diff options
Diffstat (limited to 'gfx/wr/webrender/src/renderer/mod.rs')
-rw-r--r-- | gfx/wr/webrender/src/renderer/mod.rs | 5752 |
1 files changed, 5752 insertions, 0 deletions
diff --git a/gfx/wr/webrender/src/renderer/mod.rs b/gfx/wr/webrender/src/renderer/mod.rs new file mode 100644 index 0000000000..012a6a58cf --- /dev/null +++ b/gfx/wr/webrender/src/renderer/mod.rs @@ -0,0 +1,5752 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +//! The high-level module responsible for interfacing with the GPU. +//! +//! Much of WebRender's design is driven by separating work into different +//! threads. To avoid the complexities of multi-threaded GPU access, we restrict +//! all communication with the GPU to one thread, the render thread. But since +//! issuing GPU commands is often a bottleneck, we move everything else (i.e. +//! the computation of what commands to issue) to another thread, the +//! RenderBackend thread. The RenderBackend, in turn, may delegate work to other +//! thread (like the SceneBuilder threads or Rayon workers), but the +//! Render-vs-RenderBackend distinction is the most important. +//! +//! The consumer is responsible for initializing the render thread before +//! calling into WebRender, which means that this module also serves as the +//! initial entry point into WebRender, and is responsible for spawning the +//! various other threads discussed above. That said, WebRender initialization +//! returns both the `Renderer` instance as well as a channel for communicating +//! directly with the `RenderBackend`. Aside from a few high-level operations +//! like 'render now', most of interesting commands from the consumer go over +//! that channel and operate on the `RenderBackend`. +//! +//! ## Space conversion guidelines +//! At this stage, we shuld be operating with `DevicePixel` and `FramebufferPixel` only. +//! "Framebuffer" space represents the final destination of our rendeing, +//! and it happens to be Y-flipped on OpenGL. The conversion is done as follows: +//! - for rasterized primitives, the orthographics projection transforms +//! the content rectangle to -1 to 1 +//! - the viewport transformation is setup to map the whole range to +//! the framebuffer rectangle provided by the document view, stored in `DrawTarget` +//! - all the direct framebuffer operations, like blitting, reading pixels, and setting +//! up the scissor, are accepting already transformed coordinates, which we can get by +//! calling `DrawTarget::to_framebuffer_rect` + +use api::{ColorF, ColorU, MixBlendMode}; +use api::{DocumentId, Epoch, ExternalImageHandler, RenderReasons}; +#[cfg(feature = "replay")] +use api::ExternalImageId; +use api::{ExternalImageSource, ExternalImageType, ImageFormat, PremultipliedColorF}; +use api::{PipelineId, ImageRendering, Checkpoint, NotificationRequest, ImageBufferKind}; +#[cfg(feature = "replay")] +use api::ExternalImage; +use api::units::*; +use api::channel::{Sender, Receiver}; +pub use api::DebugFlags; +use core::time::Duration; + +use crate::render_api::{DebugCommand, ApiMsg, MemoryReport}; +use crate::batch::{AlphaBatchContainer, BatchKind, BatchFeatures, BatchTextures, BrushBatchKind, ClipBatchList}; +#[cfg(any(feature = "capture", feature = "replay"))] +use crate::capture::{CaptureConfig, ExternalCaptureImage, PlainExternalImage}; +use crate::composite::{CompositeState, CompositeTileSurface, ResolvedExternalSurface, CompositorSurfaceTransform}; +use crate::composite::{CompositorKind, Compositor, NativeTileId, CompositeFeatures, CompositeSurfaceFormat, ResolvedExternalSurfaceColorData}; +use crate::composite::{CompositorConfig, NativeSurfaceOperationDetails, NativeSurfaceId, NativeSurfaceOperation}; +use crate::composite::{TileKind}; +use crate::debug_colors; +use crate::device::{DepthFunction, Device, DrawTarget, ExternalTexture, GpuFrameId, UploadPBOPool}; +use crate::device::{ReadTarget, ShaderError, Texture, TextureFilter, TextureFlags, TextureSlot}; +use crate::device::query::{GpuSampler, GpuTimer}; +#[cfg(feature = "capture")] +use crate::device::FBOId; +use crate::debug_item::DebugItem; +use crate::frame_builder::Frame; +use glyph_rasterizer::GlyphFormat; +use crate::gpu_cache::{GpuCacheUpdate, GpuCacheUpdateList}; +use crate::gpu_cache::{GpuCacheDebugChunk, GpuCacheDebugCmd}; +use crate::gpu_types::{ScalingInstance, SvgFilterInstance, CopyInstance}; +use crate::gpu_types::{BlurInstance, ClearInstance, CompositeInstance, ZBufferId, CompositorTransform}; +use crate::internal_types::{TextureSource, TextureCacheCategory, FrameId}; +#[cfg(any(feature = "capture", feature = "replay"))] +use crate::internal_types::DebugOutput; +use crate::internal_types::{CacheTextureId, FastHashMap, FastHashSet, RenderedDocument, ResultMsg}; +use crate::internal_types::{TextureCacheAllocInfo, TextureCacheAllocationKind, TextureUpdateList}; +use crate::internal_types::{RenderTargetInfo, Swizzle, DeferredResolveIndex}; +use crate::picture::ResolvedSurfaceTexture; +use crate::prim_store::DeferredResolve; +use crate::profiler::{self, GpuProfileTag, TransactionProfile}; +use crate::profiler::{Profiler, add_event_marker, add_text_marker, thread_is_being_profiled}; +use crate::device::query::GpuProfiler; +use crate::render_target::ResolveOp; +use crate::render_task_graph::RenderTaskGraph; +use crate::render_task::{RenderTask, RenderTaskKind, ReadbackTask}; +use crate::screen_capture::AsyncScreenshotGrabber; +use crate::render_target::{AlphaRenderTarget, ColorRenderTarget, PictureCacheTarget, PictureCacheTargetKind}; +use crate::render_target::{RenderTarget, TextureCacheRenderTarget}; +use crate::render_target::{RenderTargetKind, BlitJob}; +use crate::telemetry::Telemetry; +use crate::tile_cache::PictureCacheDebugInfo; +use crate::util::drain_filter; +use crate::rectangle_occlusion as occlusion; +use upload::{upload_to_texture_cache, UploadTexturePool}; +use init::*; + +use euclid::{rect, Transform3D, Scale, default}; +use gleam::gl; +use malloc_size_of::MallocSizeOfOps; + +#[cfg(feature = "replay")] +use std::sync::Arc; + +use std::{ + cell::RefCell, + collections::VecDeque, + f32, + ffi::c_void, + mem, + num::NonZeroUsize, + path::PathBuf, + rc::Rc, +}; +#[cfg(any(feature = "capture", feature = "replay"))] +use std::collections::hash_map::Entry; +use time::precise_time_ns; + +mod debug; +mod gpu_buffer; +mod gpu_cache; +mod shade; +mod vertex; +mod upload; +pub(crate) mod init; + +pub use debug::DebugRenderer; +pub use shade::{Shaders, SharedShaders}; +pub use vertex::{desc, VertexArrayKind, MAX_VERTEX_TEXTURE_WIDTH}; +pub use gpu_buffer::{GpuBuffer, GpuBufferBuilder, GpuBufferAddress}; + +/// The size of the array of each type of vertex data texture that +/// is round-robin-ed each frame during bind_frame_data. Doing this +/// helps avoid driver stalls while updating the texture in some +/// drivers. The size of these textures are typically very small +/// (e.g. < 16 kB) so it's not a huge waste of memory. Despite that, +/// this is a short-term solution - we want to find a better way +/// to provide this frame data, which will likely involve some +/// combination of UBO/SSBO usage. Although this only affects some +/// platforms, it's enabled on all platforms to reduce testing +/// differences between platforms. +pub const VERTEX_DATA_TEXTURE_COUNT: usize = 3; + +/// Number of GPU blocks per UV rectangle provided for an image. +pub const BLOCKS_PER_UV_RECT: usize = 2; + +const GPU_TAG_BRUSH_OPACITY: GpuProfileTag = GpuProfileTag { + label: "B_Opacity", + color: debug_colors::DARKMAGENTA, +}; +const GPU_TAG_BRUSH_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "B_LinearGradient", + color: debug_colors::POWDERBLUE, +}; +const GPU_TAG_BRUSH_YUV_IMAGE: GpuProfileTag = GpuProfileTag { + label: "B_YuvImage", + color: debug_colors::DARKGREEN, +}; +const GPU_TAG_BRUSH_MIXBLEND: GpuProfileTag = GpuProfileTag { + label: "B_MixBlend", + color: debug_colors::MAGENTA, +}; +const GPU_TAG_BRUSH_BLEND: GpuProfileTag = GpuProfileTag { + label: "B_Blend", + color: debug_colors::ORANGE, +}; +const GPU_TAG_BRUSH_IMAGE: GpuProfileTag = GpuProfileTag { + label: "B_Image", + color: debug_colors::SPRINGGREEN, +}; +const GPU_TAG_BRUSH_SOLID: GpuProfileTag = GpuProfileTag { + label: "B_Solid", + color: debug_colors::RED, +}; +const GPU_TAG_CACHE_CLIP: GpuProfileTag = GpuProfileTag { + label: "C_Clip", + color: debug_colors::PURPLE, +}; +const GPU_TAG_CACHE_BORDER: GpuProfileTag = GpuProfileTag { + label: "C_Border", + color: debug_colors::CORNSILK, +}; +const GPU_TAG_CACHE_LINE_DECORATION: GpuProfileTag = GpuProfileTag { + label: "C_LineDecoration", + color: debug_colors::YELLOWGREEN, +}; +const GPU_TAG_CACHE_FAST_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "C_FastLinearGradient", + color: debug_colors::BROWN, +}; +const GPU_TAG_CACHE_LINEAR_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "C_LinearGradient", + color: debug_colors::BROWN, +}; +const GPU_TAG_CACHE_RADIAL_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "C_RadialGradient", + color: debug_colors::BROWN, +}; +const GPU_TAG_CACHE_CONIC_GRADIENT: GpuProfileTag = GpuProfileTag { + label: "C_ConicGradient", + color: debug_colors::BROWN, +}; +const GPU_TAG_SETUP_TARGET: GpuProfileTag = GpuProfileTag { + label: "target init", + color: debug_colors::SLATEGREY, +}; +const GPU_TAG_SETUP_DATA: GpuProfileTag = GpuProfileTag { + label: "data init", + color: debug_colors::LIGHTGREY, +}; +const GPU_TAG_PRIM_SPLIT_COMPOSITE: GpuProfileTag = GpuProfileTag { + label: "SplitComposite", + color: debug_colors::DARKBLUE, +}; +const GPU_TAG_PRIM_TEXT_RUN: GpuProfileTag = GpuProfileTag { + label: "TextRun", + color: debug_colors::BLUE, +}; +const GPU_TAG_BLUR: GpuProfileTag = GpuProfileTag { + label: "Blur", + color: debug_colors::VIOLET, +}; +const GPU_TAG_BLIT: GpuProfileTag = GpuProfileTag { + label: "Blit", + color: debug_colors::LIME, +}; +const GPU_TAG_SCALE: GpuProfileTag = GpuProfileTag { + label: "Scale", + color: debug_colors::GHOSTWHITE, +}; +const GPU_SAMPLER_TAG_ALPHA: GpuProfileTag = GpuProfileTag { + label: "Alpha targets", + color: debug_colors::BLACK, +}; +const GPU_SAMPLER_TAG_OPAQUE: GpuProfileTag = GpuProfileTag { + label: "Opaque pass", + color: debug_colors::BLACK, +}; +const GPU_SAMPLER_TAG_TRANSPARENT: GpuProfileTag = GpuProfileTag { + label: "Transparent pass", + color: debug_colors::BLACK, +}; +const GPU_TAG_SVG_FILTER: GpuProfileTag = GpuProfileTag { + label: "SvgFilter", + color: debug_colors::LEMONCHIFFON, +}; +const GPU_TAG_COMPOSITE: GpuProfileTag = GpuProfileTag { + label: "Composite", + color: debug_colors::TOMATO, +}; +const GPU_TAG_CLEAR: GpuProfileTag = GpuProfileTag { + label: "Clear", + color: debug_colors::CHOCOLATE, +}; + +/// The clear color used for the texture cache when the debug display is enabled. +/// We use a shade of blue so that we can still identify completely blue items in +/// the texture cache. +pub const TEXTURE_CACHE_DBG_CLEAR_COLOR: [f32; 4] = [0.0, 0.0, 0.8, 1.0]; + +impl BatchKind { + fn sampler_tag(&self) -> GpuProfileTag { + match *self { + BatchKind::SplitComposite => GPU_TAG_PRIM_SPLIT_COMPOSITE, + BatchKind::Brush(kind) => { + match kind { + BrushBatchKind::Solid => GPU_TAG_BRUSH_SOLID, + BrushBatchKind::Image(..) => GPU_TAG_BRUSH_IMAGE, + BrushBatchKind::Blend => GPU_TAG_BRUSH_BLEND, + BrushBatchKind::MixBlend { .. } => GPU_TAG_BRUSH_MIXBLEND, + BrushBatchKind::YuvImage(..) => GPU_TAG_BRUSH_YUV_IMAGE, + BrushBatchKind::LinearGradient => GPU_TAG_BRUSH_LINEAR_GRADIENT, + BrushBatchKind::Opacity => GPU_TAG_BRUSH_OPACITY, + } + } + BatchKind::TextRun(_) => GPU_TAG_PRIM_TEXT_RUN, + } + } +} + +fn flag_changed(before: DebugFlags, after: DebugFlags, select: DebugFlags) -> Option<bool> { + if before & select != after & select { + Some(after.contains(select)) + } else { + None + } +} + +#[repr(C)] +#[derive(Copy, Clone, Debug)] +pub enum ShaderColorMode { + FromRenderPassMode = 0, + Alpha = 1, + SubpixelWithBgColorPass0 = 2, + SubpixelWithBgColorPass1 = 3, + SubpixelWithBgColorPass2 = 4, + SubpixelDualSource = 5, + BitmapShadow = 6, + ColorBitmap = 7, + Image = 8, + MultiplyDualSource = 9, +} + +impl From<GlyphFormat> for ShaderColorMode { + fn from(format: GlyphFormat) -> ShaderColorMode { + match format { + GlyphFormat::Alpha | + GlyphFormat::TransformedAlpha | + GlyphFormat::Bitmap => ShaderColorMode::Alpha, + GlyphFormat::Subpixel | GlyphFormat::TransformedSubpixel => { + panic!("Subpixel glyph formats must be handled separately."); + } + GlyphFormat::ColorBitmap => ShaderColorMode::ColorBitmap, + } + } +} + +/// Enumeration of the texture samplers used across the various WebRender shaders. +/// +/// Each variant corresponds to a uniform declared in shader source. We only bind +/// the variants we need for a given shader, so not every variant is bound for every +/// batch. +#[derive(Debug, Copy, Clone, PartialEq, Eq)] +pub(crate) enum TextureSampler { + Color0, + Color1, + Color2, + GpuCache, + TransformPalette, + RenderTasks, + Dither, + PrimitiveHeadersF, + PrimitiveHeadersI, + ClipMask, + GpuBuffer, +} + +impl TextureSampler { + pub(crate) fn color(n: usize) -> TextureSampler { + match n { + 0 => TextureSampler::Color0, + 1 => TextureSampler::Color1, + 2 => TextureSampler::Color2, + _ => { + panic!("There are only 3 color samplers."); + } + } + } +} + +impl Into<TextureSlot> for TextureSampler { + fn into(self) -> TextureSlot { + match self { + TextureSampler::Color0 => TextureSlot(0), + TextureSampler::Color1 => TextureSlot(1), + TextureSampler::Color2 => TextureSlot(2), + TextureSampler::GpuCache => TextureSlot(3), + TextureSampler::TransformPalette => TextureSlot(4), + TextureSampler::RenderTasks => TextureSlot(5), + TextureSampler::Dither => TextureSlot(6), + TextureSampler::PrimitiveHeadersF => TextureSlot(7), + TextureSampler::PrimitiveHeadersI => TextureSlot(8), + TextureSampler::ClipMask => TextureSlot(9), + TextureSampler::GpuBuffer => TextureSlot(10), + } + } +} + +#[derive(Clone, Debug, PartialEq)] +pub enum GraphicsApi { + OpenGL, +} + +#[derive(Clone, Debug)] +pub struct GraphicsApiInfo { + pub kind: GraphicsApi, + pub renderer: String, + pub version: String, +} + +#[derive(Debug)] +pub struct GpuProfile { + pub frame_id: GpuFrameId, + pub paint_time_ns: u64, +} + +impl GpuProfile { + fn new(frame_id: GpuFrameId, timers: &[GpuTimer]) -> GpuProfile { + let mut paint_time_ns = 0; + for timer in timers { + paint_time_ns += timer.time_ns; + } + GpuProfile { + frame_id, + paint_time_ns, + } + } +} + +#[derive(Debug)] +pub struct CpuProfile { + pub frame_id: GpuFrameId, + pub backend_time_ns: u64, + pub composite_time_ns: u64, + pub draw_calls: usize, +} + +impl CpuProfile { + fn new( + frame_id: GpuFrameId, + backend_time_ns: u64, + composite_time_ns: u64, + draw_calls: usize, + ) -> CpuProfile { + CpuProfile { + frame_id, + backend_time_ns, + composite_time_ns, + draw_calls, + } + } +} + +/// The selected partial present mode for a given frame. +#[derive(Debug, Copy, Clone)] +enum PartialPresentMode { + /// The device supports fewer dirty rects than the number of dirty rects + /// that WR produced. In this case, the WR dirty rects are union'ed into + /// a single dirty rect, that is provided to the caller. + Single { + dirty_rect: DeviceRect, + }, +} + +struct CacheTexture { + texture: Texture, + category: TextureCacheCategory, +} + +/// Helper struct for resolving device Textures for use during rendering passes. +/// +/// Manages the mapping between the at-a-distance texture handles used by the +/// `RenderBackend` (which does not directly interface with the GPU) and actual +/// device texture handles. +struct TextureResolver { + /// A map to resolve texture cache IDs to native textures. + texture_cache_map: FastHashMap<CacheTextureId, CacheTexture>, + + /// Map of external image IDs to native textures. + external_images: FastHashMap<DeferredResolveIndex, ExternalTexture>, + + /// A special 1x1 dummy texture used for shaders that expect to work with + /// the output of the previous pass but are actually running in the first + /// pass. + dummy_cache_texture: Texture, +} + +impl TextureResolver { + fn new(device: &mut Device) -> TextureResolver { + let dummy_cache_texture = device + .create_texture( + ImageBufferKind::Texture2D, + ImageFormat::RGBA8, + 1, + 1, + TextureFilter::Linear, + None, + ); + device.upload_texture_immediate( + &dummy_cache_texture, + &[0xff, 0xff, 0xff, 0xff], + ); + + TextureResolver { + texture_cache_map: FastHashMap::default(), + external_images: FastHashMap::default(), + dummy_cache_texture, + } + } + + fn deinit(self, device: &mut Device) { + device.delete_texture(self.dummy_cache_texture); + + for (_id, item) in self.texture_cache_map { + device.delete_texture(item.texture); + } + } + + fn begin_frame(&mut self) { + } + + fn end_pass( + &mut self, + device: &mut Device, + textures_to_invalidate: &[CacheTextureId], + ) { + // For any texture that is no longer needed, immediately + // invalidate it so that tiled GPUs don't need to resolve it + // back to memory. + for texture_id in textures_to_invalidate { + let render_target = &self.texture_cache_map[texture_id].texture; + device.invalidate_render_target(render_target); + } + } + + // Bind a source texture to the device. + fn bind(&self, texture_id: &TextureSource, sampler: TextureSampler, device: &mut Device) -> Swizzle { + match *texture_id { + TextureSource::Invalid => { + Swizzle::default() + } + TextureSource::Dummy => { + let swizzle = Swizzle::default(); + device.bind_texture(sampler, &self.dummy_cache_texture, swizzle); + swizzle + } + TextureSource::External(ref index, _) => { + let texture = self.external_images + .get(index) + .expect("BUG: External image should be resolved by now"); + device.bind_external_texture(sampler, texture); + Swizzle::default() + } + TextureSource::TextureCache(index, swizzle) => { + let texture = &self.texture_cache_map[&index].texture; + device.bind_texture(sampler, texture, swizzle); + swizzle + } + } + } + + // Get the real (OpenGL) texture ID for a given source texture. + // For a texture cache texture, the IDs are stored in a vector + // map for fast access. + fn resolve(&self, texture_id: &TextureSource) -> Option<(&Texture, Swizzle)> { + match *texture_id { + TextureSource::Invalid => None, + TextureSource::Dummy => { + Some((&self.dummy_cache_texture, Swizzle::default())) + } + TextureSource::External(..) => { + panic!