summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp')
-rw-r--r--gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp425
1 files changed, 425 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp b/gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp
new file mode 100644
index 0000000000..4eb7298f3a
--- /dev/null
+++ b/gfx/skia/skia/src/pathops/SkPathOpsWinding.cpp
@@ -0,0 +1,425 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+// given a prospective edge, compute its initial winding by projecting a ray
+// if the ray hits another edge
+ // if the edge doesn't have a winding yet, hop up to that edge and start over
+ // concern : check for hops forming a loop
+ // if the edge is unsortable, or
+ // the intersection is nearly at the ends, or
+ // the tangent at the intersection is nearly coincident to the ray,
+ // choose a different ray and try again
+ // concern : if it is unable to succeed after N tries, try another edge? direction?
+// if no edge is hit, compute the winding directly
+
+// given the top span, project the most perpendicular ray and look for intersections
+ // let's try up and then down. What the hey
+
+// bestXY is initialized by caller with basePt
+
+#include "src/pathops/SkOpContour.h"
+#include "src/pathops/SkOpSegment.h"
+#include "src/pathops/SkPathOpsCurve.h"
+
+#include <utility>
+
+enum class SkOpRayDir {
+ kLeft,
+ kTop,
+ kRight,
+ kBottom,
+};
+
+#if DEBUG_WINDING
+const char* gDebugRayDirName[] = {
+ "kLeft",
+ "kTop",
+ "kRight",
+ "kBottom"
+};
+#endif
+
+static int xy_index(SkOpRayDir dir) {
+ return static_cast<int>(dir) & 1;
+}
+
+static SkScalar pt_xy(const SkPoint& pt, SkOpRayDir dir) {
+ return (&pt.fX)[xy_index(dir)];
+}
+
+static SkScalar pt_yx(const SkPoint& pt, SkOpRayDir dir) {
+ return (&pt.fX)[!xy_index(dir)];
+}
+
+static double pt_dxdy(const SkDVector& v, SkOpRayDir dir) {
+ return (&v.fX)[xy_index(dir)];
+}
+
+static double pt_dydx(const SkDVector& v, SkOpRayDir dir) {
+ return (&v.fX)[!xy_index(dir)];
+}
+
+static SkScalar rect_side(const SkRect& r, SkOpRayDir dir) {
+ return (&r.fLeft)[static_cast<int>(dir)];
+}
+
+static bool sideways_overlap(const SkRect& rect, const SkPoint& pt, SkOpRayDir dir) {
+ int i = !xy_index(dir);
+ return approximately_between((&rect.fLeft)[i], (&pt.fX)[i], (&rect.fRight)[i]);
+}
+
+static bool less_than(SkOpRayDir dir) {
+ return static_cast<bool>((static_cast<int>(dir) & 2) == 0);
+}
+
+static bool ccw_dxdy(const SkDVector& v, SkOpRayDir dir) {
+ bool vPartPos = pt_dydx(v, dir) > 0;
+ bool leftBottom = ((static_cast<int>(dir) + 1) & 2) != 0;
+ return vPartPos == leftBottom;
+}
+
+struct SkOpRayHit {
+ SkOpRayDir makeTestBase(SkOpSpan* span, double t) {
+ fNext = nullptr;
+ fSpan = span;
+ fT = span->t() * (1 - t) + span->next()->t() * t;
+ SkOpSegment* segment = span->segment();
+ fSlope = segment->dSlopeAtT(fT);
+ fPt = segment->ptAtT(fT);
+ fValid = true;
+ return fabs(fSlope.fX) < fabs(fSlope.fY) ? SkOpRayDir::kLeft : SkOpRayDir::kTop;
+ }
+
+ SkOpRayHit* fNext;
+ SkOpSpan* fSpan;
+ SkPoint fPt;
