summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/res/ellipse.glsl
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--gfx/wr/webrender/res/ellipse.glsl85
1 files changed, 85 insertions, 0 deletions
diff --git a/gfx/wr/webrender/res/ellipse.glsl b/gfx/wr/webrender/res/ellipse.glsl
new file mode 100644
index 0000000000..36d20b8a5d
--- /dev/null
+++ b/gfx/wr/webrender/res/ellipse.glsl
@@ -0,0 +1,85 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+// Preprocess the radii for computing the distance approximation. This should
+// be used in the vertex shader if possible to avoid doing expensive division
+// in the fragment shader. When dealing with a point (zero radii), approximate
+// it as an ellipse with very small radii so that we don't need to branch.
+vec2 inverse_radii_squared(vec2 radii) {
+ return 1.0 / max(radii * radii, 1.0e-6);
+}
+
+#ifdef WR_FRAGMENT_SHADER
+
+// One iteration of Newton's method on the 2D equation of an ellipse:
+//
+// E(x, y) = x^2/a^2 + y^2/b^2 - 1
+//
+// The Jacobian of this equation is:
+//
+// J(E(x, y)) = [ 2*x/a^2 2*y/b^2 ]
+//
+// We approximate the distance with:
+//
+// E(x, y) / ||J(E(x, y))||
+//
+// See G. Taubin, "Distance Approximations for Rasterizing Implicit
+// Curves", section 3.
+//
+// A scale relative to the unit scale of the ellipse may be passed in to cause
+// the math to degenerate to length(p) when scale is 0, or otherwise give the
+// normal distance approximation if scale is 1.
+float distance_to_ellipse_approx(vec2 p, vec2 inv_radii_sq, float scale) {
+ vec2 p_r = p * inv_radii_sq;
+ float g = dot(p, p_r) - scale;
+ vec2 dG = (1.0 + scale) * p_r;
+ return g * inversesqrt(dot(dG, dG));
+}
+
+// Slower but more accurate version that uses the exact distance when dealing
+// with a 0-radius point distance and otherwise uses the faster approximation
+// when dealing with non-zero radii.
+float distance_to_ellipse(vec2 p, vec2 radii) {
+ return distance_to_ellipse_approx(p, inverse_radii_squared(radii),
+ float(all(greaterThan(radii, vec2(0.0)))));
+}
+
+float distance_to_rounded_rect(
+ vec2 pos,
+ vec4 center_radius_tl,
+ vec4 center_radius_tr,
+ vec4 center_radius_br,
+ vec4 center_radius_bl,
+ vec4 rect_bounds
+) {
+ // Clip against each ellipse. If the fragment is in a corner, one of the
+ // branches below will select it as the corner to calculate the distance
+ // to. We want to choose the smallest distance inside either of the axis
+ // bounds as the overall distance we use to compare which corner is closer
+ // than another. If outside any ellipse, default to a small offset so a
+ // negative distance is returned for it.
+ vec4 corner = vec4(vec2(1.0e-6), vec2(1.0));
+ center_radius_tl.xy = center_radius_tl.xy - pos;
+ center_radius_tr.xy = (center_radius_tr.xy - pos) * vec2(-1.0, 1.0);
+ center_radius_br.xy = pos - center_radius_br.xy;
+ center_radius_bl.xy = (center_radius_bl.xy - pos) * vec2(1.0, -1.0);
+ if (min(center_radius_tl.x, center_radius_tl.y) > min(corner.x, corner.y)) {
+ corner = center_radius_tl;
+ }
+ if (min(center_radius_tr.x, center_radius_tr.y) > min(corner.x, corner.y)) {
+ corner = center_radius_tr;
+ }
+ if (min(center_radius_br.x, center_radius_br.y) > min(corner.x, corner.y)) {
+ corner = center_radius_br;
+ }
+ if (min(center_radius_bl.x, center_radius_bl.y) > min(corner.x, corner.y)) {
+ corner = center_radius_bl;
+ }
+
+ // Calculate the distance of the selected corner and the rectangle bounds,
+ // whichever is greater.
+ return max(distance_to_ellipse_approx(corner.xy, corner.zw, 1.0),
+ signed_distance_rect(pos, rect_bounds.xy, rect_bounds.zw));
+}
+#endif