitCast(d, detail::Iota0(du)), first); +} + +template <class D, HWY_IF_FLOAT_D(D)> +HWY_API VFromD<D> Iota(const D d, TFromD<D> first) { + const RebindToUnsigned<D> du; + const RebindToSigned<D> di; + return detail::AddS(ConvertTo(d, BitCast(di, detail::Iota0(du))), first); +} + +// ------------------------------ MulEven/Odd (Mul, OddEven) + +template <class V, HWY_IF_LANE_SIZE_V(V, 4), class D = DFromV<V>, + class DW = RepartitionToWide<D>> +HWY_API VFromD<DW> MulEven(const V a, const V b) { + const auto lo = Mul(a, b); + const auto hi = detail::MulHigh(a, b); + return BitCast(DW(), OddEven(detail::Slide1Up(hi), lo)); +} + +// There is no 64x64 vwmul. +template <class V, HWY_IF_LANE_SIZE_V(V, 8)> +HWY_INLINE V MulEven(const V a, const V b) { + const auto lo = Mul(a, b); + const auto hi = detail::MulHigh(a, b); + return OddEven(detail::Slide1Up(hi), lo); +} + +template <class V, HWY_IF_LANE_SIZE_V(V, 8)> +HWY_INLINE V MulOdd(const V a, const V b) { + const auto lo = Mul(a, b); + const auto hi = detail::MulHigh(a, b); + return OddEven(hi, detail::Slide1Down(lo)); +} + +// ------------------------------ ReorderDemote2To (OddEven, Combine) + +template <size_t N, int kPow2> +HWY_API VFromD<Simd<uint16_t, N, kPow2>> ReorderDemote2To( + Simd<bfloat16_t, N, kPow2> dbf16, + VFromD<RepartitionToWide<decltype(dbf16)>> a, + VFromD<RepartitionToWide<decltype(dbf16)>> b) { + const RebindToUnsigned<decltype(dbf16)> du16; + const RebindToUnsigned<DFromV<decltype(a)>> du32; + const VFromD<decltype(du32)> b_in_even = ShiftRight<16>(BitCast(du32, b)); + return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even))); +} + +// If LMUL is not the max, Combine first to avoid another DemoteTo. +template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr, + class D32 = RepartitionToWide<Simd<int16_t, N, kPow2>>> +HWY_API VFromD<Simd<int16_t, N, kPow2>> ReorderDemote2To( + Simd<int16_t, N, kPow2> d16, VFromD<D32> a, VFromD<D32> b) { + const Twice<D32> d32t; + const VFromD<decltype(d32t)> ab = Combine(d32t, a, b); + return DemoteTo(d16, ab); +} + +// Max LMUL: must DemoteTo first, then Combine. +template <size_t N, class V32 = VFromD<RepartitionToWide<Simd<int16_t, N, 3>>>> +HWY_API VFromD<Simd<int16_t, N, 3>> ReorderDemote2To(Simd<int16_t, N, 3> d16, + V32 a, V32 b) { + const Half<decltype(d16)> d16h; + const VFromD<decltype(d16h)> a16 = DemoteTo(d16h, a); + const VFromD<decltype(d16h)> b16 = DemoteTo(d16h, b); + return Combine(d16, a16, b16); +} + +// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower) + +namespace detail { + +// Non-overloaded wrapper function so we can define DF32 in template args. +template < + size_t N, int kPow2, class DF32 = Simd<float, N, kPow2>, + class VF32 = VFromD<DF32>, + class DU16 = RepartitionToNarrow<RebindToUnsigned<Simd<float, N, kPow2>>>> +HWY_API VF32 ReorderWidenMulAccumulateBF16(Simd<float, N, kPow2> df32, + VFromD<DU16> a, VFromD<DU16> b, + const VF32 sum0, VF32& sum1) { + const