+ double fT;
+ SkDVector fSlope;
+ bool fValid;
+};
+
+void SkOpContour::rayCheck(const SkOpRayHit& base, SkOpRayDir dir, SkOpRayHit** hits,
+ SkArenaAlloc* allocator) {
+ // if the bounds extreme is outside the best, we're done
+ SkScalar baseXY = pt_xy(base.fPt, dir);
+ SkScalar boundsXY = rect_side(fBounds, dir);
+ bool checkLessThan = less_than(dir);
+ if (!approximately_equal(baseXY, boundsXY) && (baseXY < boundsXY) == checkLessThan) {
+ return;
+ }
+ SkOpSegment* testSegment = &fHead;
+ do {
+ testSegment->rayCheck(base, dir, hits, allocator);
+ } while ((testSegment = testSegment->next()));
+}
+
+void SkOpSegment::rayCheck(const SkOpRayHit& base, SkOpRayDir dir, SkOpRayHit** hits,
+ SkArenaAlloc* allocator) {
+ if (!sideways_overlap(fBounds, base.fPt, dir)) {
+ return;
+ }
+ SkScalar baseXY = pt_xy(base.fPt, dir);
+ SkScalar boundsXY = rect_side(fBounds, dir);
+ bool checkLessThan = less_than(dir);
+ if (!approximately_equal(baseXY, boundsXY) && (baseXY < boundsXY) == checkLessThan) {
+ return;
+ }
+ double tVals[3];
+ SkScalar baseYX = pt_yx(base.fPt, dir);
+ int roots = (*CurveIntercept[fVerb * 2 + xy_index(dir)])(fPts, fWeight, baseYX, tVals);
+ for (int index = 0; index < roots; ++index) {
+ double t = tVals[index];
+ if (base.fSpan->segment() == this && approximately_equal(base.fT, t)) {
+ continue;
+ }
+ SkDVector slope;
+ SkPoint pt;
+ SkDEBUGCODE(sk_bzero(&slope, sizeof(slope)));
+ bool valid = false;
+ if (approximately_zero(t)) {
+ pt = fPts[0];
+ } else if (approximately_equal(t, 1)) {
+ pt = fPts[SkPathOpsVerbToPoints(fVerb)];
+ } else {
+ SkASSERT(between(0, t, 1));
+ pt = this->ptAtT(t);
+ if (SkDPoint::ApproximatelyEqual(pt, base.fPt)) {
+ if (base.fSpan->segment() == this) {
+ continue;
+ }
+ } else {
+ SkScalar ptXY = pt_xy(pt, dir);
+ if (!approximately_equal(baseXY, ptXY) && (baseXY < ptXY) == checkLessThan) {
+ continue;
+ }
+ slope = this->dSlopeAtT(t);
+ if (fVerb == SkPath::kCubic_Verb && base.fSpan->segment() == this
+ && roughly_equal(base.fT, t)
+ && SkDPoint::RoughlyEqual(pt, base.fPt)) {
+ #if DEBUG_WINDING
+ SkDebugf("%s (rarely expect this)\n", __FUNCTION__);
+ #endif
+ continue;
+ }
+ if (fabs(pt_dydx(slope, dir) * 10000) > fabs(pt_dxdy(slope, dir))) {
+ valid = true;
+ }
+ }
+ }
+ SkOpSpan* span = this->windingSpanAtT(t);
+ if (!span) {
+ valid = false;
+ } else if (!span->windValue() && !span->oppValue()) {
+ continue;
+ }
+ SkOpRayHit* newHit = allocator->make<SkOpRayHit>();
+ newHit->fNext = *hits;
+ newHit->fPt = pt;
+ newHit->fSlope = slope;
+ newHit->fSpan = span;
+ newHit->fT = t;
+ newHit->fValid = valid;
+ *hits = newHit;
+ }
+}
+
+SkOpSpan* SkOpSegment::windingSpanAtT(double tHit) {
+ SkOpSpan* span = &fHead;
+ SkOpSpanBase* next;
+ do {
+ next = span->next();
+ if (approximately_equal(tHit, next->t())) {
+ return nullptr;
+ }
+ if (tHit < next->t()) {
+ return span;
+ }
+ } while (!next->final() && (span = next->upCast()));
+ return nullptr;
+}
+
+static bool hit_compare_x(const SkOpRayHit* a, const SkOpRayHit* b) {
+ return a->fPt.fX < b->fPt.fX;
+}
+
