summaryrefslogtreecommitdiffstats
path: root/gfx/qcms/src/transform_util.rs
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/qcms/src/transform_util.rs')
-rw-r--r--gfx/qcms/src/transform_util.rs569
1 files changed, 569 insertions, 0 deletions
diff --git a/gfx/qcms/src/transform_util.rs b/gfx/qcms/src/transform_util.rs
new file mode 100644
index 0000000000..5c19801053
--- /dev/null
+++ b/gfx/qcms/src/transform_util.rs
@@ -0,0 +1,569 @@
+// qcms
+// Copyright (C) 2009 Mozilla Foundation
+// Copyright (C) 1998-2007 Marti Maria
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+use std::convert::TryInto;
+
+use crate::{
+ iccread::{curveType, Profile},
+ s15Fixed16Number_to_float,
+};
+use crate::{matrix::Matrix, transform::PRECACHE_OUTPUT_MAX, transform::PRECACHE_OUTPUT_SIZE};
+
+//XXX: could use a bettername
+pub type uint16_fract_t = u16;
+
+#[inline]
+fn u8Fixed8Number_to_float(x: u16) -> f32 {
+ // 0x0000 = 0.
+ // 0x0100 = 1.
+ // 0xffff = 255 + 255/256
+ (x as i32 as f64 / 256.0f64) as f32
+}
+#[inline]
+pub fn clamp_float(a: f32) -> f32 {
+ /* One would naturally write this function as the following:
+ if (a > 1.)
+ return 1.;
+ else if (a < 0)
+ return 0;
+ else
+ return a;
+
+ However, that version will let NaNs pass through which is undesirable
+ for most consumers.
+ */
+ if a > 1. {
+ 1.
+ } else if a >= 0. {
+ a
+ } else {
+ // a < 0 or a is NaN
+ 0.
+ }
+}
+/* value must be a value between 0 and 1 */
+//XXX: is the above a good restriction to have?
+// the output range of this functions is 0..1
+pub fn lut_interp_linear(mut input_value: f64, table: &[u16]) -> f32 {
+ input_value *= (table.len() - 1) as f64;
+
+ let upper: i32 = input_value.ceil() as i32;
+ let lower: i32 = input_value.floor() as i32;
+ let value: f32 = ((table[upper as usize] as f64) * (1. - (upper as f64 - input_value))
+ + (table[lower as usize] as f64 * (upper as f64 - input_value)))
+ as f32;
+ /* scale the value */
+ value * (1.0 / 65535.0)
+}
+/* same as above but takes and returns a uint16_t value representing a range from 0..1 */
+#[no_mangle]
+pub fn lut_interp_linear16(input_value: u16, table: &[u16]) -> u16 {
+ /* Start scaling input_value to the length of the array: 65535*(length-1).
+ * We'll divide out the 65535 next */
+ let mut value: u32 = (input_value as i32 * (table.len() as i32 - 1)) as u32; /* equivalent to ceil(value/65535) */
+ let upper: u32 = (value + 65534) / 65535; /* equivalent to floor(value/65535) */
+ let lower: u32 = value / 65535;
+ /* interp is the distance from upper to value scaled to 0..65535 */
+ let interp: u32 = value % 65535; // 0..65535*65535
+ value = (table[upper as usize] as u32 * interp
+ + table[lower as usize] as u32 * (65535 - interp))
+ / 65535;
+ value as u16
+}
+/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX
+ * and returns a uint8_t value representing a range from 0..1 */
+fn lut_interp_linear_precache_output(input_value: u32, table: &[u16]) -> u8 {
+ /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1).
+ * We'll divide out the PRECACHE_OUTPUT_MAX next */
+ let mut value: u32 = input_value * (table.len() - 1) as u32;
+ /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */
+ let upper: u32 = (value + PRECACHE_OUTPUT_MAX as u32 - 1) / PRECACHE_OUTPUT_MAX as u32;
+ /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */
+ let lower: u32 = value / PRECACHE_OUTPUT_MAX as u32;
+ /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */
+ let interp: u32 = value % PRECACHE_OUTPUT_MAX as u32;
+ /* the table values range from 0..65535 */
+ value = table[upper as usize] as u32 * interp
+ + table[lower as usize] as u32 * (PRECACHE_OUTPUT_MAX as u32 - interp); // 0..(65535*PRECACHE_OUTPUT_MAX)
+ /* round and scale */
+ value += (PRECACHE_OUTPUT_MAX * 65535 / 255 / 2) as u32; // scale to 0..255
+ value /= (PRECACHE_OUTPUT_MAX * 65535 / 255) as u32;
+ value as u8
+}
+/* value must be a value between 0 and 1 */
+//XXX: is the above a good restriction to have?