("BUG: External textures cannot be resolved, they can only be bound."); + } + TextureSource::TextureCache(index, swizzle) => { + Some((&self.texture_cache_map[&index].texture, swizzle)) + } + } + } + + // Retrieve the deferred / resolved UV rect if an external texture, otherwise + // return the default supplied UV rect. + fn get_uv_rect( + &self, + source: &TextureSource, + default_value: TexelRect, + ) -> TexelRect { + match source { + TextureSource::External(ref index, _) => { + let texture = self.external_images + .get(index) + .expect("BUG: External image should be resolved by now"); + texture.get_uv_rect() + } + _ => { + default_value + } + } + } + + /// Returns the size of the texture in pixels + fn get_texture_size(&self, texture: &TextureSource) -> DeviceIntSize { + match *texture { + TextureSource::Invalid => DeviceIntSize::zero(), + TextureSource::TextureCache(id, _) => { + self.texture_cache_map[&id].texture.get_dimensions() + }, + TextureSource::External(index, _) => { + let uv_rect = self.external_images[&index].get_uv_rect(); + (uv_rect.uv1 - uv_rect.uv0).abs().to_size().to_i32() + }, + TextureSource::Dummy => DeviceIntSize::new(1, 1), + } + } + + fn report_memory(&self) -> MemoryReport { + let mut report = MemoryReport::default(); + + // We're reporting GPU memory rather than heap-allocations, so we don't + // use size_of_op. + for item in self.texture_cache_map.values() { + let counter = match item.category { + TextureCacheCategory::Atlas => &mut report.atlas_textures, + TextureCacheCategory::Standalone => &mut report.standalone_textures, + TextureCacheCategory::PictureTile => &mut report.picture_tile_textures, + TextureCacheCategory::RenderTarget => &mut report.render_target_textures, + }; + *counter += item.texture.size_in_bytes(); + } + + report + } + + fn update_profile(&self, profile: &mut TransactionProfile) { + let mut external_image_bytes = 0; + for img in self.external_images.values() { + let uv_rect = img.get_uv_rect(); + let size = (uv_rect.uv1 - uv_rect.uv0).abs().to_size().to_i32(); + + // Assume 4 bytes per pixels which is true most of the time but + // not always. + let bpp = 4; + external_image_bytes += size.area() as usize * bpp; + } + + profile.set(profiler::EXTERNAL_IMAGE_BYTES, profiler::bytes_to_mb(external_image_bytes)); + } + + fn get_cache_texture_mut(&mut self, id: &CacheTextureId) -> &mut Texture { + &mut self.texture_cache_map + .get_mut(id) + .expect("bug: texture not allocated") + .texture + } +} + +#[derive(Debug, Copy, Clone, PartialEq)] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +pub enum BlendMode { + None, + Alpha, + PremultipliedAlpha, + PremultipliedDestOut, + SubpixelDualSource, + SubpixelWithBgColor, + Advanced(MixBlendMode), + MultiplyDualSource, + Screen, + Exclusion, + PlusLighter, +} + +impl BlendMode { + /// Decides when a given mix-blend-mode can be implemented in terms of + /// simple blending, dual-source blending, advanced blending, or not at + /// all based on available capabilities. + pub fn from_mix_blend_mode( + mode: MixBlendMode, + advanced_blend: bool, + coherent: bool, + dual_source: bool, + ) -> Option<BlendMode> { + // If we emulate a mix-blend-mode via simple or dual-source blending, + // care must be taken to output alpha As + Ad*(1-As) regardless of what + // the RGB output is to comply with the mix-blend-mode spec. + Some(match mode { + // If we have coherent advanced blend, just use that. + _ if advanced_blend && coherent => BlendMode::Advanced(mode), + // Screen can be implemented as Cs + Cd - Cs*Cd => Cs + Cd*(1-Cs) + MixBlendMode::Screen => BlendMode::Screen, + // Exclusion can be implemented as Cs + Cd - 2*Cs*Cd => Cs*(1-Cd) + Cd*(1-Cs) + MixBlendMode::Exclusion => BlendMode::Exclusion, + // PlusLighter is basically a clamped add. + MixBlendMode::PlusLighter => BlendMode::PlusLighter, + // Multiply can be implemented as Cs*Cd + Cs*(1-Ad) + Cd*(1-As) => Cs*(1-Ad) + Cd*(1 - SRC1=(As-Cs)) + MixBlendMode::Multiply if dual_source => BlendMode::MultiplyDualSource, + // Otherwise, use advanced blend without coherency if available. + _ if advanced_blend => BlendMode::Advanced(mode), + // If advanced blend is not available, then we have to use brush_mix_blend. + _ => return None, + }) + } +} + +/// Information about the state of the debugging / profiler overlay in native compositing mode. +struct DebugOverlayState { + /// True if any of the current debug flags will result in drawing a debug overlay. + is_enabled: bool, + + /// The current size of the debug overlay surface. None implies that the + /// debug surface isn't currently allocated. + current_size: Option<DeviceIntSize>, +} + +impl DebugOverlayState { + fn new() -> Self { + DebugOverlayState { + is_enabled: false, + current_size: None, + } + } +} + +/// Tracks buffer damage rects over a series of frames. +#[derive(Debug, Default)] +pub(crate) struct BufferDamageTracker { + damage_rects: [DeviceRect; 2], + current_offset: usize, +} + +impl BufferDamageTracker { + /// Sets the damage rect for the current frame. Should only be called *after* + /// get_damage_rect() has been called to get the current backbuffer's damage rect. + fn push_dirty_rect(&mut self, rect: &DeviceRect) { + self.damage_rects[self.current_offset] = rect.clone(); + self.current_offset = match self.current_offset { + 0 => self.damage_rects.len() - 1, + n => n - 1, + } + } + + /// Gets the damage rect for the current backbuffer, given the backbuffer's age. + /// (The number of frames since it was previously the backbuffer.) + /// Returns an empty rect if the buffer is valid, and None if the entire buffer is invalid. + fn get_damage_rect(&self, buffer_age: usize) -> Option<DeviceRect> { + match buffer_age { + // 0 means this is a new buffer, so is completely invalid. + 0 => None, + // 1 means this backbuffer was also the previous frame's backbuffer + // (so must have been copied to the frontbuffer). It is therefore entirely valid. + 1 => Some(DeviceRect::zero()), + // We must calculate the union of the damage rects since this buffer was previously + // the backbuffer. + n if n <= self.damage_rects.len() + 1 => { + Some( + self.damage_rects.iter() + .cycle() + .skip(self.current_offset + 1) + .take(n - 1) + .fold(DeviceRect::zero(), |acc, r| acc.union(r)) + ) + } + // The backbuffer is older than the number of frames for which we track, + // so we treat it as entirely invalid. + _ => None, + } + } +} + +/// The renderer is responsible for submitting to the GPU the work prepared by the +/// RenderBackend. +/// +/// We have a separate `Renderer` instance for each instance of WebRender (generally +/// one per OS window), and all instances share the same thread. +pub struct Renderer { + result_rx: Receiver<ResultMsg>, + api_tx: Sender<ApiMsg>, + pub device: Device, + pending_texture_updates: Vec<TextureUpdateList>, + /// True if there are any TextureCacheUpdate pending. + pending_texture_cache_updates: bool, + pending_native_surface_updates: Vec<NativeSurfaceOperation>, + pending_gpu_cache_updates: Vec<GpuCacheUpdateList>, + pending_gpu_cache_clear: bool, + pending_shader_updates: Vec<PathBuf>, + active_documents: FastHashMap<DocumentId, RenderedDocument>, + + shaders: Rc<RefCell<Shaders>>, + + max_recorded_profiles: usize, + + clear_color: ColorF, + enable_clear_scissor: bool, + enable_advanced_blend_barriers: bool, + clear_caches_with_quads: bool, + clear_alpha_targets_with_quads: bool, + + debug: debug::LazyInitializedDebugRenderer, + debug_flags: DebugFlags, + profile: TransactionProfile, + frame_counter: u64, + resource_upload_time: f64, + gpu_cache_upload_time: f64, + profiler: Profiler, + + last_time: u64, + + pub gpu_profiler: GpuProfiler, + vaos: vertex::RendererVAOs, + + gpu_cache_texture: gpu_cache::GpuCacheTexture, + vertex_data_textures: Vec<vertex::VertexDataTextures>, + current_vertex_data_textures: usize, + + /// When the GPU cache debugger is enabled, we keep track of the live blocks + /// in the GPU cache so that we can use them for the debug display. This + /// member stores those live blocks, indexed by row. + gpu_cache_debug_chunks: Vec<Vec<GpuCacheDebugChunk>>, + + gpu_cache_frame_id: FrameId, + gpu_cache_overflow: bool, + + pipeline_info: PipelineInfo, + + // Manages and resolves source textures IDs to real texture IDs. + texture_resolver: TextureResolver, + + texture_upload_pbo_pool: UploadPBOPool, + staging_texture_pool: UploadTexturePool, + + dither_matrix_texture: Option<Texture>, + + /// Optional trait object that allows the client + /// application to provide external buffers for image data. + external_image_handler: Option<Box<dyn ExternalImageHandler>>, + + /// Optional function pointers for measuring memory used by a given + /// heap-allocated pointer. + size_of_ops: Option<MallocSizeOfOps>, + + pub renderer_errors: Vec<RendererError>, + + pub(in crate) async_frame_recorder: Option<AsyncScreenshotGrabber>, + pub(in crate) async_screenshots: Option<AsyncScreenshotGrabber>, + + /// List of profile results from previous frames. Can be retrieved + /// via get_frame_profiles(). + cpu_profiles: VecDeque<CpuProfile>, + gpu_profiles: VecDeque<GpuProfile>, + + /// Notification requests to be fulfilled after rendering. + notifications: Vec<NotificationRequest>, + + device_size: Option<DeviceIntSize>, + + /// A lazily created texture for the zoom debugging widget. + zoom_debug_texture: Option<Texture>, + + /// The current mouse position. This is used for debugging + /// functionality only, such as the debug zoom widget. + cursor_position: DeviceIntPoint, + + /// Guards to check if we might be rendering a frame with expired texture + /// cache entries. + shared_texture_cache_cleared: bool, + + /// The set of documents which we've seen a publish for since last render. + documents_seen: FastHashSet<DocumentId>, + + #[cfg(feature = "capture")] + read_fbo: FBOId, + #[cfg(feature = "replay")] + owned_external_images: FastHashMap<(ExternalImageId, u8), ExternalTexture>, + + /// The compositing config, affecting how WR composites into the final scene. + compositor_config: CompositorConfig, + + current_compositor_kind: CompositorKind, + + /// Maintains a set of allocated native composite surfaces. This allows any + /// currently allocated surfaces to be cleaned up as soon as deinit() is + /// called (the normal bookkeeping for native surfaces exists in the + /// render backend thread). + allocated_native_surfaces: FastHashSet<NativeSurfaceId>, + + /// If true, partial present state has been reset and everything needs to + /// be drawn on the next render. + force_redraw: bool, + + /// State related to the debug / profiling overlays + debug_overlay_state: DebugOverlayState, + + /// Tracks the dirty rectangles from previous frames. Used on platforms + /// that require keeping the front buffer fully correct when doing + /// partial present (e.g. unix desktop with EGL_EXT_buffer_age). + buffer_damage_tracker: BufferDamageTracker, + + max_primitive_instance_count: usize, + enable_instancing: bool, + + /// Count consecutive oom frames to detectif we are stuck unable to render + /// in a loop. + consecutive_oom_frames: u32, +} + +#[derive(Debug)] +pub enum RendererError { + Shader(ShaderError), + Thread(std::io::Error), + MaxTextureSize, + SoftwareRasterizer, + OutOfMemory, +} + +impl From<ShaderError> for RendererError { + fn from(err: ShaderError) -> Self { + RendererError::Shader(err) + } +} + +impl From<std::io::Error> for RendererError { + fn from(err: std::io::Error) -> Self { + RendererError::Thread(err) + } +} + +impl Renderer { + pub fn device_size(&self) -> Option<DeviceIntSize> { + self.device_size + } + + /// Update the current position of the debug cursor. + pub fn set_cursor_position( + &mut self, + position: DeviceIntPoint, + ) { + self.cursor_position = position; + } + + pub fn get_max_texture_size(&self) -> i32 { + self.device.max_texture_size() + } + + pub fn get_graphics_api_info(&self) -> GraphicsApiInfo { + GraphicsApiInfo { + kind: GraphicsApi::OpenGL, + version: self.device.gl().get_string(gl::VERSION), + renderer: self.device.gl().get_string(gl::RENDERER), + } + } + + pub fn preferred_color_format(&self) -> ImageFormat { + self.device.preferred_color_formats().external + } + + pub fn required_texture_stride_alignment(&self, format: ImageFormat) -> usize { + self.device.required_pbo_stride().num_bytes(format).get() + } + + pub fn set_clear_color(&mut self, color: ColorF) { + self.clear_color = color; + } + + pub fn flush_pipeline_info(&mut self) -> PipelineInfo { + mem::replace(&mut self.pipeline_info, PipelineInfo::default()) + } + + /// Returns the Epoch of the current frame in a pipeline. + pub fn current_epoch(&self, document_id: DocumentId, pipeline_id: PipelineId) -> Option<Epoch> { + self.pipeline_info.epochs.get(&(pipeline_id, document_id)).cloned() + } + + /// Processes the result queue. + /// + /// Should be called before `render()`, as texture cache updates are done here. + pub fn update(&mut self) { + profile_scope!("update"); + + // Pull any pending results and return the most recent. + while let Ok(msg) = self.result_rx.try_recv() { + match msg { + ResultMsg::PublishPipelineInfo(mut pipeline_info) => { + for ((pipeline_id, document_id), epoch) in pipeline_info.epochs { + self.pipeline_info.epochs.insert((pipeline_id, document_id), epoch); + } + self.pipeline_info.removed_pipelines.extend(pipeline_info.removed_pipelines.drain(..)); + } + ResultMsg::PublishDocument( + document_id, + mut doc, + resource_update_list, + ) => { + // Add a new document to the active set + + // If the document we are replacing must be drawn (in order to + // update the texture cache), issue a render just to + // off-screen targets, ie pass None to render_impl. We do this + // because a) we don't need to render to the main framebuffer + // so it is cheaper not to, and b) doing so without a + // subsequent present would break partial present. + if let Some(mut prev_doc) = self.active_documents.remove(&document_id) { + doc.profile.merge(&mut prev_doc.profile); + + if prev_doc.frame.must_be_drawn() { + prev_doc.render_reasons |= RenderReasons::TEXTURE_CACHE_FLUSH; + self.render_impl( + document_id, + &mut prev_doc, + None, + 0, + ).ok(); + } + } + + self.active_documents.insert(document_id, doc); + + // IMPORTANT: The pending texture cache updates must be applied + // *after* the previous frame has been rendered above + // (if neceessary for a texture cache update). For + // an example of why this is required: + // 1) Previous frame contains a render task that + // targets Texture X. + // 2) New frame contains a texture cache update which + // frees Texture X. + // 3) bad stuff happens. + + //TODO: associate `document_id` with target window + self.pending_texture_cache_updates |= !resource_update_list.texture_updates.updates.is_empty(); + self.pending_texture_updates.push(resource_update_list.texture_updates); + self.pending_native_surface_updates.extend(resource_update_list.native_surface_updates); + self.documents_seen.insert(document_id); + } + ResultMsg::UpdateGpuCache(mut list) => { + if list.clear { + self.pending_gpu_cache_clear = true; + } + if list.clear { + self.gpu_cache_debug_chunks = Vec::new(); + } + for cmd in mem::replace(&mut list.debug_commands, Vec::new()) { + match cmd { + GpuCacheDebugCmd::Alloc(chunk) => { + let row = chunk.address.v as usize; + if row >= self.gpu_cache_debug_chunks.len() { + self.gpu_cache_debug_chunks.resize(row + 1, Vec::new()); + } + self.gpu_cache_debug_chunks[row].push(chunk); + }, + GpuCacheDebugCmd::Free(address) => { + let chunks = &mut self.gpu_cache_debug_chunks[address.v as usize]; + let pos = chunks.iter() + .position(|x| x.address == address).unwrap(); + chunks.remove(pos); + }, + } + } + self.pending_gpu_cache_updates.push(list); + } + ResultMsg::UpdateResources { + resource_updates, + memory_pressure, + } => { + if memory_pressure { + // If a memory pressure event arrives _after_ a new scene has + // been published that writes persistent targets (i.e. cached + // render tasks to the texture cache, or picture cache tiles) + // but _before_ the next update/render loop, those targets + // will not be updated due to the active_documents list being + // cleared at the end of this message. To work around that, + // if any of the existing documents have not rendered yet, and + // have picture/texture cache targets, force a render so that + // those targets are updated. + let active_documents = mem::replace( + &mut self.active_documents, + FastHashMap::default(), + ); + for (doc_id, mut doc) in active_documents { + if doc.frame.must_be_drawn() { + // As this render will not be presented, we must pass None to + // render_impl. This avoids interfering with partial present + // logic, as well as being more efficient. + self.render_impl( + doc_id, + &mut doc, + None, + 0, + ).ok(); + } + } + } + + self.pending_texture_cache_updates |= !resource_updates.texture_updates.updates.is_empty(); + self.pending_texture_updates.push(resource_updates.texture_updates); + self.pending_native_surface_updates.extend(resource_updates.native_surface_updates); + self.device.begin_frame(); + + self.update_texture_cache(); + self.update_native_surfaces(); + + // Flush the render target pool on memory pressure. + // + // This needs to be separate from the block below because + // the device module asserts if we delete textures while + // not in a frame. + if memory_pressure { + self.texture_upload_pbo_pool.on_memory_pressure(&mut self.device); + self.staging_texture_pool.delete_textures(&mut self.device); + } + + self.device.end_frame(); + } + ResultMsg::AppendNotificationRequests(mut notifications) => { + // We need to know specifically if there are any pending + // TextureCacheUpdate updates in any of the entries in + // pending_texture_updates. They may simply be nops, which do not + // need to prevent issuing the notification, and if so, may not + // cause a timely frame render to occur to wake up any listeners. + if !self.pending_texture_cache_updates { + drain_filter( + &mut notifications, + |n| { n.when() == Checkpoint::FrameTexturesUpdated }, + |n| { n.notify(); }, + ); + } + self.notifications.append(&mut notifications); + } + ResultMsg::ForceRedraw => { + self.force_redraw = true; + } + ResultMsg::RefreshShader(path) => { + self.pending_shader_updates.push(path); + } + ResultMsg::SetParameter(ref param) => { + self.device.set_parameter(param); + } + ResultMsg::DebugOutput(output) => match output { + #[cfg(feature = "capture")] + DebugOutput::SaveCapture(config, deferred) => { + self.save_capture(config, deferred); + } + #[cfg(feature = "replay")] + DebugOutput::LoadCapture(config, plain_externals) => { + self.active_documents.clear(); + self.load_capture(config, plain_externals); + } + }, + ResultMsg::DebugCommand(command) => { + self.handle_debug_command(command); + } + } + } + } + + fn handle_debug_command(&mut self, command: DebugCommand) { + match command { + DebugCommand::SetPictureTileSize(_) | + DebugCommand::SetMaximumSurfaceSize(_) => { + panic!("Should be handled by render backend"); + } + DebugCommand::SaveCapture(..) | + DebugCommand::LoadCapture(..) | + DebugCommand::StartCaptureSequence(..) | + DebugCommand::StopCaptureSequence => { + panic!("Capture commands are not welcome here! Did you build with 'capture' feature?") + } + DebugCommand::ClearCaches(_) + | DebugCommand::SimulateLongSceneBuild(_) + | DebugCommand::EnableNativeCompositor(_) + | DebugCommand::SetBatchingLookback(_) => {} + DebugCommand::InvalidateGpuCache => { + self.gpu_cache_texture.invalidate(); + } + DebugCommand::SetFlags(flags) => { + self.set_debug_flags(flags); + } + } + } + + /// Set a callback for handling external images. + pub fn set_external_image_handler(&mut self, handler: Box<dyn ExternalImageHandler>) { + self.external_image_handler = Some(handler); + } + + /// Retrieve (and clear) the current list of recorded frame profiles. + pub fn get_frame_profiles(&mut self) -> (Vec<CpuProfile>, Vec<GpuProfile>) { + let cpu_profiles = self.cpu_profiles.drain(..).collect(); + let gpu_profiles = self.gpu_profiles.drain(..).collect(); + (cpu_profiles, gpu_profiles) + } + + /// Reset the current partial present state. This forces the entire framebuffer + /// to be refreshed next time `render` is called. + pub fn force_redraw(&mut self) { + self.force_redraw = true; + } + + /// Renders the current frame. + /// + /// A Frame is supplied by calling [`generate_frame()`][webrender_api::Transaction::generate_frame]. + /// buffer_age is the age of the current backbuffer. It is only relevant if partial present + /// is active, otherwise 0 should be passed here. + pub fn render( + &mut self, + device_size: DeviceIntSize, + buffer_age: usize, + ) -> Result<RenderResults, Vec<RendererError>> { + self.device_size = Some(device_size); + + // TODO(gw): We want to make the active document that is + // being rendered configurable via the public + // API in future. For now, just select the last + // added document as the active one to render + // (Gecko only ever creates a single document + // per renderer right now). + let doc_id = self.active_documents.keys().last().cloned(); + + let result = match doc_id { + Some(doc_id) => { + // Remove the doc from the map to appease the borrow checker + let mut doc = self.active_documents + .remove(&doc_id) + .unwrap(); + + let result = self.render_impl( + doc_id, + &mut doc, + Some(device_size), + buffer_age, + ); + + self.active_documents.insert(doc_id, doc); + + result + } + None => { + self.last_time = precise_time_ns(); + Ok(RenderResults::default()) + } + }; + + drain_filter( + &mut self.notifications, + |n| { n.when() == Checkpoint::FrameRendered }, + |n| { n.notify(); }, + ); + + let mut oom = false; + if let Err(ref errors) = result { + for error in errors { + if matches!