summaryrefslogtreecommitdiffstats
path: root/gfx/2d/Path.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--gfx/2d/Path.cpp546
1 files changed, 546 insertions, 0 deletions
diff --git a/gfx/2d/Path.cpp b/gfx/2d/Path.cpp
new file mode 100644
index 0000000000..69e2e97625
--- /dev/null
+++ b/gfx/2d/Path.cpp
@@ -0,0 +1,546 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "2D.h"
+#include "PathAnalysis.h"
+#include "PathHelpers.h"
+
+namespace mozilla {
+namespace gfx {
+
+static double CubicRoot(double aValue) {
+ if (aValue < 0.0) {
+ return -CubicRoot(-aValue);
+ } else {
+ return pow(aValue, 1.0 / 3.0);
+ }
+}
+
+struct PointD : public BasePoint<double, PointD> {
+ typedef BasePoint<double, PointD> Super;
+
+ PointD() : Super() {}
+ PointD(double aX, double aY) : Super(aX, aY) {}
+ MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {}
+
+ Point ToPoint() const {
+ return Point(static_cast<Float>(x), static_cast<Float>(y));
+ }
+};
+
+struct BezierControlPoints {
+ BezierControlPoints() = default;
+ BezierControlPoints(const PointD& aCP1, const PointD& aCP2,
+ const PointD& aCP3, const PointD& aCP4)
+ : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4) {}
+
+ PointD mCP1, mCP2, mCP3, mCP4;
+};
+
+void FlattenBezier(const BezierControlPoints& aPoints, PathSink* aSink,
+ double aTolerance);
+
+Path::Path() = default;
+
+Path::~Path() = default;
+
+Float Path::ComputeLength() {
+ EnsureFlattenedPath();
+ return mFlattenedPath->ComputeLength();
+}
+
+Point Path::ComputePointAtLength(Float aLength, Point* aTangent) {
+ EnsureFlattenedPath();
+ return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
+}
+
+void Path::EnsureFlattenedPath() {
+ if (!mFlattenedPath) {
+ mFlattenedPath = new FlattenedPath();
+ StreamToSink(mFlattenedPath);
+ }
+}
+
+// This is the maximum deviation we allow (with an additional ~20% margin of
+// error) of the approximation from the actual Bezier curve.
+const Float kFlatteningTolerance = 0.0001f;
+
+void FlattenedPath::MoveTo(const Point& aPoint) {
+ MOZ_ASSERT(!mCalculatedLength);
+ FlatPathOp op;
+ op.mType = FlatPathOp::OP_MOVETO;
+ op.mPoint = aPoint;
+ mPathOps.push_back(op);
+
+ mBeginPoint = aPoint;
+}
+
+void FlattenedPath::LineTo(const Point& aPoint) {
+ MOZ_ASSERT(!mCalculatedLength);
+ FlatPathOp op;
+ op.mType = FlatPathOp::OP_LINETO;
+ op.mPoint = aPoint;
+ mPathOps.push_back(op);
+}
+
+void FlattenedPath::BezierTo(const Point& aCP1, const Point& aCP2,
+ const Point& aCP3) {
+ MOZ_ASSERT(!mCalculatedLength);
+ FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this,
+ kFlatteningTolerance);
+}
+
+void FlattenedPath::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) {
+ MOZ_ASSERT(!mCalculatedLength);
+ // We need to elevate the degree of this quadratic B�zier to cubic, so we're
+ // going to add an intermediate control point, and recompute control point 1.
+ // The first and last control points remain the same.
+ // This formula can be found on http://fontforge.sourceforge.net/bezier.html
+ Point CP0 = CurrentPoint();
+ Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
+ Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
+ Point CP3 = aCP2;
+
+ BezierTo(CP1, CP2, CP3);
+}
+
+void FlattenedPath::Close() {
+ MOZ_ASSERT(!mCalculatedLength);
+ LineTo(mBeginPoint);
+}
+
+void FlattenedPath::Arc(const Point& aOrigin, float aRadius, float aStartAngle,
+ float aEndAngle, bool aAntiClockwise) {
+ ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle,
+ aAntiClockwise);
+}
+
+Float FlattenedPath::ComputeLength() {
+ if (!mCalculatedLength) {
+ Point currentPoint;
+
+ for (uint32_t i = 0; i < mPathOps.size(); i++) {
+ if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
+ currentPoint = mPathOps[i].mPoint;
+ } else {
+ mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
+ currentPoint = mPathOps[i].mPoint;
+ }
+ }
+
+ mCalculatedLength = true;
+ }
+
+ return mCachedLength;
+}
+
+Point FlattenedPath::ComputePointAtLength(Float aLength, Point* aTangent) {
+ // We track the last point that -wasn't- in the same place as the current
+ // point so if we pass the edge of the path with a bunch of zero length
+ // paths we still get the correct tangent vector.