+pub fn lut_interp_linear_float(mut value: f32, table: &[f32]) -> f32 {
+ value *= (table.len() - 1) as f32;
+
+ let upper: i32 = value.ceil() as i32;
+ let lower: i32 = value.floor() as i32;
+ //XXX: can we be more performant here?
+ value = (table[upper as usize] as f64 * (1.0f64 - (upper as f32 - value) as f64)
+ + (table[lower as usize] * (upper as f32 - value)) as f64) as f32;
+ /* scale the value */
+ value
+}
+fn compute_curve_gamma_table_type1(gamma: u16) -> Box<[f32; 256]> {
+ let mut gamma_table = Vec::with_capacity(256);
+ let gamma_float: f32 = u8Fixed8Number_to_float(gamma);
+ for i in 0..256 {
+ // 0..1^(0..255 + 255/256) will always be between 0 and 1
+ gamma_table.push((i as f64 / 255.0f64).powf(gamma_float as f64) as f32);
+ }
+ gamma_table.into_boxed_slice().try_into().unwrap()
+}
+fn compute_curve_gamma_table_type2(table: &[u16]) -> Box<[f32; 256]> {
+ let mut gamma_table = Vec::with_capacity(256);
+ for i in 0..256 {
+ gamma_table.push(lut_interp_linear(i as f64 / 255.0f64, table));
+ }
+ gamma_table.into_boxed_slice().try_into().unwrap()
+}
+fn compute_curve_gamma_table_type_parametric(params: &[f32]) -> Box<[f32; 256]> {
+ let params = Param::new(params);
+ let mut gamma_table = Vec::with_capacity(256);
+ for i in 0..256 {
+ let X = i as f32 / 255.;
+ gamma_table.push(clamp_float(params.eval(X)));
+ }
+ gamma_table.into_boxed_slice().try_into().unwrap()
+}
+
+fn compute_curve_gamma_table_type0() -> Box<[f32; 256]> {
+ let mut gamma_table = Vec::with_capacity(256);
+ for i in 0..256 {
+ gamma_table.push((i as f64 / 255.0f64) as f32);
+ }
+ gamma_table.into_boxed_slice().try_into().unwrap()
+}
+pub(crate) fn build_input_gamma_table(TRC: Option<&curveType>) -> Option<Box<[f32; 256]>> {
+ let TRC = match TRC {
+ Some(TRC) => TRC,
+ None => return None,
+ };
+ Some(match TRC {
+ curveType::Parametric(params) => compute_curve_gamma_table_type_parametric(params),
+ curveType::Curve(data) => match data.len() {
+ 0 => compute_curve_gamma_table_type0(),
+ 1 => compute_curve_gamma_table_type1(data[0]),
+ _ => compute_curve_gamma_table_type2(data),
+ },
+ })
+}
+pub fn build_colorant_matrix(p: &Profile) -> Matrix {
+ let mut result: Matrix = Matrix { m: [[0.; 3]; 3] };
+ result.m[0][0] = s15Fixed16Number_to_float(p.redColorant.X);
+ result.m[0][1] = s15Fixed16Number_to_float(p.greenColorant.X);
+ result.m[0][2] = s15Fixed16Number_to_float(p.blueColorant.X);
+ result.m[1][0] = s15Fixed16Number_to_float(p.redColorant.Y);
+ result.m[1][1] = s15Fixed16Number_to_float(p.greenColorant.Y);
+ result.m[1][2] = s15Fixed16Number_to_float(p.blueColorant.Y);
+ result.m[2][0] = s15Fixed16Number_to_float(p.redColorant.Z);
+ result.m[2][1] = s15Fixed16Number_to_float(p.greenColorant.Z);
+ result.m[2][2] = s15Fixed16Number_to_float(p.blueColorant.Z);
+ result
+}
+
+/** Parametric representation of transfer function */
+#[derive(Debug)]
+struct Param {
+ g: f32,
+ a: f32,
+ b: f32,
+ c: f32,
+ d: f32,
+ e: f32,
+ f: f32,
+}
+
+impl Param {
+ #[allow(clippy::many_single_char_names)]
+ fn new(params: &[f32]) -> Param {
+ // convert from the variable number of parameters
+ // contained in profiles to a unified representation.
