diff options
Diffstat (limited to 'gfx/2d/Matrix.cpp')
-rw-r--r-- | gfx/2d/Matrix.cpp | 179 |
1 files changed, 179 insertions, 0 deletions
diff --git a/gfx/2d/Matrix.cpp b/gfx/2d/Matrix.cpp new file mode 100644 index 0000000000..cb8830c168 --- /dev/null +++ b/gfx/2d/Matrix.cpp @@ -0,0 +1,179 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "Matrix.h" +#include "Quaternion.h" +#include "Tools.h" +#include <algorithm> +#include <ostream> +#include <math.h> +#include <float.h> // for FLT_EPSILON + +#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN + +namespace mozilla { +namespace gfx { + +/* Force small values to zero. We do this to avoid having sin(360deg) + * evaluate to a tiny but nonzero value. + */ +double FlushToZero(double aVal) { + // XXX Is double precision really necessary here + if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) { + return 0.0f; + } else { + return aVal; + } +} + +/* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is + * undefined or very large, SafeTangent returns a manageably large value + * of the correct sign. + */ +double SafeTangent(double aTheta) { + // XXX Is double precision really necessary here + const double kEpsilon = 0.0001; + + /* tan(theta) = sin(theta)/cos(theta); problems arise when + * cos(theta) is too close to zero. Limit cos(theta) to the + * range [-1, -epsilon] U [epsilon, 1]. + */ + + double sinTheta = sin(aTheta); + double cosTheta = cos(aTheta); + + if (cosTheta >= 0 && cosTheta < kEpsilon) { + cosTheta = kEpsilon; + } else if (cosTheta < 0 && cosTheta >= -kEpsilon) { + cosTheta = -kEpsilon; + } + return FlushToZero(sinTheta / cosTheta); +} + +template <> +Matrix Matrix::Rotation(Float aAngle) { + Matrix newMatrix; + + Float s = sinf(aAngle); + Float c = cosf(aAngle); + + newMatrix._11 = c; + newMatrix._12 = s; + newMatrix._21 = -s; + newMatrix._22 = c; + + return newMatrix; +} + +template <> +MatrixDouble MatrixDouble::Rotation(Double aAngle) { + MatrixDouble newMatrix; + + Double s = sin(aAngle); + Double c = cos(aAngle); + + newMatrix._11 = c; + newMatrix._12 = s; + newMatrix._21 = -s; + newMatrix._22 = c; + + return newMatrix; +} + +template <> +Matrix4x4 MatrixDouble::operator*(const Matrix4x4& aMatrix) const { + Matrix4x4 resultMatrix; + + resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21; + resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22; + resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23; + resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24; + + resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21; + resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22; + resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23; + resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24; + + resultMatrix._31 = aMatrix._31; + resultMatrix._32 = aMatrix._32; + resultMatrix._33 = aMatrix._33; + resultMatrix._34 = aMatrix._34; + + resultMatrix._41 = + this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._41; + resultMatrix._42 = + this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._42; + resultMatrix._43 = + this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + aMatrix._43; + resultMatrix._44 = + this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + aMatrix._44; + + return resultMatrix; +} + +// Intersect the polygon given by aPoints with the half space induced by +// aPlaneNormal and return the resulting polygon. The returned points are +// stored in aDestBuffer, and its meaningful subspan is returned. +template <typename F> +Span<Point4DTyped<UnknownUnits, F>> IntersectPolygon( + Span<Point4DTyped<UnknownUnits, F>> aPoints, + const Point4DTyped<UnknownUnits, F>& aPlaneNormal, + Span<Point4DTyped<UnknownUnits, F>> aDestBuffer) { + if (aPoints.Length() < 1 || aDestBuffer.Length() < 1) { + return {}; + } + + size_t nextIndex = 0; // aDestBuffer[nextIndex] is the next emitted point. + + // Iterate over the polygon edges. In each iteration the current edge + // is the edge from *prevPoint to point. If the two end points lie on + // different sides of the plane, we have an intersection. Otherwise, + // the edge is either completely "inside" the half-space created by + // the clipping plane, and we add curPoint, or it is completely + // "outside", and we discard curPoint. This loop can create duplicated + // points in the polygon. + const auto* prevPoint = &aPoints[aPoints.Length() - 1]; + F prevDot = aPlaneNormal.DotProduct(*prevPoint); + for (const auto& curPoint : aPoints) { + F curDot = aPlaneNormal.DotProduct(curPoint); + + if ((curDot >= 0.0) != (prevDot >= 0.0)) { + // An intersection with the clipping plane has been detected. + // Interpolate to find the intersecting curPoint and emit it. + F t = -prevDot / (curDot - prevDot); + aDestBuffer[nextIndex++] = curPoint * t + *prevPoint * (1.0 - t); + if (nextIndex >= aDestBuffer.Length()) { + break; + } + } + + if (curDot >= 0.0) { + // Emit any source points that are on the positive side of the + // clipping plane. + aDestBuffer[nextIndex++] = curPoint; + if (nextIndex >= aDestBuffer.Length()) { + break; + } + } + + prevPoint = &curPoint; + prevDot = curDot; + } + + return aDestBuffer.To(nextIndex); +} + +template Span<Point4DTyped<UnknownUnits, Float>> IntersectPolygon( + Span<Point4DTyped<UnknownUnits, Float>> aPoints, + const Point4DTyped<UnknownUnits, Float>& aPlaneNormal, + Span<Point4DTyped<UnknownUnits, Float>> aDestBuffer); +template Span<Point4DTyped<UnknownUnits, Double>> IntersectPolygon( + Span<Point4DTyped<UnknownUnits, Double>> aPoints, + const Point4DTyped<UnknownUnits, Double>& aPlaneNormal, + Span<Point4DTyped<UnknownUnits, Double>> aDestBuffer); + +} // namespace gfx +} // namespace mozilla |