+ Point lastPointSinceMove;
+ Point currentPoint;
+ for (uint32_t i = 0; i < mPathOps.size(); i++) {
+ if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
+ if (Distance(currentPoint, mPathOps[i].mPoint)) {
+ lastPointSinceMove = currentPoint;
+ }
+ currentPoint = mPathOps[i].mPoint;
+ } else {
+ Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);
+
+ if (segmentLength) {
+ lastPointSinceMove = currentPoint;
+ if (segmentLength > aLength) {
+ Point currentVector = mPathOps[i].mPoint - currentPoint;
+ Point tangent = currentVector / segmentLength;
+ if (aTangent) {
+ *aTangent = tangent;
+ }
+ return currentPoint + tangent * aLength;
+ }
+ }
+
+ aLength -= segmentLength;
+ currentPoint = mPathOps[i].mPoint;
+ }
+ }
+
+ if (aTangent) {
+ Point currentVector = currentPoint - lastPointSinceMove;
+ if (auto h = hypotf(currentVector.x, currentVector.y)) {
+ *aTangent = currentVector / h;
+ } else {
+ *aTangent = Point();
+ }
+ }
+ return currentPoint;
+}
+
+// This function explicitly permits aControlPoints to refer to the same object
+// as either of the other arguments.
+static void SplitBezier(const BezierControlPoints& aControlPoints,
+ BezierControlPoints* aFirstSegmentControlPoints,
+ BezierControlPoints* aSecondSegmentControlPoints,
+ double t) {
+ MOZ_ASSERT(aSecondSegmentControlPoints);
+
+ *aSecondSegmentControlPoints = aControlPoints;
+
+ PointD cp1a =
+ aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
+ PointD cp2a =
+ aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
+ PointD cp1aa = cp1a + (cp2a - cp1a) * t;
+ PointD cp3a =
+ aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
+ PointD cp2aa = cp2a + (cp3a - cp2a) * t;
+ PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
+ aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;
+
+ if (aFirstSegmentControlPoints) {
+ aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
+ aFirstSegmentControlPoints->mCP2 = cp1a;
+ aFirstSegmentControlPoints->mCP3 = cp1aa;
+ aFirstSegmentControlPoints->mCP4 = cp1aaa;
+ }
+ aSecondSegmentControlPoints->mCP1 = cp1aaa;
+ aSecondSegmentControlPoints->mCP2 = cp2aa;
+ aSecondSegmentControlPoints->mCP3 = cp3a;
+}
+
+static void FlattenBezierCurveSegment(const BezierControlPoints& aControlPoints,
+ PathSink* aSink, double aTolerance) {
+ /* The algorithm implemented here is based on:
+ * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
+ *
+ * The basic premise is that for a small t the third order term in the
+ * equation of a cubic bezier curve is insignificantly small. This can
+ * then be approximated by a quadratic equation for which the maximum
+ * difference from a linear approximation can be much more easily determined.
+ */
+ BezierControlPoints currentCP = aControlPoints;
+
+ double t = 0;
+ double currentTolerance = aTolerance;
+ while (t < 1.0) {
+ PointD cp21 = currentCP.mCP2 - currentCP.mCP1;
+ PointD cp31 = currentCP.mCP3 - currentCP.mCP1;
+
+ /* To remove divisions and check for divide-by-zero, this is optimized from:
+ * Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);
+ * t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3))));
+ */
+ double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x;
+ double h = hypot(cp21.x, cp21.y);
+ if (cp21x31 * h == 0) {
+ break;
+ }
+
+ double s3inv = h / cp21x31;
+ t = 2 * sqrt(currentTolerance * std::abs(s3inv) / 3.);
+ currentTolerance *= 1 + aTolerance;
+ // Increase tolerance every iteration to prevent this loop from executing
+ // too many times. This approximates the length of large curves more
+ // roughly. In practice, aTolerance is the constant kFlatteningTolerance
+ // which has value 0.0001. With this value, it takes 6,932 splits to double
+ // currentTolerance (to 0.0002) and 23,028 splits to increase
+ // currentTolerance by an order of magnitude (to 0.001).