+ let g: f32 = params[0];
+ match params[1..] {
+ [] => Param {
+ g,
+ a: 1.,
+ b: 0.,
+ c: 1.,
+ d: 0.,
+ e: 0.,
+ f: 0.,
+ },
+ [a, b] => Param {
+ g,
+ a,
+ b,
+ c: 0.,
+ d: -b / a,
+ e: 0.,
+ f: 0.,
+ },
+ [a, b, c] => Param {
+ g,
+ a,
+ b,
+ c: 0.,
+ d: -b / a,
+ e: c,
+ f: c,
+ },
+ [a, b, c, d] => Param {
+ g,
+ a,
+ b,
+ c,
+ d,
+ e: 0.,
+ f: 0.,
+ },
+ [a, b, c, d, e, f] => Param {
+ g,
+ a,
+ b,
+ c,
+ d,
+ e,
+ f,
+ },
+ _ => panic!(),
+ }
+ }
+
+ fn eval(&self, x: f32) -> f32 {
+ if x < self.d {
+ self.c * x + self.f
+ } else {
+ (self.a * x + self.b).powf(self.g) + self.e
+ }
+ }
+ #[allow(clippy::many_single_char_names)]
+ fn invert(&self) -> Option<Param> {
+ // First check if the function is continuous at the cross-over point d.
+ let d1 = (self.a * self.d + self.b).powf(self.g) + self.e;
+ let d2 = self.c * self.d + self.f;
+
+ if (d1 - d2).abs() > 0.1 {
+ return None;
+ }
+ let d = d1;
+
+ // y = (a * x + b)^g + e
+ // y - e = (a * x + b)^g
+ // (y - e)^(1/g) = a*x + b
+ // (y - e)^(1/g) - b = a*x
+ // (y - e)^(1/g)/a - b/a = x
+ // ((y - e)/a^g)^(1/g) - b/a = x
+ // ((1/(a^g)) * y - e/(a^g))^(1/g) - b/a = x
+ let a = 1. / self.a.powf(self.g);
+ let b = -self.e / self.a.powf(self.g);
+ let g = 1. / self.g;
+ let e = -self.b / self.a;
+
+ // y = c * x + f
+ // y - f = c * x
+ // y/c - f/c = x
+ let (c, f);
+ if d <= 0. {
+ c = 1.;
+ f = 0.;
+ } else {
+ c = 1. / self.c;
+ f = -self.f / self.c;
+ }
+
+ // if self.d > 0. and self.c == 0 as is likely with type 1 and 2 parametric function
+ // then c and f will not be finite.
+ if !(g.is_finite()
+ && a.is_finite()
+ && b.is_finite()
+ && c.is_finite()
+ && d.is_finite()
+ && e.is_finite()
+ && f.is_finite())
+ {
+ return None;
+ }
+
+ Some(Param {
+ g,
+ a,
+ b,
+ c,
+ d,
+ e,
+ f,
+ })
+ }
+}
+
+#[test]
+fn param_invert() {
+ let p3 = Param::new(&[2.4, 0.948, 0.052, 0.077, 0.04]);
+ p3.invert().unwrap();
+ let g2_2 = Param::new(&[2.2]);
+ g2_2.invert().unwrap();
+ let g2_2 = Param::new(&[2.2, 0.9, 0.052]);
+ g2_2.invert().unwrap();
+ let g2_2 = dbg!(Param::new(&[2.2, 0.9, -0.52]));
+ g2_2.invert().unwrap();
+ let g2_2 = dbg!(Param::new(&[2.2, 0.9, -0.52, 0.1]));
+ assert!(g2_2.invert().is_none());
+}
+
+/* The following code is copied nearly directly from lcms.
+ * I think it could be much better. For example, Argyll seems to have better code in
+ * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way
+ * to a working solution and allows for easy comparing with lcms. */
+#[no_mangle]
+#[allow(clippy::many_single_char_names)]
+pub fn lut_inverse_interp16(Value: u16, LutTable: &[u16]) -> uint16_fract_t {
+ let mut l: i32 = 1; // 'int' Give spacing for negative values
+ let mut r: i32 = 0x10000;
+ let mut x: i32 = 0;
+ let mut res: i32;
+ let length = LutTable.len() as i32;
+
+ let mut NumZeroes: i32 = 0;
+ while LutTable[NumZeroes as usize] as i32 == 0 && NumZeroes < length - 1 {
+ NumZeroes += 1
+ }
+ // There are no zeros at the beginning and we are trying to find a zero, so
+ // return anything. It seems zero would be the less destructive choice
+ /* I'm not sure that this makes sense, but oh well... */
+ if NumZeroes == 0 && Value as i32 == 0 {
+ return 0u16;
+ }
+ let mut NumPoles: i32 = 0;
+ while LutTable[(length - 1 - NumPoles) as usize] as i32 == 0xffff && NumPoles < length - 1 {
+ NumPoles += 1
+ }
+ // Does the curve belong to this case?