DU16 du16; + const RebindToUnsigned<DF32> du32; + using VU32 = VFromD<decltype(du32)>; + const VFromD<DU16> zero = Zero(du16); + const VU32 a0 = ZipLower(du32, zero, BitCast(du16, a)); + const VU32 a1 = ZipUpper(du32, zero, BitCast(du16, a)); + const VU32 b0 = ZipLower(du32, zero, BitCast(du16, b)); + const VU32 b1 = ZipUpper(du32, zero, BitCast(du16, b)); + sum1 = MulAdd(BitCast(df32, a1), BitCast(df32, b1), sum1); + return MulAdd(BitCast(df32, a0), BitCast(df32, b0), sum0); +} + +#define HWY_RVV_WIDEN_MACC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \ + SHIFT, MLEN, NAME, OP) \ + template <size_t N> \ + HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME( \ + HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEWD, LMULD) sum, \ + HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \ + return OP##CHAR##SEWD##LMULD(sum, a, b, Lanes(d)); \ + } + +HWY_RVV_FOREACH_I16(HWY_RVV_WIDEN_MACC, WidenMulAcc, vwmacc_vv_, _EXT_VIRT) +#undef HWY_RVV_WIDEN_MACC + +// If LMUL is not the max, we can WidenMul first (3 instructions). +template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr, + class D32 = Simd<int32_t, N, kPow2>, class V32 = VFromD<D32>, + class D16 = RepartitionToNarrow<D32>> +HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, kPow2> d32, + VFromD<D16> a, VFromD<D16> b, + const V32 sum0, V32& sum1) { + const Twice<decltype(d32)> d32t; + using V32T = VFromD<decltype(d32t)>; + V32T sum = Combine(d32t, sum0, sum1); + sum = detail::WidenMulAcc(d32t, sum, a, b); + sum1 = UpperHalf(d32, sum); + return LowerHalf(d32, sum); +} + +// Max LMUL: must LowerHalf first (4 instructions). +template <size_t N, class D32 = Simd<int32_t, N, 3>, class V32 = VFromD<D32>, + class D16 = RepartitionToNarrow<D32>> +HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, 3> d32, + VFromD<D16> a, VFromD<D16> b, + const V32 sum0, V32& sum1) { + const Half<D16> d16h; + using V16H = VFromD<decltype(d16h)>; + const V16H a0 = LowerHalf(d16h, a); + const V16H a1 = UpperHalf(d16h, a); + const V16H b0 = LowerHalf(d16h, b); + const V16H b1 = UpperHalf(d16h, b); + sum1 = detail::WidenMulAcc(d32, sum1, a1, b1); + return detail::WidenMulAcc(d32, sum0, a0, b0); +} + +} // namespace detail + +template <size_t N, int kPow2, class VN, class VW> +HWY_API VW ReorderWidenMulAccumulate(Simd<float, N, kPow2> d32, VN a, VN b, + const VW sum0, VW& sum1) { + return detail::ReorderWidenMulAccumulateBF16(d32, a, b, sum0, sum1); +} + +template <size_t N, int kPow2, class VN, class VW> +HWY_API VW ReorderWidenMulAccumulate(Simd<int32_t, N, kPow2> d32, VN a, VN b, + const VW sum0, VW& sum1) { + return detail::ReorderWidenMulAccumulateI16(d32, a, b, sum0, sum1); +} + +// ------------------------------ Lt128 +template <class D> +HWY_INLINE MFromD<D> Lt128(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + // Truth table of Eq and Compare for Hi and Lo u64. + // (removed lines with (=H && cH) or (=L && cL) - cannot