+ if (t >= 1.0) {
+ break;
+ }
+
+ SplitBezier(currentCP, nullptr, &currentCP, t);
+
+ aSink->LineTo(currentCP.mCP1.ToPoint());
+ }
+
+ aSink->LineTo(currentCP.mCP4.ToPoint());
+}
+
+static inline void FindInflectionApproximationRange(
+ BezierControlPoints aControlPoints, double* aMin, double* aMax, double aT,
+ double aTolerance) {
+ SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);
+
+ PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
+ PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;
+
+ if (cp21.x == 0. && cp21.y == 0.) {
+ cp21 = aControlPoints.mCP3 - aControlPoints.mCP1;
+ }
+
+ if (cp21.x == 0. && cp21.y == 0.) {
+ // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n =
+ // cp41.x - cp41.y.
+ double s3 = cp41.x - cp41.y;
+
+ // Use the absolute value so that Min and Max will correspond with the
+ // minimum and maximum of the range.
+ if (s3 == 0) {
+ *aMin = -1.0;
+ *aMax = 2.0;
+ } else {
+ double r = CubicRoot(std::abs(aTolerance / s3));
+ *aMin = aT - r;
+ *aMax = aT + r;
+ }
+ return;
+ }
+
+ double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y);
+
+ if (s3 == 0) {
+ // This means within the precision we have it can be approximated
+ // infinitely by a linear segment. Deal with this by specifying the
+ // approximation range as extending beyond the entire curve.
+ *aMin = -1.0;
+ *aMax = 2.0;
+ return;
+ }
+
+ double tf = CubicRoot(std::abs(aTolerance / s3));
+
+ *aMin = aT - tf * (1 - aT);
+ *aMax = aT + tf * (1 - aT);
+}
+
+/* Find the inflection points of a bezier curve. Will return false if the
+ * curve is degenerate in such a way that it is best approximated by a straight
+ * line.
+ *
+ * The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>,
+ * explanation follows:
+ *
+ * The lower inflection point is returned in aT1, the higher one in aT2. In the
+ * case of a single inflection point this will be in aT1.
+ *
+ * The method is inspired by the algorithm in "analysis of in?ection points for
+ * planar cubic bezier curve"
+ *
+ * Here are some differences between this algorithm and versions discussed
+ * elsewhere in the literature:
+ *
+ * zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
+ *
+ * Point a0 = CP2 - CP1
+ * Point a1 = CP3 - CP2
+ * Point a2 = CP4 - CP1
+ *
+ * Point d0 = a1 - a0
+ * Point d1 = a2 - a1
+
+ * Point e0 = d1 - d0
+ *
+ * this avoids any multiplications and may or may not be faster than the
+ * approach take below.
+ *
+ * "fast, precise flattening of cubic bezier path and ofset curves" by hain et.
+ * al
+ * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
+ * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
+ * Point c = -3 * CP1 + 3 * CP2
+ * Point d = CP1
+ * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
+ * c = 3 * a0
+ * b = 3 * d0
+ * a = e0
+ *
+ *
+ * a = 3a = a.y * b.x - a.x * b.y
+ * b = 3b = a.y * c.x - a.x * c.y
+ * c = 9c = b.y * c.x - b.x * c.y
+ *
+ * The additional multiples of 3 cancel each other out as show below:
+ *
+ * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
+ * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
+ * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
+ * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
+ *
+ * I haven't looked into whether the formulation of the quadratic formula in
+ * hain has any numerical advantages over the one used below.
+ */
+static inline void FindInflectionPoints(
+ const BezierControlPoints& aControlPoints, double* aT1, double* aT2,
+ uint32_t* aCount) {
+ // Find inflection points.
+ // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
+ // of this approach.
+ PointD A = aControlPoints.mCP2 - aControlPoints.mCP1;
+ PointD B =
+ aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
+ PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) +
+ (aControlPoints.mCP2 * 3) - aControlPoints.mCP1;
+
+ double a = B.x * C.y - B.y * C.x;
+ double b = A.x * C.y - A.y * C.x;
+ double c = A.x * B.y - A.y * B.x;
+
+ if (a == 0) {
+ // Not a quadratic equation.
+ if (b == 0) {
+ // Instead of a linear acceleration change we have a constant
+ // acceleration change. This means the equation has no solution
+ // and there are no inflection points, unless the constant is 0.
+ // In that case the curve is a straight line, essentially that means
+ // the easiest way to deal with is is by saying there's an inflection
+ // point at t == 0. The inflection point approximation range found will
+ // automatically extend into infinity.
+ if (c == 0) {
+ *aCount = 1;
+ *aT1 = 0;
+ return;
+ }
+ *aCount = 0;
+ return;
+ }
+ *aT1 = -c / b;
+ *aCount = 1;
+ return;
+ }
+
+ double discriminant = b * b - 4 * a * c;
+
+ if (discriminant < 0) {
+ // No inflection points.