+ if NumZeroes > 1 || NumPoles > 1 {
+ let a_0: i32;
+ let b_0: i32;
+ // Identify if value fall downto 0 or FFFF zone
+ if Value as i32 == 0 {
+ return 0u16;
+ }
+ // if (Value == 0xFFFF) return 0xFFFF;
+ // else restrict to valid zone
+ if NumZeroes > 1 {
+ a_0 = (NumZeroes - 1) * 0xffff / (length - 1);
+ l = a_0 - 1
+ }
+ if NumPoles > 1 {
+ b_0 = (length - 1 - NumPoles) * 0xffff / (length - 1);
+ r = b_0 + 1
+ }
+ }
+ if r <= l {
+ // If this happens LutTable is not invertible
+ return 0u16;
+ }
+ // Seems not a degenerated case... apply binary search
+ while r > l {
+ x = (l + r) / 2;
+ res = lut_interp_linear16((x - 1) as uint16_fract_t, LutTable) as i32;
+ if res == Value as i32 {
+ // Found exact match.
+ return (x - 1) as uint16_fract_t;
+ }
+ if res > Value as i32 {
+ r = x - 1
+ } else {
+ l = x + 1
+ }
+ }
+
+ // Not found, should we interpolate?
+
+ // Get surrounding nodes
+ debug_assert!(x >= 1);
+
+ let val2: f64 = (length - 1) as f64 * ((x - 1) as f64 / 65535.0f64);
+ let cell0: i32 = val2.floor() as i32;
+ let cell1: i32 = val2.ceil() as i32;
+ if cell0 == cell1 {
+ return x as uint16_fract_t;
+ }
+
+ let y0: f64 = LutTable[cell0 as usize] as f64;
+ let x0: f64 = 65535.0f64 * cell0 as f64 / (length - 1) as f64;
+ let y1: f64 = LutTable[cell1 as usize] as f64;
+ let x1: f64 = 65535.0f64 * cell1 as f64 / (length - 1) as f64;
+ let a: f64 = (y1 - y0) / (x1 - x0);
+ let b: f64 = y0 - a * x0;
+ if a.abs() < 0.01f64 {
+ return x as uint16_fract_t;
+ }
+ let f: f64 = (Value as i32 as f64 - b) / a;
+ if f < 0.0f64 {
+ return 0u16;
+ }
+ if f >= 65535.0f64 {
+ return 0xffffu16;
+ }
+ (f + 0.5f64).floor() as uint16_fract_t
+}
+/*
+The number of entries needed to invert a lookup table should not
+necessarily be the same as the original number of entries. This is
+especially true of lookup tables that have a small number of entries.
+
+For example:
+Using a table like:
+ {0, 3104, 14263, 34802, 65535}
+invert_lut will produce an inverse of:
+ {3, 34459, 47529, 56801, 65535}
+which has an maximum error of about 9855 (pixel difference of ~38.346)
+
+For now, we punt the decision of output size to the caller. */
+fn invert_lut(table: &[u16], out_length: i32) -> Vec<u16> {
+ /* for now we invert the lut by creating a lut of size out_length
+ * and attempting to lookup a value for each entry using lut_inverse_interp16 */
+ let mut output = Vec::with_capacity(out_length as usize);
+ for i in 0..out_length {
+ let x: f64 = i as f64 * 65535.0f64 / (out_length - 1) as f64;
+ let input: uint16_fract_t = (x + 0.5f64).floor() as uint16_fract_t;
+ output.push(lut_inverse_interp16(input, table));
+ }
+ output
+}
+#[allow(clippy::needless_range_loop)]
+fn compute_precache_pow(output: &mut [u8; PRECACHE_OUTPUT_SIZE], gamma: f32) {
+ for v in 0..PRECACHE_OUTPUT_SIZE {
+ //XXX: don't do integer/float conversion... and round?