+static bool reverse_hit_compare_x(const SkOpRayHit* a, const SkOpRayHit* b) {
+ return b->fPt.fX < a->fPt.fX;
+}
+
+static bool hit_compare_y(const SkOpRayHit* a, const SkOpRayHit* b) {
+ return a->fPt.fY < b->fPt.fY;
+}
+
+static bool reverse_hit_compare_y(const SkOpRayHit* a, const SkOpRayHit* b) {
+ return b->fPt.fY < a->fPt.fY;
+}
+
+static double get_t_guess(int tTry, int* dirOffset) {
+ double t = 0.5;
+ *dirOffset = tTry & 1;
+ int tBase = tTry >> 1;
+ int tBits = 0;
+ while (tTry >>= 1) {
+ t /= 2;
+ ++tBits;
+ }
+ if (tBits) {
+ int tIndex = (tBase - 1) & ((1 << tBits) - 1);
+ t += t * 2 * tIndex;
+ }
+ return t;
+}
+
+bool SkOpSpan::sortableTop(SkOpContour* contourHead) {
+ SkSTArenaAlloc<1024> allocator;
+ int dirOffset;
+ double t = get_t_guess(fTopTTry++, &dirOffset);
+ SkOpRayHit hitBase;
+ SkOpRayDir dir = hitBase.makeTestBase(this, t);
+ if (hitBase.fSlope.fX == 0 && hitBase.fSlope.fY == 0) {
+ return false;
+ }
+ SkOpRayHit* hitHead = &hitBase;
+ dir = static_cast<SkOpRayDir>(static_cast<int>(dir) + dirOffset);
+ if (hitBase.fSpan && hitBase.fSpan->segment()->verb() > SkPath::kLine_Verb
+ && !pt_dydx(hitBase.fSlope, dir)) {
+ return false;
+ }
+ SkOpContour* contour = contourHead;
+ do {
+ if (!contour->count()) {
+ continue;
+ }
+ contour->rayCheck(hitBase, dir, &hitHead, &allocator);
+ } while ((contour = contour->next()));
+ // sort hits
+ SkSTArray<1, SkOpRayHit*> sorted;
+ SkOpRayHit* hit = hitHead;
+ while (hit) {
+ sorted.push_back(hit);
+ hit = hit->fNext;
+ }
+ int count = sorted.count();
+ SkTQSort(sorted.begin(), sorted.end() - 1, xy_index(dir)
+ ? less_than(dir) ? hit_compare_y : reverse_hit_compare_y
+ : less_than(dir) ? hit_compare_x : reverse_hit_compare_x);
+ // verify windings
+#if DEBUG_WINDING
+ SkDebugf("%s dir=%s seg=%d t=%1.9g pt=(%1.9g,%1.9g)\n", __FUNCTION__,
+ gDebugRayDirName[static_cast<int>(dir)], hitBase.fSpan->segment()->debugID(),
+ hitBase.fT, hitBase.fPt.fX, hitBase.fPt.fY);
+ for (int index = 0; index < count; ++index) {
+ hit = sorted[index];
+ SkOpSpan* span = hit->fSpan;
+ SkOpSegment* hitSegment = span ? span->segment() : nullptr;
+ bool operand = span ? hitSegment->operand() : false;
+ bool ccw = ccw_dxdy(hit->fSlope, dir);
+ SkDebugf("%s [%d] valid=%d operand=%d span=%d ccw=%d ", __FUNCTION__, index,
+ hit->fValid, operand, span ? span->debugID() : -1, ccw);
+ if (span) {
+ hitSegment->dumpPtsInner();
+ }
+ SkDebugf(" t=%1.9g pt=(%1.9g,%1.9g) slope=(%1.9g,%1.9g)\n", hit->fT,
+ hit->fPt.fX, hit->fPt.fY, hit->fSlope.fX, hit->fSlope.fY);
+ }
+#endif
+ const SkPoint* last = nullptr;
+ int wind = 0;
+ int oppWind = 0;
+ for (int index = 0; index < count; ++index) {
+ hit = sorted[index];
+ if (!hit->fValid) {
+ return false;
+ }
+ bool ccw = ccw_dxdy(hit->fSlope, dir);
+// SkASSERT(!approximately_zero(hit->fT) || !hit->fValid);
+ SkOpSpan* span = hit->fSpan;
+ if (!span) {
+ return false;
+ }
+ SkOpSegment* hitSegment = span->segment();
+ if (span->windValue() == 0 && span->oppValue() == 0) {
+ continue;
+ }
+ if (last && SkDPoint::ApproximatelyEqual(*last, hit->fPt)) {