(error, &RendererError::OutOfMemory) { + oom = true; + break; + } + } + } + + if oom { + let _ = self.api_tx.send(ApiMsg::MemoryPressure); + // Ensure we don't get stuck in a loop. + self.consecutive_oom_frames += 1; + assert!(self.consecutive_oom_frames < 5, "Renderer out of memory"); + } else { + self.consecutive_oom_frames = 0; + } + + // This is the end of the rendering pipeline. If some notifications are is still there, + // just clear them and they will autimatically fire the Checkpoint::TransactionDropped + // event. Otherwise they would just pile up in this vector forever. + self.notifications.clear(); + + tracy_frame_marker!(); + + result + } + + /// Update the state of any debug / profiler overlays. This is currently only needed + /// when running with the native compositor enabled. + fn update_debug_overlay( + &mut self, + framebuffer_size: DeviceIntSize, + has_debug_items: bool, + ) { + // If any of the following debug flags are set, something will be drawn on the debug overlay. + self.debug_overlay_state.is_enabled = has_debug_items || self.debug_flags.intersects( + DebugFlags::PROFILER_DBG | + DebugFlags::RENDER_TARGET_DBG | + DebugFlags::TEXTURE_CACHE_DBG | + DebugFlags::EPOCHS | + DebugFlags::GPU_CACHE_DBG | + DebugFlags::PICTURE_CACHING_DBG | + DebugFlags::PRIMITIVE_DBG | + DebugFlags::ZOOM_DBG | + DebugFlags::WINDOW_VISIBILITY_DBG + ); + + // Update the debug overlay surface, if we are running in native compositor mode. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + + // If there is a current surface, destroy it if we don't need it for this frame, or if + // the size has changed. + if let Some(current_size) = self.debug_overlay_state.current_size { + if !self.debug_overlay_state.is_enabled || current_size != framebuffer_size { + compositor.destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + self.debug_overlay_state.current_size = None; + } + } + + // Allocate a new surface, if we need it and there isn't one. + if self.debug_overlay_state.is_enabled && self.debug_overlay_state.current_size.is_none() { + compositor.create_surface( + NativeSurfaceId::DEBUG_OVERLAY, + DeviceIntPoint::zero(), + framebuffer_size, + false, + ); + compositor.create_tile( + NativeTileId::DEBUG_OVERLAY, + ); + self.debug_overlay_state.current_size = Some(framebuffer_size); + } + } + } + + /// Bind a draw target for the debug / profiler overlays, if required. + fn bind_debug_overlay(&mut self, device_size: DeviceIntSize) -> Option<DrawTarget> { + // Debug overlay setup are only required in native compositing mode + if self.debug_overlay_state.is_enabled { + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + let surface_size = self.debug_overlay_state.current_size.unwrap(); + + // Ensure old surface is invalidated before binding + compositor.invalidate_tile( + NativeTileId::DEBUG_OVERLAY, + DeviceIntRect::from_size(surface_size), + ); + // Bind the native surface + let surface_info = compositor.bind( + NativeTileId::DEBUG_OVERLAY, + DeviceIntRect::from_size(surface_size), + DeviceIntRect::from_size(surface_size), + ); + + // Bind the native surface to current FBO target + let draw_target = DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: surface_size, + }; + self.device.bind_draw_target(draw_target); + + // When native compositing, clear the debug overlay each frame. + self.device.clear_target( + Some([0.0, 0.0, 0.0, 0.0]), + None, // debug renderer does not use depth + None, + ); + + Some(draw_target) + } else { + // If we're not using the native compositor, then the default + // frame buffer is already bound. Create a DrawTarget for it and + // return it. + Some(DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left())) + } + } else { + None + } + } + + /// Unbind the draw target for debug / profiler overlays, if required. + fn unbind_debug_overlay(&mut self) { + // Debug overlay setup are only required in native compositing mode + if self.debug_overlay_state.is_enabled { + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + // Unbind the draw target and add it to the visual tree to be composited + compositor.unbind(); + + compositor.add_surface( + NativeSurfaceId::DEBUG_OVERLAY, + CompositorSurfaceTransform::identity(), + DeviceIntRect::from_size( + self.debug_overlay_state.current_size.unwrap(), + ), + ImageRendering::Auto, + ); + } + } + } + + // If device_size is None, don't render to the main frame buffer. This is useful to + // update texture cache render tasks but avoid doing a full frame render. If the + // render is not going to be presented, then this must be set to None, as performing a + // composite without a present will confuse partial present. + fn render_impl( + &mut self, + doc_id: DocumentId, + active_doc: &mut RenderedDocument, + device_size: Option<DeviceIntSize>, + buffer_age: usize, + ) -> Result<RenderResults, Vec<RendererError>> { + profile_scope!("render"); + let mut results = RenderResults::default(); + self.profile.start_time(profiler::RENDERER_TIME); + + self.staging_texture_pool.begin_frame(); + + let compositor_kind = active_doc.frame.composite_state.compositor_kind; + // CompositorKind is updated + if self.current_compositor_kind != compositor_kind { + let enable = match (self.current_compositor_kind, compositor_kind) { + (CompositorKind::Native { .. }, CompositorKind::Draw { .. }) => { + if self.debug_overlay_state.current_size.is_some() { + self.compositor_config + .compositor() + .unwrap() + .destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + self.debug_overlay_state.current_size = None; + } + false + } + (CompositorKind::Draw { .. }, CompositorKind::Native { .. }) => { + true + } + (current_compositor_kind, active_doc_compositor_kind) => { + warn!("Compositor mismatch, assuming this is Wrench running. Current {:?}, active {:?}", + current_compositor_kind, active_doc_compositor_kind); + false + } + }; + + if let Some(config) = self.compositor_config.compositor() { + config.enable_native_compositor(enable); + } + self.current_compositor_kind = compositor_kind; + } + + // The texture resolver scope should be outside of any rendering, including + // debug rendering. This ensures that when we return render targets to the + // pool via glInvalidateFramebuffer, we don't do any debug rendering after + // that point. Otherwise, the bind / invalidate / bind logic trips up the + // render pass logic in tiled / mobile GPUs, resulting in an extra copy / + // resolve step when the debug overlay is enabled. + self.texture_resolver.begin_frame(); + + if let Some(device_size) = device_size { + self.update_gpu_profile(device_size); + } + + let cpu_frame_id = { + let _gm = self.gpu_profiler.start_marker("begin frame"); + let frame_id = self.device.begin_frame(); + self.gpu_profiler.begin_frame(frame_id); + + self.device.disable_scissor(); + self.device.disable_depth(); + self.set_blend(false, FramebufferKind::Main); + //self.update_shaders(); + + self.update_texture_cache(); + self.update_native_surfaces(); + + frame_id + }; + + if let Some(device_size) = device_size { + // Inform the client that we are starting a composition transaction if native + // compositing is enabled. This needs to be done early in the frame, so that + // we can create debug overlays after drawing the main surfaces. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.begin_frame(); + } + + // Update the state of the debug overlay surface, ensuring that + // the compositor mode has a suitable surface to draw to, if required. + self.update_debug_overlay(device_size, !active_doc.frame.debug_items.is_empty()); + } + + let frame = &mut active_doc.frame; + let profile = &mut active_doc.profile; + assert!(self.current_compositor_kind == frame.composite_state.compositor_kind); + + if self.shared_texture_cache_cleared { + assert!(self.documents_seen.contains(&doc_id), + "Cleared texture cache without sending new document frame."); + } + + match self.prepare_gpu_cache(&frame.deferred_resolves) { + Ok(..) => { + assert!(frame.gpu_cache_frame_id <= self.gpu_cache_frame_id, + "Received frame depends on a later GPU cache epoch ({:?}) than one we received last via `UpdateGpuCache` ({:?})", + frame.gpu_cache_frame_id, self.gpu_cache_frame_id); + + { + profile_scope!("gl.flush"); + self.device.gl().flush(); // early start on gpu cache updates + } + + self.draw_frame( + frame, + device_size, + buffer_age, + &mut results, + ); + + // TODO(nical): do this automatically by selecting counters in the wr profiler + // Profile marker for the number of invalidated picture cache + if thread_is_being_profiled() { + let duration = Duration::new(0,0); + if let Some(n) = self.profile.get(profiler::RENDERED_PICTURE_TILES) { + let message = (n as usize).to_string(); + add_text_marker("NumPictureCacheInvalidated", &message, duration); + } + } + + if device_size.is_some() { + self.draw_frame_debug_items(&frame.debug_items); + } + + self.profile.merge(profile); + } + Err(e) => { + self.renderer_errors.push(e); + } + } + + self.unlock_external_images(&frame.deferred_resolves); + + let _gm = self.gpu_profiler.start_marker("end frame"); + self.gpu_profiler.end_frame(); + + let debug_overlay = device_size.and_then(|device_size| { + // Bind a surface to draw the debug / profiler information to. + self.bind_debug_overlay(device_size).map(|draw_target| { + self.draw_render_target_debug(&draw_target); + self.draw_texture_cache_debug(&draw_target); + self.draw_gpu_cache_debug(device_size); + self.draw_zoom_debug(device_size); + self.draw_epoch_debug(); + self.draw_window_visibility_debug(); + draw_target + }) + }); + + let t = self.profile.end_time(profiler::RENDERER_TIME); + self.profile.end_time_if_started(profiler::TOTAL_FRAME_CPU_TIME); + Telemetry::record_renderer_time(Duration::from_micros((t * 1000.00) as u64)); + if self.profile.get(profiler::SHADER_BUILD_TIME).is_none() { + Telemetry::record_renderer_time_no_sc(Duration::from_micros((t * 1000.00) as u64)); + } + + let current_time = precise_time_ns(); + if device_size.is_some() { + let time = profiler::ns_to_ms(current_time - self.last_time); + self.profile.set(profiler::FRAME_TIME, time); + } + + if self.max_recorded_profiles > 0 { + while self.cpu_profiles.len() >= self.max_recorded_profiles { + self.cpu_profiles.pop_front(); + } + let cpu_profile = CpuProfile::new( + cpu_frame_id, + (self.profile.get_or(profiler::FRAME_BUILDING_TIME, 0.0) * 1000000.0) as u64, + (self.profile.get_or(profiler::RENDERER_TIME, 0.0) * 1000000.0) as u64, + self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize, + ); + self.cpu_profiles.push_back(cpu_profile); + } + + if thread_is_being_profiled() { + let duration = Duration::new(0,0); + let message = (self.profile.get_or(profiler::DRAW_CALLS, 0.0) as usize).to_string(); + add_text_marker("NumDrawCalls", &message, duration); + } + + let report = self.texture_resolver.report_memory(); + self.profile.set(profiler::RENDER_TARGET_MEM, profiler::bytes_to_mb(report.render_target_textures)); + self.profile.set(profiler::PICTURE_TILES_MEM, profiler::bytes_to_mb(report.picture_tile_textures)); + self.profile.set(profiler::ATLAS_TEXTURES_MEM, profiler::bytes_to_mb(report.atlas_textures)); + self.profile.set(profiler::STANDALONE_TEXTURES_MEM, profiler::bytes_to_mb(report.standalone_textures)); + + self.profile.set(profiler::DEPTH_TARGETS_MEM, profiler::bytes_to_mb(self.device.depth_targets_memory())); + + self.profile.set(profiler::TEXTURES_CREATED, self.device.textures_created); + self.profile.set(profiler::TEXTURES_DELETED, self.device.textures_deleted); + + results.stats.texture_upload_mb = self.profile.get_or(profiler::TEXTURE_UPLOADS_MEM, 0.0); + self.frame_counter += 1; + results.stats.resource_upload_time = self.resource_upload_time; + self.resource_upload_time = 0.0; + results.stats.gpu_cache_upload_time = self.gpu_cache_upload_time; + self.gpu_cache_upload_time = 0.0; + + if let Some(stats) = active_doc.frame_stats.take() { + // Copy the full frame stats to RendererStats + results.stats.merge(&stats); + + self.profiler.update_frame_stats(stats); + } + + // Turn the render reasons bitflags into something we can see in the profiler. + // For now this is just a binary yes/no for each bit, which means that when looking + // at "Render reasons" in the profiler HUD the average view indicates the proportion + // of frames that had the bit set over a half second window whereas max shows whether + // the bit as been set at least once during that time window. + // We could implement better ways to visualize this information. + let add_markers = thread_is_being_profiled(); + for i in 0..RenderReasons::NUM_BITS { + let counter = profiler::RENDER_REASON_FIRST + i as usize; + let mut val = 0.0; + let reason_bit = RenderReasons::from_bits_truncate(1 << i); + if active_doc.render_reasons.contains(reason_bit) { + val = 1.0; + if add_markers { + let event_str = format!("Render reason {:?}", reason_bit); + add_event_marker(&event_str); + } + } + self.profile.set(counter, val); + } + active_doc.render_reasons = RenderReasons::empty(); + + + self.texture_resolver.update_profile(&mut self.profile); + + // Note: this clears the values in self.profile. + self.profiler.set_counters(&mut self.profile); + + // Note: profile counters must be set before this or they will count for next frame. + self.profiler.update(); + + if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) { + if let Some(device_size) = device_size { + //TODO: take device/pixel ratio into equation? + if let Some(debug_renderer) = self.debug.get_mut(&mut self.device) { + self.profiler.draw_profile( + self.frame_counter, + debug_renderer, + device_size, + ); + } + } + } + + if self.debug_flags.contains(DebugFlags::ECHO_DRIVER_MESSAGES) { + self.device.echo_driver_messages(); + } + + if let Some(debug_renderer) = self.debug.try_get_mut() { + let small_screen = self.debug_flags.contains(DebugFlags::SMALL_SCREEN); + let scale = if small_screen { 1.6 } else { 1.0 }; + // TODO(gw): Tidy this up so that compositor config integrates better + // with the (non-compositor) surface y-flip options. + let surface_origin_is_top_left = match self.current_compositor_kind { + CompositorKind::Native { .. } => true, + CompositorKind::Draw { .. } => self.device.surface_origin_is_top_left(), + }; + // If there is a debug overlay, render it. Otherwise, just clear + // the debug renderer. + debug_renderer.render( + &mut self.device, + debug_overlay.and(device_size), + scale, + surface_origin_is_top_left, + ); + } + + self.staging_texture_pool.end_frame(&mut self.device); + self.texture_upload_pbo_pool.end_frame(&mut self.device); + self.device.end_frame(); + + if debug_overlay.is_some() { + self.last_time = current_time; + + // Unbind the target for the debug overlay. No debug or profiler drawing + // can occur afer this point. + self.unbind_debug_overlay(); + } + + if device_size.is_some() { + // Inform the client that we are finished this composition transaction if native + // compositing is enabled. This must be called after any debug / profiling compositor + // surfaces have been drawn and added to the visual tree. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + profile_scope!("compositor.end_frame"); + let compositor = self.compositor_config.compositor().unwrap(); + compositor.end_frame(); + } + } + + self.documents_seen.clear(); + self.shared_texture_cache_cleared = false; + + self.check_gl_errors(); + + if self.renderer_errors.is_empty() { + Ok(results) + } else { + Err(mem::replace(&mut self.renderer_errors, Vec::new())) + } + } + + fn update_gpu_profile(&mut self, device_size: DeviceIntSize) { + let _gm = self.gpu_profiler.start_marker("build samples"); + // Block CPU waiting for last frame's GPU profiles to arrive. + // In general this shouldn't block unless heavily GPU limited. + let (gpu_frame_id, timers, samplers) = self.gpu_profiler.build_samples(); + + if self.max_recorded_profiles > 0 { + while self.gpu_profiles.len() >= self.max_recorded_profiles { + self.gpu_profiles.pop_front(); + } + + self.gpu_profiles.push_back(GpuProfile::new(gpu_frame_id, &timers)); + } + + self.profiler.set_gpu_time_queries(timers); + + if !samplers.is_empty() { + let screen_fraction = 1.0 / device_size.to_f32().area(); + + fn accumulate_sampler_value(description: &str, samplers: &[GpuSampler]) -> f32 { + let mut accum = 0.0; + for sampler in samplers { + if sampler.tag.label != description { + continue; + } + + accum += sampler.count as f32; + } + + accum + } + + let alpha_targets = accumulate_sampler_value(&"Alpha targets", &samplers) * screen_fraction; + let transparent_pass = accumulate_sampler_value(&"Transparent pass", &samplers) * screen_fraction; + let opaque_pass = accumulate_sampler_value(&"Opaque pass", &samplers) * screen_fraction; + self.profile.set(profiler::ALPHA_TARGETS_SAMPLERS, alpha_targets); + self.profile.set(profiler::TRANSPARENT_PASS_SAMPLERS, transparent_pass); + self.profile.set(profiler::OPAQUE_PASS_SAMPLERS, opaque_pass); + self.profile.set(profiler::TOTAL_SAMPLERS, alpha_targets + transparent_pass + opaque_pass); + } + } + + fn update_texture_cache(&mut self) { + profile_scope!("update_texture_cache"); + + let _gm = self.gpu_profiler.start_marker("texture cache update"); + let mut pending_texture_updates = mem::replace(&mut self.pending_texture_updates, vec![]); + self.pending_texture_cache_updates = false; + + self.profile.start_time(profiler::TEXTURE_CACHE_UPDATE_TIME); + + let mut create_cache_texture_time = 0; + let mut delete_cache_texture_time = 0; + + for update_list in pending_texture_updates.drain(..) { + // Handle copies from one texture to another. + for ((src_tex, dst_tex), copies) in &update_list.copies { + + let dest_texture = &self.texture_resolver.texture_cache_map[&dst_tex].texture; + let dst_texture_size = dest_texture.get_dimensions().to_f32(); + + let mut copy_instances = Vec::new(); + for copy in copies { + copy_instances.push(CopyInstance { + src_rect: copy.src_rect.to_f32(), + dst_rect: copy.dst_rect.to_f32(), + dst_texture_size, + }); + } + + let draw_target = DrawTarget::from_texture(dest_texture, false); + self.device.bind_draw_target(draw_target); + + self.shaders + .borrow_mut() + .ps_copy + .bind( + &mut self.device, + &Transform3D::identity(), + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + ©_instances, + VertexArrayKind::Copy, + &BatchTextures::composite_rgb( + TextureSource::TextureCache(*src_tex, Swizzle::default()) + ), + &mut RendererStats::default(), + ); + } + + // Find any textures that will need to be deleted in this group of allocations. + let mut pending_deletes = Vec::new(); + for allocation in &update_list.allocations { + let old = self.texture_resolver.texture_cache_map.remove(&allocation.id); + match allocation.kind { + TextureCacheAllocationKind::Alloc(_) => { + assert!(old.is_none(), "Renderer and backend disagree!"); + } + TextureCacheAllocationKind::Reset(_) | + TextureCacheAllocationKind::Free => { + assert!