+ output[v] = (255. * (v as f32 / PRECACHE_OUTPUT_MAX as f32).powf(gamma)) as u8;
+ }
+}
+#[allow(clippy::needless_range_loop)]
+pub fn compute_precache_lut(output: &mut [u8; PRECACHE_OUTPUT_SIZE], table: &[u16]) {
+ for v in 0..PRECACHE_OUTPUT_SIZE {
+ output[v] = lut_interp_linear_precache_output(v as u32, table);
+ }
+}
+#[allow(clippy::needless_range_loop)]
+pub fn compute_precache_linear(output: &mut [u8; PRECACHE_OUTPUT_SIZE]) {
+ for v in 0..PRECACHE_OUTPUT_SIZE {
+ //XXX: round?
+ output[v] = (v / (PRECACHE_OUTPUT_SIZE / 256)) as u8;
+ }
+}
+pub(crate) fn compute_precache(trc: &curveType, output: &mut [u8; PRECACHE_OUTPUT_SIZE]) -> bool {
+ match trc {
+ curveType::Parametric(params) => {
+ let mut gamma_table_uint: [u16; 256] = [0; 256];
+
+ let mut inverted_size: i32 = 256;
+ let gamma_table = compute_curve_gamma_table_type_parametric(params);
+ let mut i: u16 = 0u16;
+ while (i as i32) < 256 {
+ gamma_table_uint[i as usize] = (gamma_table[i as usize] * 65535f32) as u16;
+ i += 1
+ }
+ //XXX: the choice of a minimum of 256 here is not backed by any theory,
+ // measurement or data, however it is what lcms uses.
+ // the maximum number we would need is 65535 because that's the
+ // accuracy used for computing the pre cache table
+ if inverted_size < 256 {
+ inverted_size = 256
+ }
+ let inverted = invert_lut(&gamma_table_uint, inverted_size);
+ compute_precache_lut(output, &inverted);
+ }
+ curveType::Curve(data) => {
+ match data.len() {
+ 0 => compute_precache_linear(output),
+ 1 => compute_precache_pow(output, 1. / u8Fixed8Number_to_float(data[0])),
+ _ => {
+ let mut inverted_size = data.len() as i32;
+ //XXX: the choice of a minimum of 256 here is not backed by any theory,
+ // measurement or data, however it is what lcms uses.
+ // the maximum number we would need is 65535 because that's the
+ // accuracy used for computing the pre cache table
+ if inverted_size < 256 {
+ inverted_size = 256
+ } //XXX turn this conversion into a function
+ let inverted = invert_lut(data, inverted_size);
+ compute_precache_lut(output, &inverted);
+ }
+ }
+ }
+ }
+ true
+}
+fn build_linear_table(length: i32) -> Vec<u16> {
+ let mut output = Vec::with_capacity(length as usize);
+ for i in 0..length {
+ let x: f64 = i as f64 * 65535.0f64 / (length - 1) as f64;
+ let input: uint16_fract_t = (x + 0.5f64).floor() as uint16_fract_t;
+ output.push(input);
+ }
+ output
+}
+fn build_pow_table(gamma: f32, length: i32) -> Vec<u16> {
+ let mut output = Vec::with_capacity(length as usize);
+ for i in 0..length {
+ let mut x: f64 = i as f64 / (length - 1) as f64;
+ x = x.powf(gamma as f64);
+ let result: uint16_fract_t = (x * 65535.0f64 + 0.5f64).floor() as uint16_fract_t;
+ output.push(result);
+ }
+ output
+}
+
+pub(crate) fn build_output_lut(trc: &curveType) -> Option<Vec<u16>> {
+ match trc {
+ curveType::Parametric(params) => {
+ let params = Param::new(params);
+ let inv_params = params.invert()?;
+
+ let mut output = Vec::with_capacity(256);
+ for i in 0..256 {
+ let X = i as f32 / 255.;
+ output.push((inv_params.eval(X) * 65535.) as u16);
+ }
+ Some(output)
+ }
+ curveType::Curve(data) => {
+ match data.len() {
+ 0 => Some(build_linear_table(4096)),
+ 1 => {
+ let gamma = 1. / u8Fixed8Number_to_float(data[0]);
+ Some(build_pow_table(gamma, 4096))
+ }
+ _ => {
+ //XXX: the choice of a minimum of 256 here is not backed by any theory,
+ // measurement or data, however it is what lcms uses.
+ let mut output_gamma_lut_length = data.len();
+ if output_gamma_lut_length < 256 {
+ output_gamma_lut_length = 256
+ }
+ Some(invert_lut(data, output_gamma_lut_length as i32))
+ }
+ }
+ }
+ }
+}