+ *aCount = 0;
+ } else if (discriminant == 0) {
+ *aCount = 1;
+ *aT1 = -b / (2 * a);
+ } else {
+ /* Use the following formula for computing the roots:
+ *
+ * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
+ * t1 = q / a
+ * t2 = c / q
+ */
+ double q = sqrt(discriminant);
+ if (b < 0) {
+ q = b - q;
+ } else {
+ q = b + q;
+ }
+ q *= -1. / 2;
+
+ *aT1 = q / a;
+ *aT2 = c / q;
+ if (*aT1 > *aT2) {
+ std::swap(*aT1, *aT2);
+ }
+ *aCount = 2;
+ }
+}
+
+void FlattenBezier(const BezierControlPoints& aControlPoints, PathSink* aSink,
+ double aTolerance) {
+ double t1;
+ double t2;
+ uint32_t count;
+
+ FindInflectionPoints(aControlPoints, &t1, &t2, &count);
+
+ // Check that at least one of the inflection points is inside [0..1]
+ if (count == 0 ||
+ ((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0)))) {
+ FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
+ return;
+ }
+
+ double t1min = t1, t1max = t1, t2min = t2, t2max = t2;
+
+ BezierControlPoints remainingCP = aControlPoints;
+
+ // For both inflection points, calulate the range where they can be linearly
+ // approximated if they are positioned within [0,1]
+ if (count > 0 && t1 >= 0 && t1 < 1.0) {
+ FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1,
+ aTolerance);
+ }
+ if (count > 1 && t2 >= 0 && t2 < 1.0) {
+ FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2,
+ aTolerance);
+ }
+ BezierControlPoints nextCPs = aControlPoints;
+ BezierControlPoints prevCPs;
+
+ // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
+ // segments.
+ if (count == 1 && t1min <= 0 && t1max >= 1.0) {
+ // The whole range can be approximated by a line segment.
+ aSink->LineTo(aControlPoints.mCP4.ToPoint());
+ return;
+ }
+
+ if (t1min > 0) {
+ // Flatten the Bezier up until the first inflection point's approximation
+ // point.
+ SplitBezier(aControlPoints, &prevCPs, &remainingCP, t1min);
+ FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
+ }
+ if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
+ // The second inflection point's approximation range begins after the end
+ // of the first, approximate the first inflection point by a line and
+ // subsequently flatten up until the end or the next inflection point.
+ SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
+
+ aSink->LineTo(nextCPs.mCP1.ToPoint());
+
+ if (count == 1 || (count > 1 && t2min >= 1.0)) {
+ // No more inflection points to deal with, flatten the rest of the curve.
+ FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
+ }
+ } else if (count > 1 && t2min > 1.0) {
+ // We've already concluded t2min <= t1max, so if this is true the
+ // approximation range for the first inflection point runs past the
+ // end of the curve, draw a line to the end and we're done.
+ aSink->LineTo(aControlPoints.mCP4.ToPoint());
+ return;
+ }
+
+ if (count > 1 && t2min < 1.0 && t2max > 0) {
+ if (t2min > 0 && t2min < t1max) {
+ // In this case the t2 approximation range starts inside the t1
+ // approximation range.
+ SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
+ aSink->LineTo(nextCPs.mCP1.ToPoint());
+ } else if (t2min > 0 && t1max > 0) {
+ SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
+
+ // Find a control points describing the portion of the curve between t1max
+ // and t2min.
+ double t2mina = (t2min - t1max) / (1 - t1max);
+ SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
+ FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
+ } else if (t2min > 0) {
+ // We have nothing interesting before t2min, find that bit and flatten it.
+ SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
+ FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
+ }
+ if (t2max < 1.0) {
+ // Flatten the portion of the curve after t2max
+ SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);
+
+ // Draw a line to the start, this is the approximation between t2min and
+ // t2max.
+ aSink->LineTo(nextCPs.mCP1.ToPoint());
+ FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
+ } else {
+ // Our approximation range extends beyond the end of the curve.
+ aSink->LineTo(aControlPoints.mCP4.ToPoint());
+ return;
+ }
+ }
+}
+
+Rect Path::GetFastBounds(const Matrix& aTransform,
+ const StrokeOptions* aStrokeOptions) const {
+ return aStrokeOptions ? GetStrokedBounds(*aStrokeOptions, aTransform)
+ : GetBounds(aTransform);
+}
+
+} // namespace gfx
+} // namespace mozilla