(old.is_some(), "Renderer and backend disagree!"); + } + } + if let Some(old) = old { + + // Regenerate the cache allocation info so we can search through deletes for reuse. + let size = old.texture.get_dimensions(); + let info = TextureCacheAllocInfo { + width: size.width, + height: size.height, + format: old.texture.get_format(), + filter: old.texture.get_filter(), + target: old.texture.get_target(), + is_shared_cache: old.texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE), + has_depth: old.texture.supports_depth(), + category: old.category, + }; + pending_deletes.push((old.texture, info)); + } + } + // Look for any alloc or reset that has matching alloc info and save it from being deleted. + let mut reused_textures = VecDeque::with_capacity(pending_deletes.len()); + for allocation in &update_list.allocations { + match allocation.kind { + TextureCacheAllocationKind::Alloc(ref info) | + TextureCacheAllocationKind::Reset(ref info) => { + reused_textures.push_back( + pending_deletes.iter() + .position(|(_, old_info)| *old_info == *info) + .map(|index| pending_deletes.swap_remove(index).0) + ); + } + TextureCacheAllocationKind::Free => {} + } + } + + // Now that we've saved as many deletions for reuse as we can, actually delete whatever is left. + if !pending_deletes.is_empty() { + let delete_texture_start = precise_time_ns(); + for (texture, _) in pending_deletes { + add_event_marker("TextureCacheFree"); + self.device.delete_texture(texture); + } + delete_cache_texture_time += precise_time_ns() - delete_texture_start; + } + + for allocation in update_list.allocations { + match allocation.kind { + TextureCacheAllocationKind::Alloc(_) => add_event_marker("TextureCacheAlloc"), + TextureCacheAllocationKind::Reset(_) => add_event_marker("TextureCacheReset"), + TextureCacheAllocationKind::Free => {} + }; + match allocation.kind { + TextureCacheAllocationKind::Alloc(ref info) | + TextureCacheAllocationKind::Reset(ref info) => { + let create_cache_texture_start = precise_time_ns(); + // Create a new native texture, as requested by the texture cache. + // If we managed to reuse a deleted texture, then prefer that instead. + // + // Ensure no PBO is bound when creating the texture storage, + // or GL will attempt to read data from there. + let mut texture = reused_textures.pop_front().unwrap_or(None).unwrap_or_else(|| { + self.device.create_texture( + info.target, + info.format, + info.width, + info.height, + info.filter, + // This needs to be a render target because some render + // tasks get rendered into the texture cache. + Some(RenderTargetInfo { has_depth: info.has_depth }), + ) + }); + + if info.is_shared_cache { + texture.flags_mut() + .insert(TextureFlags::IS_SHARED_TEXTURE_CACHE); + + // On Mali-Gxx devices we use batched texture uploads as it performs much better. + // However, due to another driver bug we must ensure the textures are fully cleared, + // otherwise we get visual artefacts when blitting to the texture cache. + if self.device.use_batched_texture_uploads() && + !self.device.get_capabilities().supports_render_target_partial_update + { + self.clear_texture(&texture, [0.0; 4]); + } + + // Textures in the cache generally don't need to be cleared, + // but we do so if the debug display is active to make it + // easier to identify unallocated regions. + if self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) { + self.clear_texture(&texture, TEXTURE_CACHE_DBG_CLEAR_COLOR); + } + } + + create_cache_texture_time += precise_time_ns() - create_cache_texture_start; + + self.texture_resolver.texture_cache_map.insert(allocation.id, CacheTexture { + texture, + category: info.category, + }); + } + TextureCacheAllocationKind::Free => {} + }; + } + + upload_to_texture_cache(self, update_list.updates); + + self.check_gl_errors(); + } + + if create_cache_texture_time > 0 { + self.profile.set( + profiler::CREATE_CACHE_TEXTURE_TIME, + profiler::ns_to_ms(create_cache_texture_time) + ); + } + if delete_cache_texture_time > 0 { + self.profile.set( + profiler::DELETE_CACHE_TEXTURE_TIME, + profiler::ns_to_ms(delete_cache_texture_time) + ) + } + + let t = self.profile.end_time(profiler::TEXTURE_CACHE_UPDATE_TIME); + self.resource_upload_time += t; + Telemetry::record_texture_cache_update_time(Duration::from_micros((t * 1000.00) as u64)); + + drain_filter( + &mut self.notifications, + |n| { n.when() == Checkpoint::FrameTexturesUpdated }, + |n| { n.notify(); }, + ); + } + + fn check_gl_errors(&mut self) { + let err = self.device.gl().get_error(); + if err == gl::OUT_OF_MEMORY { + self.renderer_errors.push(RendererError::OutOfMemory); + } + + // Probably should check for other errors? + } + + fn bind_textures(&mut self, textures: &BatchTextures) { + for i in 0 .. 3 { + self.texture_resolver.bind( + &textures.input.colors[i], + TextureSampler::color(i), + &mut self.device, + ); + } + + self.texture_resolver.bind( + &textures.clip_mask, + TextureSampler::ClipMask, + &mut self.device, + ); + + // TODO: this probably isn't the best place for this. + if let Some(ref texture) = self.dither_matrix_texture { + self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default()); + } + } + + fn draw_instanced_batch<T: Clone>( + &mut self, + data: &[T], + vertex_array_kind: VertexArrayKind, + textures: &BatchTextures, + stats: &mut RendererStats, + ) { + self.bind_textures(textures); + + // If we end up with an empty draw call here, that means we have + // probably introduced unnecessary batch breaks during frame + // building - so we should be catching this earlier and removing + // the batch. + debug_assert!(!data.is_empty()); + + let vao = &self.vaos[vertex_array_kind]; + self.device.bind_vao(vao); + + let chunk_size = if self.debug_flags.contains(DebugFlags::DISABLE_BATCHING) { + 1 + } else if vertex_array_kind == VertexArrayKind::Primitive { + self.max_primitive_instance_count + } else { + data.len() + }; + + for chunk in data.chunks(chunk_size) { + if self.enable_instancing { + self.device + .update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, None); + self.device + .draw_indexed_triangles_instanced_u16(6, chunk.len() as i32); + } else { + self.device + .update_vao_instances(vao, chunk, ONE_TIME_USAGE_HINT, NonZeroUsize::new(4)); + self.device + .draw_indexed_triangles(6 * chunk.len() as i32); + } + self.profile.inc(profiler::DRAW_CALLS); + stats.total_draw_calls += 1; + } + + self.profile.add(profiler::VERTICES, 6 * data.len()); + } + + fn handle_readback_composite( + &mut self, + draw_target: DrawTarget, + uses_scissor: bool, + backdrop: &RenderTask, + readback: &RenderTask, + ) { + // Extract the rectangle in the backdrop surface's device space of where + // we need to read from. + let readback_origin = match readback.kind { + RenderTaskKind::Readback(ReadbackTask { readback_origin: Some(o), .. }) => o, + RenderTaskKind::Readback(ReadbackTask { readback_origin: None, .. }) => { + // If this is a dummy readback, just early out. We know that the + // clear of the target will ensure the task rect is already zero alpha, + // so it won't affect the rendering output. + return; + } + _ => unreachable!(), + }; + + if uses_scissor { + self.device.disable_scissor(); + } + + let texture_source = TextureSource::TextureCache( + readback.get_target_texture(), + Swizzle::default(), + ); + let (cache_texture, _) = self.texture_resolver + .resolve(&texture_source).expect("bug: no source texture"); + + // Before submitting the composite batch, do the + // framebuffer readbacks that are needed for each + // composite operation in this batch. + let readback_rect = readback.get_target_rect(); + let backdrop_rect = backdrop.get_target_rect(); + let (backdrop_screen_origin, _) = match backdrop.kind { + RenderTaskKind::Picture(ref task_info) => (task_info.content_origin, task_info.device_pixel_scale), + _ => panic!("bug: composite on non-picture?"), + }; + + // Bind the FBO to blit the backdrop to. + // Called per-instance in case the FBO changes. The device will skip + // the GL call if the requested target is already bound. + let cache_draw_target = DrawTarget::from_texture( + cache_texture, + false, + ); + + // Get the rect that we ideally want, in space of the parent surface + let wanted_rect = DeviceRect::from_origin_and_size( + readback_origin, + readback_rect.size().to_f32(), + ); + + // Get the rect that is available on the parent surface. It may be smaller + // than desired because this is a picture cache tile covering only part of + // the wanted rect and/or because the parent surface was clipped. + let avail_rect = DeviceRect::from_origin_and_size( + backdrop_screen_origin, + backdrop_rect.size().to_f32(), + ); + + if let Some(int_rect) = wanted_rect.intersection(&avail_rect) { + // If there is a valid intersection, work out the correct origins and + // sizes of the copy rects, and do the blit. + let copy_size = int_rect.size().to_i32(); + + let src_origin = backdrop_rect.min.to_f32() + + int_rect.min.to_vector() - + backdrop_screen_origin.to_vector(); + + let src = DeviceIntRect::from_origin_and_size( + src_origin.to_i32(), + copy_size, + ); + + let dest_origin = readback_rect.min.to_f32() + + int_rect.min.to_vector() - + readback_origin.to_vector(); + + let dest = DeviceIntRect::from_origin_and_size( + dest_origin.to_i32(), + copy_size, + ); + + // Should always be drawing to picture cache tiles or off-screen surface! + debug_assert!(!draw_target.is_default()); + let device_to_framebuffer = Scale::new(1i32); + + self.device.blit_render_target( + draw_target.into(), + src * device_to_framebuffer, + cache_draw_target, + dest * device_to_framebuffer, + TextureFilter::Linear, + ); + } + + // Restore draw target to current pass render target, and reset + // the read target. + self.device.bind_draw_target(draw_target); + self.device.reset_read_target(); + + if uses_scissor { + self.device.enable_scissor(); + } + } + + fn handle_resolves( + &mut self, + resolve_ops: &[ResolveOp], + render_tasks: &RenderTaskGraph, + draw_target: DrawTarget, + ) { + if resolve_ops.is_empty() { + return; + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLIT); + + for resolve_op in resolve_ops { + self.handle_resolve( + resolve_op, + render_tasks, + draw_target, + ); + } + + self.device.reset_read_target(); + } + + + fn handle_blits( + &mut self, + blits: &[BlitJob], + render_tasks: &RenderTaskGraph, + draw_target: DrawTarget, + ) { + if blits.is_empty() { + return; + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLIT); + + // TODO(gw): For now, we don't bother batching these by source texture. + // If if ever shows up as an issue, we can easily batch them. + for blit in blits { + let (source, source_rect) = { + // A blit from the child render task into this target. + // TODO(gw): Support R8 format here once we start + // creating mips for alpha masks. + let task = &render_tasks[blit.source]; + let source_rect = task.get_target_rect(); + let source_texture = task.get_texture_source(); + + (source_texture, source_rect) + }; + + debug_assert_eq!(source_rect.size(), blit.target_rect.size()); + let (texture, swizzle) = self.texture_resolver + .resolve(&source) + .expect("BUG: invalid source texture"); + + if swizzle != Swizzle::default() { + error!("Swizzle {:?} can't be handled by a blit", swizzle); + } + + let read_target = DrawTarget::from_texture( + texture, + false, + ); + + self.device.blit_render_target( + read_target.into(), + read_target.to_framebuffer_rect(source_rect), + draw_target, + draw_target.to_framebuffer_rect(blit.target_rect), + TextureFilter::Linear, + ); + } + } + + fn handle_scaling( + &mut self, + scalings: &FastHashMap<TextureSource, Vec<ScalingInstance>>, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if scalings.is_empty() { + return + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SCALE); + + for (source, instances) in scalings { + let buffer_kind = source.image_buffer_kind(); + + // When the source texture is an external texture, the UV rect is not known + // when the external surface descriptor is created, because external textures + // are not resolved until the lock() callback is invoked at the start of the + // frame render. We must therefore override the source rects now. + let uv_override_instances; + let instances = match source { + TextureSource::External(..) => { + uv_override_instances = instances.iter().map(|instance| { + let texel_rect: TexelRect = self.texture_resolver.get_uv_rect( + &source, + instance.source_rect.cast().into() + ).into(); + ScalingInstance { + target_rect: instance.target_rect, + source_rect: DeviceRect::new(texel_rect.uv0, texel_rect.uv1), + } + }).collect::<Vec<_>>(); + &uv_override_instances + } + _ => &instances + }; + + self.shaders + .borrow_mut() + .get_scale_shader(buffer_kind) + .bind( + &mut self.device, + &projection, + Some(self.texture_resolver.get_texture_size(source).to_f32()), + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + instances, + VertexArrayKind::Scale, + &BatchTextures::composite_rgb(*source), + stats, + ); + } + } + + fn handle_svg_filters( + &mut self, + textures: &BatchTextures, + svg_filters: &[SvgFilterInstance], + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if svg_filters.is_empty() { + return; + } + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SVG_FILTER); + + self.shaders.borrow_mut().cs_svg_filter.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &svg_filters, + VertexArrayKind::SvgFilter, + textures, + stats, + ); + } + + fn handle_resolve( + &mut self, + resolve_op: &ResolveOp, + render_tasks: &RenderTaskGraph, + draw_target: DrawTarget, + ) { + for src_task_id in &resolve_op.src_task_ids { + let src_task = &render_tasks[*src_task_id]; + let src_info = match src_task.kind { + RenderTaskKind::Picture(ref info) => info, + _ => panic!("bug: not a picture"), + }; + let src_task_rect = src_task.get_target_rect().to_f32(); + + let dest_task = &render_tasks[resolve_op.dest_task_id]; + let dest_info = match dest_task.kind { + RenderTaskKind::Picture(ref info) => info, + _ => panic!("bug: not a picture"), + }; + let dest_task_rect = dest_task.get_target_rect().to_f32(); + + // Get the rect that we ideally want, in space of the parent surface + let wanted_rect = DeviceRect::from_origin_and_size( + dest_info.content_origin, + dest_task_rect.size().to_f32(), + ).cast_unit() * dest_info.device_pixel_scale.inverse(); + + // Get the rect that is available on the parent surface. It may be smaller + // than desired because this is a picture cache tile covering only part of + // the wanted rect and/or because the parent surface was clipped. + let avail_rect = DeviceRect::from_origin_and_size( + src_info.content_origin, + src_task_rect.size().to_f32(), + ).cast_unit() * src_info.device_pixel_scale.inverse(); + + if let Some(device_int_rect) = wanted_rect.intersection(&avail_rect) { + let src_int_rect = (device_int_rect * src_info.device_pixel_scale).cast_unit(); + let dest_int_rect = (device_int_rect * dest_info.device_pixel_scale).cast_unit(); + + // If there is a valid intersection, work out the correct origins and + // sizes of the copy rects, and do the blit. + + let src_origin = src_task_rect.min.to_f32() + + src_int_rect.min.to_vector() - + src_info.content_origin.to_vector(); + + let src = DeviceIntRect::from_origin_and_size( + src_origin.to_i32(), + src_int_rect.size().round().to_i32(), + ); + + let dest_origin = dest_task_rect.min.to_f32() + + dest_int_rect.min.to_vector() - + dest_info.content_origin.to_vector(); + + let dest = DeviceIntRect::from_origin_and_size( + dest_origin.to_i32(), + dest_int_rect.size().round().to_i32(), + ); + + let texture_source = TextureSource::TextureCache( + src_task.get_target_texture(), + Swizzle::default(), + ); + let (cache_texture, _) = self.texture_resolver + .resolve(&texture_source).expect("bug: no source texture"); + + let read_target = ReadTarget::from_texture(cache_texture); + + // Should always be drawing to picture cache tiles or off-screen surface! + debug_assert!(!draw_target.is_default()); + let device_to_framebuffer = Scale::new(1i32); + + self.device.blit_render_target( + read_target, + src * device_to_framebuffer, + draw_target, + dest * device_to_framebuffer, + TextureFilter::Linear, + ); + } + } + } + + fn draw_picture_cache_target( + &mut self, + target: &PictureCacheTarget, + draw_target: DrawTarget, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_picture_cache_target"); + + self.profile.inc(profiler::RENDERED_PICTURE_TILES); + let _gm = self.gpu_profiler.start_marker("picture cache target"); + let framebuffer_kind = FramebufferKind::Other; + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.enable_depth_write(); + self.set_blend(false, framebuffer_kind); + + let clear_color = target.clear_color.map(|c| c.to_array()); + let scissor_rect = if self.device.get_capabilities().supports_render_target_partial_update { + Some(target.dirty_rect) + } else { + None + }; + match scissor_rect { + // If updating only a dirty rect within a picture cache target, the + // clear must also be scissored to that dirty region. + Some(r) if self.clear_caches_with_quads => { + self.device.enable_depth(DepthFunction::Always); + // Save the draw call count so that our reftests don't get confused... + let old_draw_call_count = stats.total_draw_calls; + if clear_color.is_none() { + self.device.disable_color_write(); + } + let instance = ClearInstance { + rect: [ + r.min.x as f32, r.min.y as f32, + r.max.x as f32, r.max.y as f32, + ], + color: clear_color.unwrap_or([0.0; 4]), + }; + self.shaders.borrow_mut().ps_clear.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.draw_instanced_batch( + &[instance], + VertexArrayKind::Clear, + &BatchTextures::empty(), + stats, + ); + if clear_color.is_none() { + self.device.enable_color_write(); + } + stats.total_draw_calls = old_draw_call_count; + self.device.disable_depth(); + } + other => { + let scissor_rect = other.map(|rect| { + draw_target.build_scissor_rect(Some(rect)) + }); + self.device.clear_target(clear_color, Some(1.0), scissor_rect); + } + }; + self.device.disable_depth_write(); + } + + match target.kind { + PictureCacheTargetKind::Draw { ref alpha_batch_container } => { + self.draw_alpha_batch_container( + alpha_batch_container, + draw_target, + framebuffer_kind, + projection, + render_tasks, + stats, + ); + } + PictureCacheTargetKind::Blit { task_id, sub_rect_offset } => { + let src_task = &render_tasks[task_id]; + let (texture, _swizzle) = self.texture_resolver + .resolve(&src_task.get_texture_source()) + .expect("BUG: invalid source texture"); + + let src_task_rect = src_task.get_target_rect(); + + let p0 = src_task_rect.min + sub_rect_offset; + let p1 = p0 + target.dirty_rect.size(); + let src_rect = DeviceIntRect::new(p0, p1); + + // TODO(gw): In future, it'd be tidier to have the draw target offset + // for DC surfaces handled by `blit_render_target`. However, + // for now they are only ever written to here. + let target_rect = target + .dirty_rect + .translate(draw_target.offset().to_vector()) + .cast_unit(); + + self.device.blit_render_target( + ReadTarget::from_texture(texture), + src_rect.cast_unit(), + draw_target, + target_rect, + TextureFilter::Nearest, + ); + } + } + + self.device.invalidate_depth_target(); + } + + /// Draw an alpha batch container into a given draw target. This is used + /// by both color and picture cache target kinds. + fn draw_alpha_batch_container( + &mut self, + alpha_batch_container: &AlphaBatchContainer, + draw_target: DrawTarget, + framebuffer_kind: FramebufferKind, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + let uses_scissor = alpha_batch_container.task_scissor_rect.is_some(); + + if uses_scissor { + self.device.enable_scissor(); + let scissor_rect = draw_target.build_scissor_rect( + alpha_batch_container.task_scissor_rect, + ); + self.device.set_scissor_rect(scissor_rect) + } + + if !alpha_batch_container.opaque_batches.is_empty() + && !self.debug_flags.contains(DebugFlags::DISABLE_OPAQUE_PASS) { + let _gl = self.gpu_profiler.start_marker("opaque batches"); + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + self.set_blend(false, framebuffer_kind); + //Note: depth equality is needed for split planes + self.device.enable_depth(DepthFunction::LessEqual); + self.device.enable_depth_write(); + + // Draw opaque batches front-to-back for maximum + // z-buffer efficiency! + for batch in alpha_batch_container + .opaque_batches + .iter() + .rev() + { + if should_skip_batch(&batch.key.kind, self.debug_flags) { + continue; + } + + self.shaders.borrow_mut() + .get(&batch.key, batch.features, self.debug_flags, &self.device) + .bind( + &mut self.device, projection, None, + &mut self.renderer_errors, + &mut self.profile, + ); + + let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag()); + self.draw_instanced_batch( + &batch.instances, + VertexArrayKind::Primitive, + &batch.key.textures, + stats + ); + } + + self.device.disable_depth_write(); + self.gpu_profiler.finish_sampler(opaque_sampler); + } else { + self.device.disable_depth(); + } + + if !alpha_batch_container.alpha_batches.is_empty() + && !self.debug_flags.contains(DebugFlags::DISABLE_ALPHA_PASS) { + let _gl = self.gpu_profiler.start_marker("alpha batches"); + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.set_blend(true, framebuffer_kind); + + let mut prev_blend_mode = BlendMode::None; + let shaders_rc = self.shaders.clone(); + + for batch in &alpha_batch_container.alpha_batches { + if should_skip_batch(&batch.key.kind, self.debug_flags) { + continue; + } + + let mut shaders = shaders_rc.borrow_mut(); + let shader = shaders.get( + &batch.key, + batch.features | BatchFeatures::ALPHA_PASS, + self.debug_flags, + &self.device, + ); + + if batch.key.blend_mode != prev_blend_mode { + match batch.key.blend_mode { + _ if self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) && + framebuffer_kind == FramebufferKind::Main => { + self.device.set_blend_mode_show_overdraw(); + } + BlendMode::None => { + unreachable!