+ return false;
+ }
+ if (index < count - 1) {
+ const SkPoint& next = sorted[index + 1]->fPt;
+ if (SkDPoint::ApproximatelyEqual(next, hit->fPt)) {
+ return false;
+ }
+ }
+ bool operand = hitSegment->operand();
+ if (operand) {
+ using std::swap;
+ swap(wind, oppWind);
+ }
+ int lastWind = wind;
+ int lastOpp = oppWind;
+ int windValue = ccw ? -span->windValue() : span->windValue();
+ int oppValue = ccw ? -span->oppValue() : span->oppValue();
+ wind += windValue;
+ oppWind += oppValue;
+ bool sumSet = false;
+ int spanSum = span->windSum();
+ int windSum = SkOpSegment::UseInnerWinding(lastWind, wind) ? wind : lastWind;
+ if (spanSum == SK_MinS32) {
+ span->setWindSum(windSum);
+ sumSet = true;
+ } else {
+ // the need for this condition suggests that UseInnerWinding is flawed
+ // happened when last = 1 wind = -1
+#if 0
+ SkASSERT((hitSegment->isXor() ? (windSum & 1) == (spanSum & 1) : windSum == spanSum)
+ || (abs(wind) == abs(lastWind)
+ && (windSum ^ wind ^ lastWind) == spanSum));
+#endif
+ }
+ int oSpanSum = span->oppSum();
+ int oppSum = SkOpSegment::UseInnerWinding(lastOpp, oppWind) ? oppWind : lastOpp;
+ if (oSpanSum == SK_MinS32) {
+ span->setOppSum(oppSum);
+ } else {
+#if 0
+ SkASSERT(hitSegment->oppXor() ? (oppSum & 1) == (oSpanSum & 1) : oppSum == oSpanSum
+ || (abs(oppWind) == abs(lastOpp)
+ && (oppSum ^ oppWind ^ lastOpp) == oSpanSum));
+#endif
+ }
+ if (sumSet) {
+ if (this->globalState()->phase() == SkOpPhase::kFixWinding) {
+ hitSegment->contour()->setCcw(ccw);
+ } else {
+ (void) hitSegment->markAndChaseWinding(span, span->next(), windSum, oppSum, nullptr);
+ (void) hitSegment->markAndChaseWinding(span->next(), span, windSum, oppSum, nullptr);
+ }
+ }
+ if (operand) {
+ using std::swap;
+ swap(wind, oppWind);
+ }
+ last = &hit->fPt;
+ this->globalState()->bumpNested();
+ }
+ return true;
+}
+
+SkOpSpan* SkOpSegment::findSortableTop(SkOpContour* contourHead) {
+ SkOpSpan* span = &fHead;
+ SkOpSpanBase* next;
+ do {
+ next = span->next();
+ if (span->done()) {
+ continue;
+ }
+ if (span->windSum() != SK_MinS32) {
+ return span;
+ }
+ if (span->sortableTop(contourHead)) {
+ return span;
+ }
+ } while (!next->final() && (span = next->upCast()));
+ return nullptr;
+}
+
+SkOpSpan* SkOpContour::findSortableTop(SkOpContour* contourHead) {
+ bool allDone = true;
+ if (fCount) {
+ SkOpSegment* testSegment = &fHead;
+ do {
+ if (testSegment->done()) {
+ continue;
+ }
+ allDone = false;
+ SkOpSpan* result = testSegment->findSortableTop(contourHead);
+ if (result) {
+ return result;
+ }
+ } while ((testSegment = testSegment->next()));
+ }
+ if (allDone) {
+ fDone = true;
+ }
+ return nullptr;
+}
+
+SkOpSpan* FindSortableTop(SkOpContourHead* contourHead) {
+ for (int index = 0; index < SkOpGlobalState::kMaxWindingTries; ++index) {
+ SkOpContour* contour = contourHead;
+ do {
+ if (contour->done()) {
+ continue;
+ }
+ SkOpSpan* result = contour->findSortableTop(contourHead);
+ if (result) {
+ return result;
+ }
+ } while ((contour = contour->next()));
+ }
+ return nullptr;
+}