both be true) + // =H =L cH cL | out = cH | (=H & cL) + // 0 0 0 0 | 0 + // 0 0 0 1 | 0 + // 0 0 1 0 | 1 + // 0 0 1 1 | 1 + // 0 1 0 0 | 0 + // 0 1 0 1 | 0 + // 0 1 1 0 | 1 + // 1 0 0 0 | 0 + // 1 0 0 1 | 1 + // 1 1 0 0 | 0 + const VFromD<D> eqHL = VecFromMask(d, Eq(a, b)); + const VFromD<D> ltHL = VecFromMask(d, Lt(a, b)); + // Shift leftward so L can influence H. + const VFromD<D> ltLx = detail::Slide1Up(ltHL); + const VFromD<D> vecHx = OrAnd(ltHL, eqHL, ltLx); + // Replicate H to its neighbor. + return MaskFromVec(OddEven(vecHx, detail::Slide1Down(vecHx))); +} + +// ------------------------------ Lt128Upper +template <class D> +HWY_INLINE MFromD<D> Lt128Upper(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + const VFromD<D> ltHL = VecFromMask(d, Lt(a, b)); + // Replicate H to its neighbor. + return MaskFromVec(OddEven(ltHL, detail::Slide1Down(ltHL))); +} + +// ------------------------------ Eq128 +template <class D> +HWY_INLINE MFromD<D> Eq128(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + const VFromD<D> eqHL = VecFromMask(d, Eq(a, b)); + const VFromD<D> eqLH = Reverse2(d, eqHL); + return MaskFromVec(And(eqHL, eqLH)); +} + +// ------------------------------ Eq128Upper +template <class D> +HWY_INLINE MFromD<D> Eq128Upper(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + const VFromD<D> eqHL = VecFromMask(d, Eq(a, b)); + // Replicate H to its neighbor. + return MaskFromVec(OddEven(eqHL, detail::Slide1Down(eqHL))); +} + +// ------------------------------ Ne128 +template <class D> +HWY_INLINE MFromD<D> Ne128(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + const VFromD<D> neHL = VecFromMask(d, Ne(a, b)); + const VFromD<D> neLH = Reverse2(d, neHL); + return MaskFromVec(Or(neHL, neLH)); +} + +// ------------------------------ Ne128Upper +template <class D> +HWY_INLINE MFromD<D> Ne128Upper(D d, const VFromD<D> a, const VFromD<D> b) { + static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8, + "D must be u64"); + const VFromD<D> neHL = VecFromMask(d, Ne(a, b)); + // Replicate H to its neighbor. + return MaskFromVec(OddEven(neHL, detail::Slide1Down(neHL))); +} + +// ------------------------------ Min128, Max128 (Lt128) + +template <class D> +HWY_INLINE VFromD<D> Min128(D /* tag */, const VFromD<D> a, const VFromD<D> b) { + const VFromD<D> aXH = detail::Slide1Down(a); + const VFromD<D> bXH = detail::Slide1Down(b); + const VFromD<D> minHL = Min(a, b); + const MFromD<D> ltXH = Lt(aXH, bXH); + const MFromD<D> eqXH = Eq(aXH, bXH); + // If the upper lane is the decider, take lo from the same reg. + const VFromD<D> lo = IfThenElse(ltXH, a, b); + // The upper lane is just minHL; if they are equal, we also need to use the + // actual min of the lower lanes. + return OddEven(minHL, IfThenElse(eqXH, minHL, lo)); +} + +template <class D> +HWY_INLINE VFromD<D> Max128(D /* tag */, const VFromD<D> a, const VFromD<D> b) { + const VFromD<D> aXH = detail::Slide1Down(a); + const VFromD<D> bXH = detail::Slide1Down(b); + const VFromD<D> maxHL = Max(a, b); + const MFromD<D> ltXH = Lt(aXH, bXH); + const MFromD<D> eqXH = Eq(aXH, bXH); + // If the upper lane is the decider, take lo from the same reg. + const VFromD<D> lo = IfThenElse(ltXH, b, a); + // The upper lane is just maxHL; if they are equal, we also need to use the + // actual min of the lower lanes. + return OddEven(maxHL, IfThenElse(eqXH, maxHL, lo)); +} + +template <class D> +HWY_INLINE VFromD<D> Min128Upper(D d, VFromD<D> a, VFromD<D> b) { + return IfThenElse(Lt128Upper(d, a, b), a, b); +} + +template <class D> +HWY_INLINE VFromD<D> Max128Upper(D d, VFromD<D> a, VFromD<D> b) { + return IfThenElse(Lt128Upper(d, b, a), a, b); +} + +// ================================================== END MACROS +namespace detail { // for code folding +#undef HWY_RVV_AVL +#undef HWY_RVV_D +#undef HWY_RVV_FOREACH +#undef HWY_RVV_FOREACH_08_ALL +#undef HWY_RVV_FOREACH_08_ALL_VIRT +#undef HWY_RVV_FOREACH_08_DEMOTE +#undef HWY_RVV_FOREACH_08_DEMOTE_VIRT +#undef HWY_RVV_FOREACH_08_EXT +#undef HWY_RVV_FOREACH_08_EXT_VIRT +#undef HWY_RVV_FOREACH_08_TRUNC +#undef HWY_RVV_FOREACH_08_VIRT +#undef HWY_RVV_FOREACH_16_ALL +#undef HWY_RVV_FOREACH_16_ALL_VIRT +#undef HWY_RVV_FOREACH_16_DEMOTE +#undef HWY_RVV_FOREACH_16_DEMOTE_VIRT +#undef HWY_RVV_FOREACH_16_EXT +#undef HWY_RVV_FOREACH_16_EXT_VIRT +#undef HWY_RVV_FOREACH_16_TRUNC +#undef HWY_RVV_FOREACH_16_VIRT +#undef HWY_RVV_FOREACH_32_ALL +#undef HWY_RVV_FOREACH_32_ALL_VIRT +#undef HWY_RVV_FOREACH_32_DEMOTE +#undef HWY_RVV_FOREACH_32_DEMOTE_VIRT +#undef HWY_RVV_FOREACH_32_EXT +#undef HWY_RVV_FOREACH_32_EXT_VIRT +#undef HWY_RVV_FOREACH_32_TRUNC +#undef HWY_RVV_FOREACH_32_VIRT +#undef HWY_RVV_FOREACH_64_ALL +#undef HWY_RVV_FOREACH_64_ALL_VIRT +#undef HWY_RVV_FOREACH_64_DEMOTE +#undef HWY_RVV_FOREACH_64_DEMOTE_VIRT +#undef HWY_RVV_FOREACH_64_EXT +#undef HWY_RVV_FOREACH_64_EXT_VIRT +#undef HWY_RVV_FOREACH_64_TRUNC +#undef HWY_RVV_FOREACH_64_VIRT +#undef HWY_RVV_FOREACH_B +#undef HWY_RVV_FOREACH_F +#undef HWY_RVV_FOREACH_F16 +#undef HWY_RVV_FOREACH_F32 +#undef HWY_RVV_FOREACH_F3264 +#undef HWY_RVV_FOREACH_F64 +#undef HWY_RVV_FOREACH_I +#undef HWY_RVV_FOREACH_I08 +#undef HWY_RVV_FOREACH_I16 +#undef HWY_RVV_FOREACH_I163264 +#undef HWY_RVV_FOREACH_I32 +#undef HWY_RVV_FOREACH_I64 +#undef HWY_RVV_FOREACH_U +#undef HWY_RVV_FOREACH_U08 +#undef HWY_RVV_FOREACH_U16 +#undef HWY_RVV_FOREACH_U163264 +#undef HWY_RVV_FOREACH_U32 +#undef HWY_RVV_FOREACH_U64 +#undef HWY_RVV_FOREACH_UI +#undef HWY_RVV_FOREACH_UI08 +#undef HWY_RVV_FOREACH_UI16 +#undef HWY_RVV_FOREACH_UI163264 +#undef HWY_RVV_FOREACH_UI32 +#undef HWY_RVV_FOREACH_UI3264 +#undef HWY_RVV_FOREACH_UI64 +#undef HWY_RVV_M +#undef HWY_RVV_RETM_ARGM +#undef HWY_RVV_RETV_ARGV +#undef HWY_RVV_RETV_ARGVS +#undef HWY_RVV_RETV_ARGVV +#undef HWY_RVV_T +#undef HWY_RVV_V +} // namespace detail +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace hwy +HWY_AFTER_NAMESPACE(); |