("bug: opaque blend in alpha pass"); + } + BlendMode::Alpha => { + self.device.set_blend_mode_alpha(); + } + BlendMode::PremultipliedAlpha => { + self.device.set_blend_mode_premultiplied_alpha(); + } + BlendMode::PremultipliedDestOut => { + self.device.set_blend_mode_premultiplied_dest_out(); + } + BlendMode::SubpixelDualSource => { + self.device.set_blend_mode_subpixel_dual_source(); + } + BlendMode::SubpixelWithBgColor => { + // Using the three pass "component alpha with font smoothing + // background color" rendering technique: + // + // /webrender/doc/text-rendering.md + // + self.device.set_blend_mode_subpixel_with_bg_color_pass0(); + // need to make sure the shader is bound + shader.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass0 as _); + } + BlendMode::Advanced(mode) => { + if self.enable_advanced_blend_barriers { + self.device.gl().blend_barrier_khr(); + } + self.device.set_blend_mode_advanced(mode); + } + BlendMode::MultiplyDualSource => { + self.device.set_blend_mode_multiply_dual_source(); + } + BlendMode::Screen => { + self.device.set_blend_mode_screen(); + } + BlendMode::Exclusion => { + self.device.set_blend_mode_exclusion(); + } + BlendMode::PlusLighter => { + self.device.set_blend_mode_plus_lighter(); + } + } + prev_blend_mode = batch.key.blend_mode; + } + + // Handle special case readback for composites. + if let BatchKind::Brush(BrushBatchKind::MixBlend { task_id, backdrop_id }) = batch.key.kind { + // composites can't be grouped together because + // they may overlap and affect each other. + debug_assert_eq!(batch.instances.len(), 1); + self.handle_readback_composite( + draw_target, + uses_scissor, + &render_tasks[task_id], + &render_tasks[backdrop_id], + ); + } + + let _timer = self.gpu_profiler.start_timer(batch.key.kind.sampler_tag()); + shader.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &batch.instances, + VertexArrayKind::Primitive, + &batch.key.textures, + stats + ); + + if batch.key.blend_mode == BlendMode::SubpixelWithBgColor { + self.set_blend_mode_subpixel_with_bg_color_pass1(framebuffer_kind); + // re-binding the shader after the blend mode change + shader.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass1 as _); + + // When drawing the 2nd and 3rd passes, we know that the VAO, textures etc + // are all set up from the previous draw_instanced_batch call, + // so just issue a draw call here to avoid re-uploading the + // instances and re-binding textures etc. + self.device + .draw_indexed_triangles_instanced_u16(6, batch.instances.len() as i32); + + self.set_blend_mode_subpixel_with_bg_color_pass2(framebuffer_kind); + // re-binding the shader after the blend mode change + shader.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.device.switch_mode(ShaderColorMode::SubpixelWithBgColorPass2 as _); + + self.device + .draw_indexed_triangles_instanced_u16(6, batch.instances.len() as i32); + } + + if batch.key.blend_mode == BlendMode::SubpixelWithBgColor { + prev_blend_mode = BlendMode::None; + } + } + + self.set_blend(false, framebuffer_kind); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + + self.device.disable_depth(); + if uses_scissor { + self.device.disable_scissor(); + } + } + + /// Rasterize any external compositor surfaces that require updating + fn update_external_native_surfaces( + &mut self, + external_surfaces: &[ResolvedExternalSurface], + results: &mut RenderResults, + ) { + if external_surfaces.is_empty() { + return; + } + + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + + self.device.disable_depth(); + self.set_blend(false, FramebufferKind::Main); + + for surface in external_surfaces { + // See if this surface needs to be updated + let (native_surface_id, surface_size) = match surface.update_params { + Some(params) => params, + None => continue, + }; + + // When updating an external surface, the entire surface rect is used + // for all of the draw, dirty, valid and clip rect parameters. + let surface_rect = surface_size.into(); + + // Bind the native compositor surface to update + let surface_info = self.compositor_config + .compositor() + .unwrap() + .bind( + NativeTileId { + surface_id: native_surface_id, + x: 0, + y: 0, + }, + surface_rect, + surface_rect, + ); + + // Bind the native surface to current FBO target + let draw_target = DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: surface_size, + }; + self.device.bind_draw_target(draw_target); + + let projection = Transform3D::ortho( + 0.0, + surface_size.width as f32, + 0.0, + surface_size.height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let ( textures, instance ) = match surface.color_data { + ResolvedExternalSurfaceColorData::Yuv{ + ref planes, color_space, format, channel_bit_depth, .. } => { + + // Bind an appropriate YUV shader for the texture format kind + self.shaders + .borrow_mut() + .get_composite_shader( + CompositeSurfaceFormat::Yuv, + surface.image_buffer_kind, + CompositeFeatures::empty(), + ).bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + let textures = BatchTextures::composite_yuv( + planes[0].texture, + planes[1].texture, + planes[2].texture, + ); + + // When the texture is an external texture, the UV rect is not known when + // the external surface descriptor is created, because external textures + // are not resolved until the lock() callback is invoked at the start of + // the frame render. To handle this, query the texture resolver for the + // UV rect if it's an external texture, otherwise use the default UV rect. + let uv_rects = [ + self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect), + ]; + + let instance = CompositeInstance::new_yuv( + surface_rect.cast_unit().to_f32(), + surface_rect.to_f32(), + // z-id is not relevant when updating a native compositor surface. + // TODO(gw): Support compositor surfaces without z-buffer, for memory / perf win here. + ZBufferId(0), + color_space, + format, + channel_bit_depth, + uv_rects, + CompositorTransform::identity(), + ); + + ( textures, instance ) + }, + ResolvedExternalSurfaceColorData::Rgb{ ref plane, .. } => { + self.shaders + .borrow_mut() + .get_composite_shader( + CompositeSurfaceFormat::Rgba, + surface.image_buffer_kind, + CompositeFeatures::empty(), + ).bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + let textures = BatchTextures::composite_rgb(plane.texture); + let uv_rect = self.texture_resolver.get_uv_rect(&textures.input.colors[0], plane.uv_rect); + let instance = CompositeInstance::new_rgb( + surface_rect.cast_unit().to_f32(), + surface_rect.to_f32(), + PremultipliedColorF::WHITE, + ZBufferId(0), + uv_rect, + CompositorTransform::identity(), + ); + + ( textures, instance ) + }, + }; + + self.draw_instanced_batch( + &[instance], + VertexArrayKind::Composite, + &textures, + &mut results.stats, + ); + + self.compositor_config + .compositor() + .unwrap() + .unbind(); + } + + self.gpu_profiler.finish_sampler(opaque_sampler); + } + + /// Draw a list of tiles to the framebuffer + fn draw_tile_list<'a, I: Iterator<Item = &'a occlusion::Item>>( + &mut self, + tiles_iter: I, + composite_state: &CompositeState, + external_surfaces: &[ResolvedExternalSurface], + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + let mut current_shader_params = ( + CompositeSurfaceFormat::Rgba, + ImageBufferKind::Texture2D, + CompositeFeatures::empty(), + None, + ); + let mut current_textures = BatchTextures::empty(); + let mut instances = Vec::new(); + + self.shaders + .borrow_mut() + .get_composite_shader( + current_shader_params.0, + current_shader_params.1, + current_shader_params.2, + ).bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + for item in tiles_iter { + let tile = &composite_state.tiles[item.key]; + + let clip_rect = item.rectangle; + let tile_rect = tile.local_rect; + let transform = composite_state.get_device_transform(tile.transform_index).into(); + + // Work out the draw params based on the tile surface + let (instance, textures, shader_params) = match tile.surface { + CompositeTileSurface::Color { color } => { + let dummy = TextureSource::Dummy; + let image_buffer_kind = dummy.image_buffer_kind(); + let instance = CompositeInstance::new( + tile_rect, + clip_rect, + color.premultiplied(), + tile.z_id, + transform, + ); + let features = instance.get_rgb_features(); + ( + instance, + BatchTextures::composite_rgb(dummy), + (CompositeSurfaceFormat::Rgba, image_buffer_kind, features, None), + ) + } + CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::TextureCache { texture } } => { + let instance = CompositeInstance::new( + tile_rect, + clip_rect, + PremultipliedColorF::WHITE, + tile.z_id, + transform, + ); + let features = instance.get_rgb_features(); + ( + instance, + BatchTextures::composite_rgb(texture), + ( + CompositeSurfaceFormat::Rgba, + ImageBufferKind::Texture2D, + features, + None, + ), + ) + } + CompositeTileSurface::ExternalSurface { external_surface_index } => { + let surface = &external_surfaces[external_surface_index.0]; + + match surface.color_data { + ResolvedExternalSurfaceColorData::Yuv{ ref planes, color_space, format, channel_bit_depth, .. } => { + let textures = BatchTextures::composite_yuv( + planes[0].texture, + planes[1].texture, + planes[2].texture, + ); + + // When the texture is an external texture, the UV rect is not known when + // the external surface descriptor is created, because external textures + // are not resolved until the lock() callback is invoked at the start of + // the frame render. To handle this, query the texture resolver for the + // UV rect if it's an external texture, otherwise use the default UV rect. + let uv_rects = [ + self.texture_resolver.get_uv_rect(&textures.input.colors[0], planes[0].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[1], planes[1].uv_rect), + self.texture_resolver.get_uv_rect(&textures.input.colors[2], planes[2].uv_rect), + ]; + + ( + CompositeInstance::new_yuv( + tile_rect, + clip_rect, + tile.z_id, + color_space, + format, + channel_bit_depth, + uv_rects, + transform, + ), + textures, + ( + CompositeSurfaceFormat::Yuv, + surface.image_buffer_kind, + CompositeFeatures::empty(), + None + ), + ) + }, + ResolvedExternalSurfaceColorData::Rgb { ref plane, .. } => { + let uv_rect = self.texture_resolver.get_uv_rect(&plane.texture, plane.uv_rect); + let instance = CompositeInstance::new_rgb( + tile_rect, + clip_rect, + PremultipliedColorF::WHITE, + tile.z_id, + uv_rect, + transform, + ); + let features = instance.get_rgb_features(); + ( + instance, + BatchTextures::composite_rgb(plane.texture), + ( + CompositeSurfaceFormat::Rgba, + surface.image_buffer_kind, + features, + Some(self.texture_resolver.get_texture_size(&plane.texture).to_f32()), + ), + ) + }, + } + } + CompositeTileSurface::Clear => { + let dummy = TextureSource::Dummy; + let image_buffer_kind = dummy.image_buffer_kind(); + let instance = CompositeInstance::new( + tile_rect, + clip_rect, + PremultipliedColorF::BLACK, + tile.z_id, + transform, + ); + let features = instance.get_rgb_features(); + ( + instance, + BatchTextures::composite_rgb(dummy), + (CompositeSurfaceFormat::Rgba, image_buffer_kind, features, None), + ) + } + CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { .. } } => { + unreachable!("bug: found native surface in simple composite path"); + } + }; + + // Flush batch if shader params or textures changed + let flush_batch = !current_textures.is_compatible_with(&textures) || + shader_params != current_shader_params; + + if flush_batch { + if !instances.is_empty() { + self.draw_instanced_batch( + &instances, + VertexArrayKind::Composite, + ¤t_textures, + stats, + ); + instances.clear(); + } + } + + if shader_params != current_shader_params { + self.shaders + .borrow_mut() + .get_composite_shader(shader_params.0, shader_params.1, shader_params.2) + .bind( + &mut self.device, + projection, + shader_params.3, + &mut self.renderer_errors, + &mut self.profile, + ); + + current_shader_params = shader_params; + } + + current_textures = textures; + + // Add instance to current batch + instances.push(instance); + } + + // Flush the last batch + if !instances.is_empty() { + self.draw_instanced_batch( + &instances, + VertexArrayKind::Composite, + ¤t_textures, + stats, + ); + } + } + + /// Composite picture cache tiles into the framebuffer. This is currently + /// the only way that picture cache tiles get drawn. In future, the tiles + /// will often be handed to the OS compositor, and this method will be + /// rarely used. + fn composite_simple( + &mut self, + composite_state: &CompositeState, + draw_target: DrawTarget, + projection: &default::Transform3D<f32>, + results: &mut RenderResults, + partial_present_mode: Option<PartialPresentMode>, + ) { + let _gm = self.gpu_profiler.start_marker("framebuffer"); + let _timer = self.gpu_profiler.start_timer(GPU_TAG_COMPOSITE); + + self.device.bind_draw_target(draw_target); + self.device.disable_depth_write(); + self.device.disable_depth(); + + // If using KHR_partial_update, call eglSetDamageRegion. + // This must be called exactly once per frame, and prior to any rendering to the main + // framebuffer. Additionally, on Mali-G77 we encountered rendering issues when calling + // this earlier in the frame, during offscreen render passes. So call it now, immediately + // before rendering to the main framebuffer. See bug 1685276 for details. + if let Some(partial_present) = self.compositor_config.partial_present() { + if let Some(PartialPresentMode::Single { dirty_rect }) = partial_present_mode { + partial_present.set_buffer_damage_region(&[dirty_rect.to_i32()]); + } + } + + let cap = composite_state.tiles.len(); + + let mut occlusion = occlusion::FrontToBackBuilder::with_capacity(cap, cap); + let mut clear_tiles = Vec::new(); + + for (idx, tile) in composite_state.tiles.iter().enumerate() { + // Clear tiles overwrite whatever is under them, so they are treated as opaque. + let is_opaque = tile.kind != TileKind::Alpha; + + let device_tile_box = composite_state.get_device_rect( + &tile.local_rect, + tile.transform_index + ); + + // Determine a clip rect to apply to this tile, depending on what + // the partial present mode is. + let partial_clip_rect = match partial_present_mode { + Some(PartialPresentMode::Single { dirty_rect }) => dirty_rect, + None => device_tile_box, + }; + + // Simple compositor needs the valid rect in device space to match clip rect + let device_valid_rect = composite_state + .get_device_rect(&tile.local_valid_rect, tile.transform_index); + + let rect = device_tile_box + .intersection_unchecked(&tile.device_clip_rect) + .intersection_unchecked(&partial_clip_rect) + .intersection_unchecked(&device_valid_rect); + + if rect.is_empty() { + continue; + } + + if tile.kind == TileKind::Clear { + // Clear tiles are specific to how we render the window buttons on + // Windows 8. They clobber what's under them so they can be treated as opaque, + // but require a different blend state so they will be rendered after the opaque + // tiles and before transparent ones. + clear_tiles.push(occlusion::Item { rectangle: rect, key: idx }); + continue; + } + + occlusion.add(&rect, is_opaque, idx); + } + + // Clear the framebuffer + let clear_color = Some(self.clear_color.to_array()); + + match partial_present_mode { + Some(PartialPresentMode::Single { dirty_rect }) => { + // There is no need to clear if the dirty rect is occluded. Additionally, + // on Mali-G77 we have observed artefacts when calling glClear (even with + // the empty scissor rect set) after calling eglSetDamageRegion with an + // empty damage region. So avoid clearing in that case. See bug 1709548. + if !dirty_rect.is_empty() && occlusion.test(&dirty_rect) { + // We have a single dirty rect, so clear only that + self.device.clear_target(clear_color, + None, + Some(draw_target.to_framebuffer_rect(dirty_rect.to_i32()))); + } + } + None => { + // Partial present is disabled, so clear the entire framebuffer + self.device.clear_target(clear_color, + None, + None); + } + } + + // We are only interested in tiles backed with actual cached pixels so we don't + // count clear tiles here. + let num_tiles = composite_state.tiles + .iter() + .filter(|tile| tile.kind != TileKind::Clear).count(); + self.profile.set(profiler::PICTURE_TILES, num_tiles); + + if !occlusion.opaque_items().is_empty() { + let opaque_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_OPAQUE); + self.set_blend(false, FramebufferKind::Main); + self.draw_tile_list( + occlusion.opaque_items().iter(), + &composite_state, + &composite_state.external_surfaces, + projection, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(opaque_sampler); + } + + if !clear_tiles.is_empty() { + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.set_blend(true, FramebufferKind::Main); + self.device.set_blend_mode_premultiplied_dest_out(); + self.draw_tile_list( + clear_tiles.iter(), + &composite_state, + &composite_state.external_surfaces, + projection, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + + // Draw alpha tiles + if !occlusion.alpha_items().is_empty() { + let transparent_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_TRANSPARENT); + self.set_blend(true, FramebufferKind::Main); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Main); + self.draw_tile_list( + occlusion.alpha_items().iter().rev(), + &composite_state, + &composite_state.external_surfaces, + projection, + &mut results.stats, + ); + self.gpu_profiler.finish_sampler(transparent_sampler); + } + } + + fn draw_color_target( + &mut self, + draw_target: DrawTarget, + target: &ColorRenderTarget, + clear_depth: Option<f32>, + render_tasks: &RenderTaskGraph, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + profile_scope!("draw_color_target"); + + self.profile.inc(profiler::COLOR_PASSES); + let _gm = self.gpu_profiler.start_marker("color target"); + + // sanity check for the depth buffer + if let DrawTarget::Texture { with_depth, .. } = draw_target { + assert!(with_depth >= target.needs_depth()); + } + + let framebuffer_kind = if draw_target.is_default() { + FramebufferKind::Main + } else { + FramebufferKind::Other + }; + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.disable_depth(); + self.set_blend(false, framebuffer_kind); + + if clear_depth.is_some() { + self.device.enable_depth_write(); + } + + let clear_color = target + .clear_color + .map(|color| color.to_array()); + + let clear_rect = match draw_target { + DrawTarget::NativeSurface { .. } => { + unreachable!("bug: native compositor surface in child target"); + } + DrawTarget::Default { rect, total_size, .. } if rect.min == FramebufferIntPoint::zero() && rect.size() == total_size => { + // whole screen is covered, no need for scissor + None + } + DrawTarget::Default { rect, .. } => { + Some(rect) + } + DrawTarget::Texture { .. } if self.enable_clear_scissor => { + // TODO(gw): Applying a scissor rect and minimal clear here + // is a very large performance win on the Intel and nVidia + // GPUs that I have tested with. It's possible it may be a + // performance penalty on other GPU types - we should test this + // and consider different code paths. + // + // Note: The above measurements were taken when render + // target slices were minimum 2048x2048. Now that we size + // them adaptively, this may be less of a win (except perhaps + // on a mostly-unused last slice of a large texture array). + Some(draw_target.to_framebuffer_rect(target.used_rect)) + } + DrawTarget::Texture { .. } | DrawTarget::External { .. } => { + None + } + }; + + self.device.clear_target( + clear_color, + clear_depth, + clear_rect, + ); + + if clear_depth.is_some() { + self.device.disable_depth_write(); + } + } + + // Handle any resolves from parent pictures to this target + self.handle_resolves( + &target.resolve_ops, + render_tasks, + draw_target, + ); + + // Handle any blits from the texture cache to this target. + self.handle_blits( + &target.blits, + render_tasks, + draw_target, + ); + + // Draw any blurs for this target. + // Blurs are rendered as a standard 2-pass + // separable implementation. + // TODO(gw): In the future, consider having + // fast path blur shaders for common + // blur radii with fixed weights. + if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + self.set_blend(false, framebuffer_kind); + self.shaders.borrow_mut().cs_blur_rgba8 + .bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile); + + if !target.vertical_blurs.is_empty() { + self.draw_blurs( + &target.vertical_blurs, + stats, + ); + } + + if !target.horizontal_blurs.is_empty() { + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + self.handle_scaling( + &target.scalings, + projection, + stats, + ); + + for (ref textures, ref filters) in &target.svg_filters { + self.handle_svg_filters( + textures, + filters, + projection, + stats, + ); + } + + for alpha_batch_container in &target.alpha_batch_containers { + self.draw_alpha_batch_container( + alpha_batch_container, + draw_target, + framebuffer_kind, + projection, + render_tasks, + stats, + ); + } + + if clear_depth.is_some() { + self.device.invalidate_depth_target(); + } + } + + fn draw_blurs( + &mut self, + blurs: &FastHashMap<TextureSource, Vec<BlurInstance>>, + stats: &mut RendererStats, + ) { + for (texture, blurs) in blurs { + let textures = BatchTextures::composite_rgb( + *texture, + ); + + self.draw_instanced_batch( + blurs, + VertexArrayKind::Blur, + &textures, + stats, + ); + } + } + + /// Draw all the instances in a clip batcher list to the current target. + fn draw_clip_batch_list( + &mut self, + list: &ClipBatchList, + draw_target: &DrawTarget, + projection: &default::Transform3D<f32>, + stats: &mut RendererStats, + ) { + if self.debug_flags.contains(DebugFlags::DISABLE_CLIP_MASKS) { + return; + } + + // draw rounded cornered rectangles + if !list.slow_rectangles.is_empty() { + let _gm2 = self.gpu_profiler.start_marker("slow clip rectangles"); + self.shaders.borrow_mut().cs_clip_rectangle_slow.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.draw_instanced_batch( + &list.slow_rectangles, + VertexArrayKind::ClipRect, + &BatchTextures::empty(), + stats, + ); + } + if !list.fast_rectangles.is_empty() { + let _gm2 = self.gpu_profiler.start_marker("fast clip rectangles"); + self.shaders.borrow_mut().cs_clip_rectangle_fast.bind( + &mut self.device, + projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.draw_instanced_batch( + &list.fast_rectangles, + VertexArrayKind::ClipRect, + &BatchTextures::empty(), + stats, + ); + } + + // draw box-shadow clips + for (mask_texture_id, items) in list.box_shadows.iter() { + let _gm2 = self.gpu_profiler.start_marker("box-shadows"); + let textures = BatchTextures::composite_rgb(*mask_texture_id); + self.shaders.borrow_mut().cs_clip_box_shadow + .bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile); + self.draw_instanced_batch( + items, + VertexArrayKind::ClipBoxShadow, + &textures, + stats, + ); + } + + // draw image masks + let mut using_scissor = false; + for ((mask_texture_id, clip_rect), items) in list.images.iter() { + let _gm2 = self.gpu_profiler.start_marker("clip images"); + // Some image masks may require scissoring to ensure they don't draw + // outside their task's target bounds. Axis-aligned primitives will + // be clamped inside the shader and should not require scissoring. + // TODO: We currently assume scissor state is off by default for + // alpha targets here, but in the future we may want to track the + // current scissor state so that this can be properly saved and + // restored here. + if let Some(clip_rect) = clip_rect { + if !using_scissor { + self.device.enable_scissor(); + using_scissor = true; + } + let scissor_rect = draw_target.build_scissor_rect(Some(*clip_rect)); + self.device.set_scissor_rect(scissor_rect); + } else if using_scissor { + self.device.disable_scissor(); + using_scissor = false; + } + let textures = BatchTextures::composite_rgb(*mask_texture_id); + self.shaders.borrow_mut().cs_clip_image + .bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile); + self.draw_instanced_batch( + items, + VertexArrayKind::ClipImage, + &textures, + stats, + ); + } + if using_scissor { + self.device.disable_scissor(); + } + } + + fn draw_alpha_target( + &mut self, + draw_target: DrawTarget, + target: &AlphaRenderTarget, + projection: &default::Transform3D<f32>, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_alpha_target"); + + self.profile.inc(profiler::ALPHA_PASSES); + let _gm = self.gpu_profiler.start_marker("alpha target"); + let alpha_sampler = self.gpu_profiler.start_sampler(GPU_SAMPLER_TAG_ALPHA); + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_TARGET); + self.device.bind_draw_target(draw_target); + self.device.disable_depth(); + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + + let zero_color = [0.0, 0.0, 0.0, 0.0]; + let one_color = [1.0, 1.0, 1.0, 1.0]; + + // On some Adreno 4xx devices we have seen render tasks to alpha targets have no + // effect unless the target is fully cleared prior to rendering. See bug 1714227. + if self.device.get_capabilities().requires_alpha_target_full_clear { + self.device.clear_target( + Some(zero_color), + None, + None, + ); + } + + // On some Mali-T devices we have observed crashes in subsequent draw calls + // immediately after clearing the alpha render target regions with glClear(). + // Using the shader to clear the regions avoids the crash. See bug 1638593. + if self.clear_alpha_targets_with_quads + && !(target.zero_clears.is_empty() && target.one_clears.is_empty()) + { + let zeroes = target.zero_clears + .iter() + .map(|task_id| { + let rect = render_tasks[*task_id].get_target_rect().to_f32(); + ClearInstance { + rect: [ + rect.min.x, rect.min.y, + rect.max.x, rect.max.y, + ], + color: zero_color, + } + }); + + let ones = target.one_clears + .iter() + .map(|task_id| { + let rect = render_tasks[*task_id].get_target_rect().to_f32(); + ClearInstance { + rect: [ + rect.min.x, rect.min.y, + rect.max.x, rect.max.y, + ], + color: one_color, + } + }); + + let instances = zeroes.chain(ones).collect::<Vec<_>>(); + self.shaders.borrow_mut().ps_clear.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.draw_instanced_batch( + &instances, + VertexArrayKind::Clear, + &BatchTextures::empty(), + stats, + ); + } else { + // TODO(gw): Applying a scissor rect and minimal clear here + // is a very large performance win on the Intel and nVidia + // GPUs that I have tested with. It's possible it may be a + // performance penalty on other GPU types - we should test this + // and consider different code paths. + for &task_id in &target.zero_clears { + let rect = render_tasks[task_id].get_target_rect(); + self.device.clear_target( + Some(zero_color), + None, + Some(draw_target.to_framebuffer_rect(rect)), + ); + } + + for &task_id in &target.one_clears { + let rect = render_tasks[task_id].get_target_rect(); + self.device.clear_target( + Some(one_color), + None, + Some(draw_target.to_framebuffer_rect(rect)), + ); + } + } + } + + // Draw any blurs for this target. + // Blurs are rendered as a standard 2-pass + // separable implementation. + // TODO(gw): In the future, consider having + // fast path blur shaders for common + // blur radii with fixed weights. + if !target.vertical_blurs.is_empty() || !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + self.shaders.borrow_mut().cs_blur_a8 + .bind(&mut self.device, projection, None, &mut self.renderer_errors, &mut self.profile); + + if !target.vertical_blurs.is_empty() { + self.draw_blurs( + &target.vertical_blurs, + stats, + ); + } + + if !target.horizontal_blurs.is_empty() { + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + self.handle_scaling( + &target.scalings, + projection, + stats, + ); + + // Draw the clip items into the tiled alpha mask. + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_CLIP); + + // TODO(gw): Consider grouping multiple clip masks per shader + // invocation here to reduce memory bandwith further? + + // Draw the primary clip mask - since this is the first mask + // for the task, we can disable blending, knowing that it will + // overwrite every pixel in the mask area. + self.set_blend(false, FramebufferKind::Other); + self.draw_clip_batch_list( + &target.clip_batcher.primary_clips, + &draw_target, + projection, + stats, + ); + + // switch to multiplicative blending for secondary masks, using + // multiplicative blending to accumulate clips into the mask. + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_multiply(FramebufferKind::Other); + self.draw_clip_batch_list( + &target.clip_batcher.secondary_clips, + &draw_target, + projection, + stats, + ); + } + + self.gpu_profiler.finish_sampler(alpha_sampler); + } + + fn draw_texture_cache_target( + &mut self, + texture: &CacheTextureId, + target: &TextureCacheRenderTarget, + render_tasks: &RenderTaskGraph, + stats: &mut RendererStats, + ) { + profile_scope!("draw_texture_cache_target"); + + self.device.disable_depth(); + self.device.disable_depth_write(); + + self.set_blend(false, FramebufferKind::Other); + + let texture = &self.texture_resolver.texture_cache_map[texture].texture; + let target_size = texture.get_dimensions(); + + let projection = Transform3D::ortho( + 0.0, + target_size.width as f32, + 0.0, + target_size.height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let draw_target = DrawTarget::from_texture( + texture, + false, + ); + self.device.bind_draw_target(draw_target); + + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CLEAR); + + self.device.disable_depth(); + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + + let color = [0.0, 0.0, 0.0, 0.0]; + if self.clear_caches_with_quads && !target.clears.is_empty() { + let instances = target.clears + .iter() + .map(|r| ClearInstance { + rect: [ + r.min.x as f32, r.min.y as f32, + r.max.x as f32, r.max.y as f32, + ], + color, + }) + .collect::<Vec<_>>(); + self.shaders.borrow_mut().ps_clear.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + self.draw_instanced_batch( + &instances, + VertexArrayKind::Clear, + &BatchTextures::empty(), + stats, + ); + } else { + for rect in &target.clears { + self.device.clear_target( + Some(color), + None, + Some(draw_target.to_framebuffer_rect(*rect)), + ); + } + } + + // Handle any blits to this texture from child tasks. + self.handle_blits( + &target.blits, + render_tasks, + draw_target, + ); + } + + // Draw any borders for this target. + if !target.border_segments_solid.is_empty() || + !target.border_segments_complex.is_empty() + { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_BORDER); + + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other); + + if !target.border_segments_solid.is_empty() { + self.shaders.borrow_mut().cs_border_solid.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &target.border_segments_solid, + VertexArrayKind::Border, + &BatchTextures::empty(), + stats, + ); + } + + if !target.border_segments_complex.is_empty() { + self.shaders.borrow_mut().cs_border_segment.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &target.border_segments_complex, + VertexArrayKind::Border, + &BatchTextures::empty(), + stats, + ); + } + + self.set_blend(false, FramebufferKind::Other); + } + + // Draw any line decorations for this target. + if !target.line_decorations.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_LINE_DECORATION); + + self.set_blend(true, FramebufferKind::Other); + self.set_blend_mode_premultiplied_alpha(FramebufferKind::Other); + + self.shaders.borrow_mut().cs_line_decoration.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &target.line_decorations, + VertexArrayKind::LineDecoration, + &BatchTextures::empty(), + stats, + ); + + self.set_blend(false, FramebufferKind::Other); + } + + // Draw any fast path linear gradients for this target. + if !target.fast_linear_gradients.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_FAST_LINEAR_GRADIENT); + + self.set_blend(false, FramebufferKind::Other); + + self.shaders.borrow_mut().cs_fast_linear_gradient.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + self.draw_instanced_batch( + &target.fast_linear_gradients, + VertexArrayKind::FastLinearGradient, + &BatchTextures::empty(), + stats, + ); + } + + // Draw any linear gradients for this target. + if !target.linear_gradients.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_LINEAR_GRADIENT); + + self.set_blend(false, FramebufferKind::Other); + + self.shaders.borrow_mut().cs_linear_gradient.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + if let Some(ref texture) = self.dither_matrix_texture { + self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default()); + } + + self.draw_instanced_batch( + &target.linear_gradients, + VertexArrayKind::LinearGradient, + &BatchTextures::empty(), + stats, + ); + } + + // Draw any radial gradients for this target. + if !target.radial_gradients.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_RADIAL_GRADIENT); + + self.set_blend(false, FramebufferKind::Other); + + self.shaders.borrow_mut().cs_radial_gradient.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + if let Some(ref texture) = self.dither_matrix_texture { + self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default()); + } + + self.draw_instanced_batch( + &target.radial_gradients, + VertexArrayKind::RadialGradient, + &BatchTextures::empty(), + stats, + ); + } + + // Draw any conic gradients for this target. + if !target.conic_gradients.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_CACHE_CONIC_GRADIENT); + + self.set_blend(false, FramebufferKind::Other); + + self.shaders.borrow_mut().cs_conic_gradient.bind( + &mut self.device, + &projection, + None, + &mut self.renderer_errors, + &mut self.profile, + ); + + if let Some(ref texture) = self.dither_matrix_texture { + self.device.bind_texture(TextureSampler::Dither, texture, Swizzle::default()); + } + + self.draw_instanced_batch( + &target.conic_gradients, + VertexArrayKind::ConicGradient, + &BatchTextures::empty(), + stats, + ); + } + + // Draw any blurs for this target. + if !target.horizontal_blurs.is_empty() { + let _timer = self.gpu_profiler.start_timer(GPU_TAG_BLUR); + + { + let mut shaders = self.shaders.borrow_mut(); + match target.target_kind { + RenderTargetKind::Alpha => &mut shaders.cs_blur_a8, + RenderTargetKind::Color => &mut shaders.cs_blur_rgba8, + }.bind(&mut self.device, &projection, None, &mut self.renderer_errors, &mut self.profile); + } + + self.draw_blurs( + &target.horizontal_blurs, + stats, + ); + } + } + + fn update_deferred_resolves(&mut self, deferred_resolves: &[DeferredResolve]) -> Option<GpuCacheUpdateList> { + // The first thing we do is run through any pending deferred + // resolves, and use a callback to get the UV rect for this + // custom item. Then we patch the resource_rects structure + // here before it's uploaded to the GPU. + if deferred_resolves.is_empty() { + return None; + } + + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + + let mut list = GpuCacheUpdateList { + frame_id: FrameId::INVALID, + clear: false, + height: self.gpu_cache_texture.get_height(), + blocks: Vec::new(), + updates: Vec::new(), + debug_commands: Vec::new(), + }; + + for (i, deferred_resolve) in deferred_resolves.iter().enumerate() { + self.gpu_profiler.place_marker("deferred resolve"); + let props = &deferred_resolve.image_properties; + let ext_image = props + .external_image + .expect("BUG: Deferred resolves must be external images!"); + // Provide rendering information for NativeTexture external images. + let image = handler.lock(ext_image.id, ext_image.channel_index); + let texture_target = match ext_image.image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => { + panic!("not a suitable image type in update_deferred_resolves()"); + } + }; + + // In order to produce the handle, the external image handler may call into + // the GL context and change some states. + self.device.reset_state(); + + let texture = match image.source { + ExternalImageSource::NativeTexture(texture_id) => { + ExternalTexture::new( + texture_id, + texture_target, + image.uv, + deferred_resolve.rendering, + ) + } + ExternalImageSource::Invalid => { + warn!("Invalid ext-image"); + debug!( + "For ext_id:{:?}, channel:{}.", + ext_image.id, + ext_image.channel_index + ); + // Just use 0 as the gl handle for this failed case. + ExternalTexture::new( + 0, + texture_target, + image.uv, + deferred_resolve.rendering, + ) + } + ExternalImageSource::RawData(_) => { + panic!("Raw external data is not expected for deferred resolves!"); + } + }; + + self.texture_resolver + .external_images + .insert(DeferredResolveIndex(i as u32), texture); + + list.updates.push(GpuCacheUpdate::Copy { + block_index: list.blocks.len(), + block_count: BLOCKS_PER_UV_RECT, + address: deferred_resolve.address, + }); + list.blocks.push(image.uv.into()); + list.blocks.push([0f32; 4].into()); + } + + Some(list) + } + + fn unlock_external_images( + &mut self, + deferred_resolves: &[DeferredResolve], + ) { + if !self.texture_resolver.external_images.is_empty() { + let handler = self.external_image_handler + .as_mut() + .expect("Found external image, but no handler set!"); + + for (index, _) in self.texture_resolver.external_images.drain() { + let props = &deferred_resolves[index.0 as usize].image_properties; + let ext_image = props + .external_image + .expect("BUG: Deferred resolves must be external images!"); + handler.unlock(ext_image.id, ext_image.channel_index); + } + } + } + + /// Update the dirty rects based on current compositing mode and config + // TODO(gw): This can be tidied up significantly once the Draw compositor + // is implemented in terms of the compositor trait. + fn calculate_dirty_rects( + &mut self, + buffer_age: usize, + composite_state: &CompositeState, + draw_target_dimensions: DeviceIntSize, + results: &mut RenderResults, + ) -> Option<PartialPresentMode> { + let mut partial_present_mode = None; + + let (max_partial_present_rects, draw_previous_partial_present_regions) = match self.current_compositor_kind { + CompositorKind::Native { .. } => { + // Assume that we can return a single dirty rect for native + // compositor for now, and that there is no buffer-age functionality. + // These params can be exposed by the compositor capabilities struct + // as the Draw compositor is ported to use it. + (1, false) + } + CompositorKind::Draw { draw_previous_partial_present_regions, max_partial_present_rects } => { + (max_partial_present_rects, draw_previous_partial_present_regions) + } + }; + + if max_partial_present_rects > 0 { + let prev_frames_damage_rect = if let Some(..) = self.compositor_config.partial_present() { + self.buffer_damage_tracker + .get_damage_rect(buffer_age) + .or_else(|| Some(DeviceRect::from_size(draw_target_dimensions.to_f32()))) + } else { + None + }; + + let can_use_partial_present = + composite_state.dirty_rects_are_valid && + !self.force_redraw && + !(prev_frames_damage_rect.is_none() && draw_previous_partial_present_regions) && + !self.debug_overlay_state.is_enabled; + + if can_use_partial_present { + let mut combined_dirty_rect = DeviceRect::zero(); + let fb_rect = DeviceRect::from_size(draw_target_dimensions.to_f32()); + + // Work out how many dirty rects WR produced, and if that's more than + // what the device supports. + for tile in &composite_state.tiles { + if tile.kind == TileKind::Clear { + continue; + } + let dirty_rect = composite_state.get_device_rect( + &tile.local_dirty_rect, + tile.transform_index, + ); + + // In pathological cases where a tile is extremely zoomed, it + // may end up with device coords outside the range of an i32, + // so clamp it to the frame buffer rect here, before it gets + // casted to an i32 rect below. + if let Some(dirty_rect) = dirty_rect.intersection(&fb_rect) { + combined_dirty_rect = combined_dirty_rect.union(&dirty_rect); + } + } + + let combined_dirty_rect = combined_dirty_rect.round(); + let combined_dirty_rect_i32 = combined_dirty_rect.to_i32(); + // Return this frame's dirty region. If nothing has changed, don't return any dirty + // rects at all (the client can use this as a signal to skip present completely). + if !combined_dirty_rect.is_empty() { + results.dirty_rects.push(combined_dirty_rect_i32); + } + + // Track this frame's dirty region, for calculating subsequent frames' damage. + if draw_previous_partial_present_regions { + self.buffer_damage_tracker.push_dirty_rect(&combined_dirty_rect); + } + + // If the implementation requires manually keeping the buffer consistent, + // then we must combine this frame's dirty region with that of previous frames + // to determine the total_dirty_rect. The is used to determine what region we + // render to, and is what we send to the compositor as the buffer damage region + // (eg for KHR_partial_update). + let total_dirty_rect = if draw_previous_partial_present_regions { + combined_dirty_rect.union(&prev_frames_damage_rect.unwrap()) + } else { + combined_dirty_rect + }; + + partial_present_mode = Some(PartialPresentMode::Single { + dirty_rect: total_dirty_rect, + }); + } else { + // If we don't have a valid partial present scenario, return a single + // dirty rect to the client that covers the entire framebuffer. + let fb_rect = DeviceIntRect::from_size( + draw_target_dimensions, + ); + results.dirty_rects.push(fb_rect); + + if draw_previous_partial_present_regions { + self.buffer_damage_tracker.push_dirty_rect(&fb_rect.to_f32()); + } + } + + self.force_redraw = false; + } + + partial_present_mode + } + + fn bind_frame_data(&mut self, frame: &mut Frame) { + profile_scope!("bind_frame_data"); + + let _timer = self.gpu_profiler.start_timer(GPU_TAG_SETUP_DATA); + + self.vertex_data_textures[self.current_vertex_data_textures].update( + &mut self.device, + &mut self.texture_upload_pbo_pool, + frame, + ); + self.current_vertex_data_textures = + (self.current_vertex_data_textures + 1) % VERTEX_DATA_TEXTURE_COUNT; + } + + fn update_native_surfaces(&mut self) { + profile_scope!("update_native_surfaces"); + + match self.compositor_config { + CompositorConfig::Native { ref mut compositor, .. } => { + for op in self.pending_native_surface_updates.drain(..) { + match op.details { + NativeSurfaceOperationDetails::CreateSurface { id, virtual_offset, tile_size, is_opaque } => { + let _inserted = self.allocated_native_surfaces.insert(id); + debug_assert!(_inserted, "bug: creating existing surface"); + compositor.create_surface( + id, + virtual_offset, + tile_size, + is_opaque, + ); + } + NativeSurfaceOperationDetails::CreateExternalSurface { id, is_opaque } => { + let _inserted = self.allocated_native_surfaces.insert(id); + debug_assert!(_inserted, "bug: creating existing surface"); + compositor.create_external_surface( + id, + is_opaque, + ); + } + NativeSurfaceOperationDetails::CreateBackdropSurface { id, color } => { + let _inserted = self.allocated_native_surfaces.insert(id); + debug_assert!(_inserted, "bug: creating existing surface"); + compositor.create_backdrop_surface( + id, + color, + ); + } + NativeSurfaceOperationDetails::DestroySurface { id } => { + let _existed = self.allocated_native_surfaces.remove(&id); + debug_assert!(_existed, "bug: removing unknown surface"); + compositor.destroy_surface(id); + } + NativeSurfaceOperationDetails::CreateTile { id } => { + compositor.create_tile(id); + } + NativeSurfaceOperationDetails::DestroyTile { id } => { + compositor.destroy_tile(id); + } + NativeSurfaceOperationDetails::AttachExternalImage { id, external_image } => { + compositor.attach_external_image(id, external_image); + } + } + } + } + CompositorConfig::Draw { .. } => { + // Ensure nothing is added in simple composite mode, since otherwise + // memory will leak as this doesn't get drained + debug_assert!(self.pending_native_surface_updates.is_empty()); + } + } + } + + fn draw_frame( + &mut self, + frame: &mut Frame, + device_size: Option<DeviceIntSize>, + buffer_age: usize, + results: &mut RenderResults, + ) { + profile_scope!("draw_frame"); + + // These markers seem to crash a lot on Android, see bug 1559834 + #[cfg(not(target_os = "android"))] + let _gm = self.gpu_profiler.start_marker("draw frame"); + + if frame.passes.is_empty() { + frame.has_been_rendered = true; + return; + } + + self.device.disable_depth_write(); + self.set_blend(false, FramebufferKind::Other); + self.device.disable_stencil(); + + self.bind_frame_data(frame); + + // Upload experimental GPU buffer texture if there is any data present + // TODO: Recycle these textures, upload via PBO or best approach for platform + let gpu_buffer_texture = if frame.gpu_buffer.is_empty() { + None + } else { + let gpu_buffer_texture = self.device.create_texture( + ImageBufferKind::Texture2D, + ImageFormat::RGBAF32, + frame.gpu_buffer.size.width, + frame.gpu_buffer.size.height, + TextureFilter::Nearest, + None, + ); + + self.device.bind_texture( + TextureSampler::GpuBuffer, + &gpu_buffer_texture, + Swizzle::default(), + ); + + self.device.upload_texture_immediate( + &gpu_buffer_texture, + &frame.gpu_buffer.data, + ); + + Some(gpu_buffer_texture) + }; + + // Determine the present mode and dirty rects, if device_size + // is Some(..). If it's None, no composite will occur and only + // picture cache and texture cache targets will be updated. + // TODO(gw): Split Frame so that it's clearer when a composite + // is occurring. + let present_mode = device_size.and_then(|device_size| { + self.calculate_dirty_rects( + buffer_age, + &frame.composite_state, + device_size, + results, + ) + }); + + // If we have a native OS compositor, then make use of that interface to + // specify how to composite each of the picture cache surfaces. First, we + // need to find each tile that may be bound and updated later in the frame + // and invalidate it so that the native render compositor knows that these + // tiles can't be composited early. Next, after all such tiles have been + // invalidated, then we queue surfaces for native composition by the render + // compositor before we actually update the tiles. This allows the render + // compositor to start early composition while the tiles are updating. + if let CompositorKind::Native { .. } = self.current_compositor_kind { + let compositor = self.compositor_config.compositor().unwrap(); + // Invalidate any native surface tiles that might be updated by passes. + if !frame.has_been_rendered { + for tile in &frame.composite_state.tiles { + if tile.kind == TileKind::Clear { + continue; + } + if !tile.local_dirty_rect.is_empty() { + if let CompositeTileSurface::Texture { surface: ResolvedSurfaceTexture::Native { id, .. } } = tile.surface { + let valid_rect = frame.composite_state.get_surface_rect( + &tile.local_valid_rect, + &tile.local_rect, + tile.transform_index, + ).to_i32(); + + compositor.invalidate_tile(id, valid_rect); + } + } + } + } + // Ensure any external surfaces that might be used during early composition + // are invalidated first so that the native compositor can properly schedule + // composition to happen only when the external surface is updated. + // See update_external_native_surfaces for more details. + for surface in &frame.composite_state.external_surfaces { + if let Some((native_surface_id, size)) = surface.update_params { + let surface_rect = size.into(); + compositor.invalidate_tile(NativeTileId { surface_id: native_surface_id, x: 0, y: 0 }, surface_rect); + } + } + // Finally queue native surfaces for early composition, if applicable. By now, + // we have already invalidated any tiles that such surfaces may depend upon, so + // the native render compositor can keep track of when to actually schedule + // composition as surfaces are updated. + if device_size.is_some() { + frame.composite_state.composite_native( + self.clear_color, + &results.dirty_rects, + &mut **compositor, + ); + } + } + + for (_pass_index, pass) in frame.passes.iter_mut().enumerate() { + #[cfg(not(target_os = "android"))] + let _gm = self.gpu_profiler.start_marker(&format!("pass {}", _pass_index)); + + profile_scope!("offscreen target"); + + // If this frame has already been drawn, then any texture + // cache targets have already been updated and can be + // skipped this time. + if !frame.has_been_rendered { + for (&texture_id, target) in &pass.texture_cache { + self.draw_texture_cache_target( + &texture_id, + target, + &frame.render_tasks, + &mut results.stats, + ); + } + + if !pass.picture_cache.is_empty() { + self.profile.inc(profiler::COLOR_PASSES); + } + + // Draw picture caching tiles for this pass. + for picture_target in &pass.picture_cache { + results.stats.color_target_count += 1; + + let draw_target = match picture_target.surface { + ResolvedSurfaceTexture::TextureCache { ref texture } => { + let (texture, _) = self.texture_resolver + .resolve(texture) + .expect("bug"); + + DrawTarget::from_texture( + texture, + true, + ) + } + ResolvedSurfaceTexture::Native { id, size } => { + let surface_info = match self.current_compositor_kind { + CompositorKind::Native { .. } => { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.bind( + id, + picture_target.dirty_rect, + picture_target.valid_rect, + ) + } + CompositorKind::Draw { .. } => { + unreachable!(); + } + }; + + DrawTarget::NativeSurface { + offset: surface_info.origin, + external_fbo_id: surface_info.fbo_id, + dimensions: size, + } + } + }; + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + self.draw_picture_cache_target( + picture_target, + draw_target, + &projection, + &frame.render_tasks, + &mut results.stats, + ); + + // Native OS surfaces must be unbound at the end of drawing to them + if let ResolvedSurfaceTexture::Native { .. } = picture_target.surface { + match self.current_compositor_kind { + CompositorKind::Native { .. } => { + let compositor = self.compositor_config.compositor().unwrap(); + compositor.unbind(); + } + CompositorKind::Draw { .. } => { + unreachable!(); + } + } + } + } + } + + for target in &pass.alpha.targets { + results.stats.alpha_target_count += 1; + + let texture_id = target.texture_id(); + + let alpha_tex = self.texture_resolver.get_cache_texture_mut(&texture_id); + + let draw_target = DrawTarget::from_texture( + alpha_tex, + false, + ); + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + self.draw_alpha_target( + draw_target, + target, + &projection, + &frame.render_tasks, + &mut results.stats, + ); + } + + let color_rt_info = RenderTargetInfo { has_depth: pass.color.needs_depth() }; + + for target in &pass.color.targets { + results.stats.color_target_count += 1; + + let texture_id = target.texture_id(); + + let color_tex = self.texture_resolver.get_cache_texture_mut(&texture_id); + + self.device.reuse_render_target::<u8>( + color_tex, + color_rt_info, + ); + + let draw_target = DrawTarget::from_texture( + color_tex, + target.needs_depth(), + ); + + let projection = Transform3D::ortho( + 0.0, + draw_target.dimensions().width as f32, + 0.0, + draw_target.dimensions().height as f32, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let clear_depth = if target.needs_depth() { + Some(1.0) + } else { + None + }; + + self.draw_color_target( + draw_target, + target, + clear_depth, + &frame.render_tasks, + &projection, + &mut results.stats, + ); + } + + // Only end the pass here and invalidate previous textures for + // off-screen targets. Deferring return of the inputs to the + // frame buffer until the implicit end_pass in end_frame allows + // debug draw overlays to be added without triggering a copy + // resolve stage in mobile / tiled GPUs. + self.texture_resolver.end_pass( + &mut self.device, + &pass.textures_to_invalidate, + ); + { + profile_scope!("gl.flush"); + self.device.gl().flush(); + } + } + + self.composite_frame( + frame, + device_size, + results, + present_mode, + ); + + if let Some(gpu_buffer_texture) = gpu_buffer_texture { + self.device.delete_texture(gpu_buffer_texture); + } + + frame.has_been_rendered = true; + } + + fn composite_frame( + &mut self, + frame: &mut Frame, + device_size: Option<DeviceIntSize>, + results: &mut RenderResults, + present_mode: Option<PartialPresentMode>, + ) { + profile_scope!("main target"); + + if let Some(device_size) = device_size { + results.stats.color_target_count += 1; + results.picture_cache_debug = mem::replace( + &mut frame.composite_state.picture_cache_debug, + PictureCacheDebugInfo::new(), + ); + + let size = frame.device_rect.size().to_f32(); + let surface_origin_is_top_left = self.device.surface_origin_is_top_left(); + let (bottom, top) = if surface_origin_is_top_left { + (0.0, size.height) + } else { + (size.height, 0.0) + }; + + let projection = Transform3D::ortho( + 0.0, + size.width, + bottom, + top, + self.device.ortho_near_plane(), + self.device.ortho_far_plane(), + ); + + let fb_scale = Scale::<_, _, FramebufferPixel>::new(1i32); + let mut fb_rect = frame.device_rect * fb_scale; + + if !surface_origin_is_top_left { + let h = fb_rect.height(); + fb_rect.min.y = device_size.height - fb_rect.max.y; + fb_rect.max.y = fb_rect.min.y + h; + } + + let draw_target = DrawTarget::Default { + rect: fb_rect, + total_size: device_size * fb_scale, + surface_origin_is_top_left, + }; + + // If we have a native OS compositor, then make use of that interface + // to specify how to composite each of the picture cache surfaces. + match self.current_compositor_kind { + CompositorKind::Native { .. } => { + // We have already queued surfaces for early native composition by this point. + // All that is left is to finally update any external native surfaces that were + // invalidated so that composition can complete. + self.update_external_native_surfaces( + &frame.composite_state.external_surfaces, + results, + ); + } + CompositorKind::Draw { .. } => { + self.composite_simple( + &frame.composite_state, + draw_target, + &projection, + results, + present_mode, + ); + } + } + } else { + // Rendering a frame without presenting it will confuse the partial + // present logic, so force a full present for the next frame. + self.force_redraw(); + } + } + + pub fn debug_renderer(&mut self) -> Option<&mut DebugRenderer> { + self.debug.get_mut(&mut self.device) + } + + pub fn get_debug_flags(&self) -> DebugFlags { + self.debug_flags + } + + pub fn set_debug_flags(&mut self, flags: DebugFlags) { + if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_TIME_QUERIES) { + if enabled { + self.gpu_profiler.enable_timers(); + } else { + self.gpu_profiler.disable_timers(); + } + } + if let Some(enabled) = flag_changed(self.debug_flags, flags, DebugFlags::GPU_SAMPLE_QUERIES) { + if enabled { + self.gpu_profiler.enable_samplers(); + } else { + self.gpu_profiler.disable_samplers(); + } + } + + self.debug_flags = flags; + } + + pub fn set_profiler_ui(&mut self, ui_str: &str) { + self.profiler.set_ui(ui_str); + } + + fn draw_frame_debug_items(&mut self, items: &[DebugItem]) { + if items.is_empty() { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + for item in items { + match item { + DebugItem::Rect { rect, outer_color, inner_color } => { + debug_renderer.add_quad( + rect.min.x, + rect.min.y, + rect.max.x, + rect.max.y, + (*inner_color).into(), + (*inner_color).into(), + ); + + debug_renderer.add_rect( + &rect.to_i32(), + (*outer_color).into(), + ); + } + DebugItem::Text { ref msg, position, color } => { + debug_renderer.add_text( + position.x, + position.y, + msg, + (*color).into(), + None, + ); + } + } + } + } + + fn draw_render_target_debug(&mut self, draw_target: &DrawTarget) { + if !self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let textures = self.texture_resolver + .texture_cache_map + .values() + .filter(|item| item.category == TextureCacheCategory::RenderTarget) + .map(|item| &item.texture) + .collect::<Vec<&Texture>>(); + + Self::do_debug_blit( + &mut self.device, + debug_renderer, + textures, + draw_target, + 0, + &|_| [0.0, 1.0, 0.0, 1.0], // Use green for all RTs. + ); + } + + fn draw_zoom_debug( + &mut self, + device_size: DeviceIntSize, + ) { + if !self.debug_flags.contains(DebugFlags::ZOOM_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let source_size = DeviceIntSize::new(64, 64); + let target_size = DeviceIntSize::new(1024, 1024); + + let source_origin = DeviceIntPoint::new( + (self.cursor_position.x - source_size.width / 2) + .min(device_size.width - source_size.width) + .max(0), + (self.cursor_position.y - source_size.height / 2) + .min(device_size.height - source_size.height) + .max(0), + ); + + let source_rect = DeviceIntRect::from_origin_and_size( + source_origin, + source_size, + ); + + let target_rect = DeviceIntRect::from_origin_and_size( + DeviceIntPoint::new( + device_size.width - target_size.width - 64, + device_size.height - target_size.height - 64, + ), + target_size, + ); + + let texture_rect = FramebufferIntRect::from_size( + source_rect.size().cast_unit(), + ); + + debug_renderer.add_rect( + &target_rect.inflate(1, 1), + debug_colors::RED.into(), + ); + + if self.zoom_debug_texture.is_none() { + let texture = self.device.create_texture( + ImageBufferKind::Texture2D, + ImageFormat::BGRA8, + source_rect.width(), + source_rect.height(), + TextureFilter::Nearest, + Some(RenderTargetInfo { has_depth: false }), + ); + + self.zoom_debug_texture = Some(texture); + } + + // Copy frame buffer into the zoom texture + let read_target = DrawTarget::new_default(device_size, self.device.surface_origin_is_top_left()); + self.device.blit_render_target( + read_target.into(), + read_target.to_framebuffer_rect(source_rect), + DrawTarget::from_texture( + self.zoom_debug_texture.as_ref().unwrap(), + false, + ), + texture_rect, + TextureFilter::Nearest, + ); + + // Draw the zoom texture back to the framebuffer + self.device.blit_render_target( + ReadTarget::from_texture( + self.zoom_debug_texture.as_ref().unwrap(), + ), + texture_rect, + read_target, + read_target.to_framebuffer_rect(target_rect), + TextureFilter::Nearest, + ); + } + + fn draw_texture_cache_debug(&mut self, draw_target: &DrawTarget) { + if !self.debug_flags.contains(DebugFlags::TEXTURE_CACHE_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let textures = self.texture_resolver + .texture_cache_map + .values() + .filter(|item| item.category == TextureCacheCategory::Atlas) + .map(|item| &item.texture) + .collect::<Vec<&Texture>>(); + + fn select_color(texture: &Texture) -> [f32; 4] { + if texture.flags().contains(TextureFlags::IS_SHARED_TEXTURE_CACHE) { + [1.0, 0.5, 0.0, 1.0] // Orange for shared. + } else { + [1.0, 0.0, 1.0, 1.0] // Fuchsia for standalone. + } + } + + Self::do_debug_blit( + &mut self.device, + debug_renderer, + textures, + draw_target, + if self.debug_flags.contains(DebugFlags::RENDER_TARGET_DBG) { 544 } else { 0 }, + &select_color, + ); + } + + fn do_debug_blit( + device: &mut Device, + debug_renderer: &mut DebugRenderer, + mut textures: Vec<&Texture>, + draw_target: &DrawTarget, + bottom: i32, + select_color: &dyn Fn(&Texture) -> [f32; 4], + ) { + let mut spacing = 16; + let mut size = 512; + + let device_size = draw_target.dimensions(); + let fb_width = device_size.width; + let fb_height = device_size.height; + let surface_origin_is_top_left = draw_target.surface_origin_is_top_left(); + + let num_textures = textures.len() as i32; + + if num_textures * (size + spacing) > fb_width { + let factor = fb_width as f32 / (num_textures * (size + spacing)) as f32; + size = (size as f32 * factor) as i32; + spacing = (spacing as f32 * factor) as i32; + } + + let text_height = 14; // Visually approximated. + let text_margin = 1; + let tag_height = text_height + text_margin * 2; + let tag_y = fb_height - (bottom + spacing + tag_height); + let image_y = tag_y - size; + + // Sort the display by size (in bytes), so that left-to-right is + // largest-to-smallest. + // + // Note that the vec here is in increasing order, because the elements + // get drawn right-to-left. + textures.sort_by_key(|t| t.size_in_bytes()); + + let mut i = 0; + for texture in textures.iter() { + let dimensions = texture.get_dimensions(); + let src_rect = FramebufferIntRect::from_size( + FramebufferIntSize::new(dimensions.width as i32, dimensions.height as i32), + ); + + let x = fb_width - (spacing + size) * (i as i32 + 1); + + // If we have more targets than fit on one row in screen, just early exit. + if x > fb_width { + return; + } + + // Draw the info tag. + let tag_rect = rect(x, tag_y, size, tag_height).to_box2d(); + let tag_color = select_color(texture); + device.clear_target( + Some(tag_color), + None, + Some(draw_target.to_framebuffer_rect(tag_rect)), + ); + + // Draw the dimensions onto the tag. + let dim = texture.get_dimensions(); + let text_rect = tag_rect.inflate(-text_margin, -text_margin); + debug_renderer.add_text( + text_rect.min.x as f32, + text_rect.max.y as f32, // Top-relative. + &format!("{}x{}", dim.width, dim.height), + ColorU::new(0, 0, 0, 255), + Some(tag_rect.to_f32()) + ); + + // Blit the contents of the texture. + let dest_rect = draw_target.to_framebuffer_rect(rect(x, image_y, size, size).to_box2d()); + let read_target = ReadTarget::from_texture(texture); + + if surface_origin_is_top_left { + device.blit_render_target( + read_target, + src_rect, + *draw_target, + dest_rect, + TextureFilter::Linear, + ); + } else { + // Invert y. + device.blit_render_target_invert_y( + read_target, + src_rect, + *draw_target, + dest_rect, + ); + } + i += 1; + } + } + + fn draw_epoch_debug(&mut self) { + if !self.debug_flags.contains(DebugFlags::EPOCHS) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let dy = debug_renderer.line_height(); + let x0: f32 = 30.0; + let y0: f32 = 30.0; + let mut y = y0; + let mut text_width = 0.0; + for ((pipeline, document_id), epoch) in &self.pipeline_info.epochs { + y += dy; + let w = debug_renderer.add_text( + x0, y, + &format!("({:?}, {:?}): {:?}", pipeline, document_id, epoch), + ColorU::new(255, 255, 0, 255), + None, + ).size.width; + text_width = f32::max(text_width, w); + } + + let margin = 10.0; + debug_renderer.add_quad( + x0 - margin, + y0 - margin, + x0 + text_width + margin, + y + margin, + ColorU::new(25, 25, 25, 200), + ColorU::new(51, 51, 51, 200), + ); + } + + fn draw_window_visibility_debug(&mut self) { + if !self.debug_flags.contains(DebugFlags::WINDOW_VISIBILITY_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let x: f32 = 30.0; + let y: f32 = 40.0; + + if let CompositorConfig::Native { ref mut compositor, .. } = self.compositor_config { + let visibility = compositor.get_window_visibility(); + let color = if visibility.is_fully_occluded { + ColorU::new(255, 0, 0, 255) + + } else { + ColorU::new(0, 0, 255, 255) + }; + + debug_renderer.add_text( + x, y, + &format!("{:?}", visibility), + color, + None, + ); + } + + + } + + fn draw_gpu_cache_debug(&mut self, device_size: DeviceIntSize) { + if !self.debug_flags.contains(DebugFlags::GPU_CACHE_DBG) { + return; + } + + let debug_renderer = match self.debug.get_mut(&mut self.device) { + Some(render) => render, + None => return, + }; + + let (x_off, y_off) = (30f32, 30f32); + let height = self.gpu_cache_texture.get_height() + .min(device_size.height - (y_off as i32) * 2) as usize; + debug_renderer.add_quad( + x_off, + y_off, + x_off + MAX_VERTEX_TEXTURE_WIDTH as f32, + y_off + height as f32, + ColorU::new(80, 80, 80, 80), + ColorU::new(80, 80, 80, 80), + ); + + let upper = self.gpu_cache_debug_chunks.len().min(height); + for chunk in self.gpu_cache_debug_chunks[0..upper].iter().flatten() { + let color = ColorU::new(250, 0, 0, 200); + debug_renderer.add_quad( + x_off + chunk.address.u as f32, + y_off + chunk.address.v as f32, + x_off + chunk.address.u as f32 + chunk.size as f32, + y_off + chunk.address.v as f32 + 1.0, + color, + color, + ); + } + } + + /// Pass-through to `Device::read_pixels_into`, used by Gecko's WR bindings. + pub fn read_pixels_into(&mut self, rect: FramebufferIntRect, format: ImageFormat, output: &mut [u8]) { + self.device.read_pixels_into(rect, format, output); + } + + pub fn read_pixels_rgba8(&mut self, rect: FramebufferIntRect) -> Vec<u8> { + let mut pixels = vec![0; (rect.area() * 4) as usize]; + self.device.read_pixels_into(rect, ImageFormat::RGBA8, &mut pixels); + pixels + } + + // De-initialize the Renderer safely, assuming the GL is still alive and active. + pub fn deinit(mut self) { + //Note: this is a fake frame, only needed because texture deletion is require to happen inside a frame + self.device.begin_frame(); + // If we are using a native compositor, ensure that any remaining native + // surfaces are freed. + if let CompositorConfig::Native { mut compositor, .. } = self.compositor_config { + for id in self.allocated_native_surfaces.drain() { + compositor.destroy_surface(id); + } + // Destroy the debug overlay surface, if currently allocated. + if self.debug_overlay_state.current_size.is_some() { + compositor.destroy_surface(NativeSurfaceId::DEBUG_OVERLAY); + } + compositor.deinit(); + } + self.gpu_cache_texture.deinit(&mut self.device); + if let Some(dither_matrix_texture) = self.dither_matrix_texture { + self.device.delete_texture(dither_matrix_texture); + } + if let Some(zoom_debug_texture) = self.zoom_debug_texture { + self.device.delete_texture(zoom_debug_texture); + } + for textures in self.vertex_data_textures.drain(..) { + textures.deinit(&mut self.device); + } + self.texture_upload_pbo_pool.deinit(&mut self.device); + self.staging_texture_pool.delete_textures(&mut self.device); + self.texture_resolver.deinit(&mut self.device); + self.vaos.deinit(&mut self.device); + self.debug.deinit(&mut self.device); + + if let Ok(shaders) = Rc::try_unwrap(self.shaders) { + shaders.into_inner().deinit(&mut self.device); + } + + if let Some(async_screenshots) = self.async_screenshots.take() { + async_screenshots.deinit(&mut self.device); + } + + if let Some(async_frame_recorder) = self.async_frame_recorder.take() { + async_frame_recorder.deinit(&mut self.device); + } + + #[cfg(feature = "capture")] + self.device.delete_fbo(self.read_fbo); + #[cfg(feature = "replay")] + for (_, ext) in self.owned_external_images { + self.device.delete_external_texture(ext); + } + self.device.end_frame(); + } + + fn size_of<T>(&self, ptr: *const T) -> usize { + let ops = self.size_of_ops.as_ref().unwrap(); + unsafe { ops.malloc_size_of(ptr) } + } + + /// Collects a memory report. + pub fn report_memory(&self, swgl: *mut c_void) -> MemoryReport { + let mut report = MemoryReport::default(); + + // GPU cache CPU memory. + self.gpu_cache_texture.report_memory_to(&mut report, self.size_of_ops.as_ref().unwrap()); + + self.staging_texture_pool.report_memory_to(&mut report, self.size_of_ops.as_ref().unwrap()); + + // Render task CPU memory. + for (_id, doc) in &self.active_documents { + report.render_tasks += self.size_of(doc.frame.render_tasks.tasks.as_ptr()); + report.render_tasks += self.size_of(doc.frame.render_tasks.task_data.as_ptr()); + } + + // Vertex data GPU memory. + for textures in &self.vertex_data_textures { + report.vertex_data_textures += textures.size_in_bytes(); + } + + // Texture cache and render target GPU memory. + report += self.texture_resolver.report_memory(); + + // Texture upload PBO memory. + report += self.texture_upload_pbo_pool.report_memory(); + + // Textures held internally within the device layer. + report += self.device.report_memory(self.size_of_ops.as_ref().unwrap(), swgl); + + report + } + + // Sets the blend mode. Blend is unconditionally set if the "show overdraw" debugging mode is + // enabled. + fn set_blend(&mut self, mut blend: bool, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + blend = true + } + self.device.set_blend(blend) + } + + fn set_blend_mode_multiply(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_multiply(); + } + } + + fn set_blend_mode_premultiplied_alpha(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_premultiplied_alpha(); + } + } + + fn set_blend_mode_subpixel_with_bg_color_pass1(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_subpixel_with_bg_color_pass1(); + } + } + + fn set_blend_mode_subpixel_with_bg_color_pass2(&mut self, framebuffer_kind: FramebufferKind) { + if framebuffer_kind == FramebufferKind::Main && + self.debug_flags.contains(DebugFlags::SHOW_OVERDRAW) { + self.device.set_blend_mode_show_overdraw(); + } else { + self.device.set_blend_mode_subpixel_with_bg_color_pass2(); + } + } + + /// Clears the texture with a given color. + fn clear_texture(&mut self, texture: &Texture, color: [f32; 4]) { + self.device.bind_draw_target(DrawTarget::from_texture( + &texture, + false, + )); + self.device.clear_target(Some(color), None, None); + } +} + +bitflags! { + /// Flags that control how shaders are pre-cached, if at all. + #[derive(Default)] + pub struct ShaderPrecacheFlags: u32 { + /// Needed for const initialization + const EMPTY = 0; + + /// Only start async compile + const ASYNC_COMPILE = 1 << 2; + + /// Do a full compile/link during startup + const FULL_COMPILE = 1 << 3; + } +} + +/// The cumulative times spent in each painting phase to generate this frame. +#[derive(Debug, Default)] +pub struct FullFrameStats { + pub full_display_list: bool, + pub gecko_display_list_time: f64, + pub wr_display_list_time: f64, + pub scene_build_time: f64, + pub frame_build_time: f64, +} + +impl FullFrameStats { + pub fn merge(&self, other: &FullFrameStats) -> Self { + Self { + full_display_list: self.full_display_list || other.full_display_list, + gecko_display_list_time: self.gecko_display_list_time + other.gecko_display_list_time, + wr_display_list_time: self.wr_display_list_time + other.wr_display_list_time, + scene_build_time: self.scene_build_time + other.scene_build_time, + frame_build_time: self.frame_build_time + other.frame_build_time + } + } + + pub fn total(&self) -> f64 { + self.gecko_display_list_time + self.wr_display_list_time + self.scene_build_time + self.frame_build_time + } +} + +/// Some basic statistics about the rendered scene, used in Gecko, as +/// well as in wrench reftests to ensure that tests are batching and/or +/// allocating on render targets as we expect them to. +#[repr(C)] +#[derive(Debug, Default)] +pub struct RendererStats { + pub total_draw_calls: usize, + pub alpha_target_count: usize, + pub color_target_count: usize, + pub texture_upload_mb: f64, + pub resource_upload_time: f64, + pub gpu_cache_upload_time: f64, + pub gecko_display_list_time: f64, + pub wr_display_list_time: f64, + pub scene_build_time: f64, + pub frame_build_time: f64, + pub full_display_list: bool, + pub full_paint: bool, +} + +impl RendererStats { + pub fn merge(&mut self, stats: &FullFrameStats) { + self.gecko_display_list_time = stats.gecko_display_list_time; + self.wr_display_list_time = stats.wr_display_list_time; + self.scene_build_time = stats.scene_build_time; + self.frame_build_time = stats.frame_build_time; + self.full_display_list = stats.full_display_list; + self.full_paint = true; + } +} + +/// Return type from render(), which contains some repr(C) statistics as well as +/// some non-repr(C) data. +#[derive(Debug, Default)] +pub struct RenderResults { + /// Statistics about the frame that was rendered. + pub stats: RendererStats, + + /// A list of the device dirty rects that were updated + /// this frame. + /// TODO(gw): This is an initial interface, likely to change in future. + /// TODO(gw): The dirty rects here are currently only useful when scrolling + /// is not occurring. They are still correct in the case of + /// scrolling, but will be very large (until we expose proper + /// OS compositor support where the dirty rects apply to a + /// specific picture cache slice / OS compositor surface). + pub dirty_rects: Vec<DeviceIntRect>, + + /// Information about the state of picture cache tiles. This is only + /// allocated and stored if config.testing is true (such as wrench) + pub picture_cache_debug: PictureCacheDebugInfo, +} + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainTexture { + data: String, + size: DeviceIntSize, + format: ImageFormat, + filter: TextureFilter, + has_depth: bool, + category: Option<TextureCacheCategory>, +} + + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainRenderer { + device_size: Option<DeviceIntSize>, + gpu_cache: PlainTexture, + gpu_cache_frame_id: FrameId, + textures: FastHashMap<CacheTextureId, PlainTexture>, +} + +#[cfg(any(feature = "capture", feature = "replay"))] +#[cfg_attr(feature = "capture", derive(Serialize))] +#[cfg_attr(feature = "replay", derive(Deserialize))] +struct PlainExternalResources { + images: Vec<ExternalCaptureImage> +} + +#[cfg(feature = "replay")] +enum CapturedExternalImageData { + NativeTexture(gl::GLuint), + Buffer(Arc<Vec<u8>>), +} + +#[cfg(feature = "replay")] +struct DummyExternalImageHandler { + data: FastHashMap<(ExternalImageId, u8), (CapturedExternalImageData, TexelRect)>, +} + +#[cfg(feature = "replay")] +impl ExternalImageHandler for DummyExternalImageHandler { + fn lock(&mut self, key: ExternalImageId, channel_index: u8) -> ExternalImage { + let (ref captured_data, ref uv) = self.data[&(key, channel_index)]; + ExternalImage { + uv: *uv, + source: match *captured_data { + CapturedExternalImageData::NativeTexture(tid) => ExternalImageSource::NativeTexture(tid), + CapturedExternalImageData::Buffer(ref arc) => ExternalImageSource::RawData(&*arc), + } + } + } + fn unlock(&mut self, _key: ExternalImageId, _channel_index: u8) {} +} + +#[derive(Default)] +pub struct PipelineInfo { + pub epochs: FastHashMap<(PipelineId, DocumentId), Epoch>, + pub removed_pipelines: Vec<(PipelineId, DocumentId)>, +} + +impl Renderer { + #[cfg(feature = "capture")] + fn save_texture( + texture: &Texture, category: Option<TextureCacheCategory>, name: &str, root: &PathBuf, device: &mut Device + ) -> PlainTexture { + use std::fs; + use std::io::Write; + + let short_path = format!("textures/{}.raw", name); + + let bytes_per_pixel = texture.get_format().bytes_per_pixel(); + let read_format = texture.get_format(); + let rect_size = texture.get_dimensions(); + + let mut file = fs::File::create(root.join(&short_path)) + .expect(&format!("Unable to create {}", short_path)); + let bytes_per_texture = (rect_size.width * rect_size.height * bytes_per_pixel) as usize; + let mut data = vec![0; bytes_per_texture]; + + //TODO: instead of reading from an FBO with `read_pixels*`, we could + // read from textures directly with `get_tex_image*`. + + let rect = device_size_as_framebuffer_size(rect_size).into(); + + device.attach_read_texture(texture); + #[cfg(feature = "png")] + { + let mut png_data; + let (data_ref, format) = match texture.get_format() { + ImageFormat::RGBAF32 => { + png_data = vec![0; (rect_size.width * rect_size.height * 4) as usize]; + device.read_pixels_into(rect, ImageFormat::RGBA8, &mut png_data); + (&png_data, ImageFormat::RGBA8) + } + fm => (&data, fm), + }; + CaptureConfig::save_png( + root.join(format!("textures/{}-{}.png", name, 0)), + rect_size, format, + None, + data_ref, + ); + } + device.read_pixels_into(rect, read_format, &mut data); + file.write_all(&data) + .unwrap(); + + PlainTexture { + data: short_path, + size: rect_size, + format: texture.get_format(), + filter: texture.get_filter(), + has_depth: texture.supports_depth(), + category, + } + } + + #[cfg(feature = "replay")] + fn load_texture( + target: ImageBufferKind, + plain: &PlainTexture, + rt_info: Option<RenderTargetInfo>, + root: &PathBuf, + device: &mut Device + ) -> (Texture, Vec<u8>) + { + use std::fs::File; + use std::io::Read; + + let mut texels = Vec::new(); + File::open(root.join(&plain.data)) + .expect(&format!("Unable to open texture at {}", plain.data)) + .read_to_end(&mut texels) + .unwrap(); + + let texture = device.create_texture( + target, + plain.format, + plain.size.width, + plain.size.height, + plain.filter, + rt_info, + ); + device.upload_texture_immediate(&texture, &texels); + + (texture, texels) + } + + #[cfg(feature = "capture")] + fn save_capture( + &mut self, + config: CaptureConfig, + deferred_images: Vec<ExternalCaptureImage>, + ) { + use std::fs; + use std::io::Write; + use api::ExternalImageData; + use crate::render_api::CaptureBits; + + let root = config.resource_root(); + + self.device.begin_frame(); + let _gm = self.gpu_profiler.start_marker("read GPU data"); + self.device.bind_read_target_impl(self.read_fbo, DeviceIntPoint::zero()); + + if config.bits.contains(CaptureBits::EXTERNAL_RESOURCES) && !deferred_images.is_empty() { + info!("saving external images"); + let mut arc_map = FastHashMap::<*const u8, String>::default(); + let mut tex_map = FastHashMap::<u32, String>::default(); + let handler = self.external_image_handler + .as_mut() + .expect("Unable to lock the external image handler!"); + for def in &deferred_images { + info!("\t{}", def.short_path); + let ExternalImageData { id, channel_index, image_type } = def.external; + // The image rendering parameter is irrelevant because no filtering happens during capturing. + let ext_image = handler.lock(id, channel_index); + let (data, short_path) = match ext_image.source { + ExternalImageSource::RawData(data) => { + let arc_id = arc_map.len() + 1; + match arc_map.entry(data.as_ptr()) { + Entry::Occupied(e) => { + (None, e.get().clone()) + } + Entry::Vacant(e) => { + let short_path = format!("externals/d{}.raw", arc_id); + (Some(data.to_vec()), e.insert(short_path).clone()) + } + } + } + ExternalImageSource::NativeTexture(gl_id) => { + let tex_id = tex_map.len() + 1; + match tex_map.entry(gl_id) { + Entry::Occupied(e) => { + (None, e.get().clone()) + } + Entry::Vacant(e) => { + let target = match image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => unreachable!(), + }; + info!("\t\tnative texture of target {:?}", target); + self.device.attach_read_texture_external(gl_id, target); + let data = self.device.read_pixels(&def.descriptor); + let short_path = format!("externals/t{}.raw", tex_id); + (Some(data), e.insert(short_path).clone()) + } + } + } + ExternalImageSource::Invalid => { + info!("\t\tinvalid source!"); + (None, String::new()) + } + }; + if let Some(bytes) = data { + fs::File::create(root.join(&short_path)) + .expect(&format!("Unable to create {}", short_path)) + .write_all(&bytes) + .unwrap(); + #[cfg(feature = "png")] + CaptureConfig::save_png( + root.join(&short_path).with_extension("png"), + def.descriptor.size, + def.descriptor.format, + def.descriptor.stride, + &bytes, + ); + } + let plain = PlainExternalImage { + data: short_path, + external: def.external, + uv: ext_image.uv, + }; + config.serialize_for_resource(&plain, &def.short_path); + } + for def in &deferred_images { + handler.unlock(def.external.id, def.external.channel_index); + } + let plain_external = PlainExternalResources { + images: deferred_images, + }; + config.serialize_for_resource(&plain_external, "external_resources"); + } + + if config.bits.contains(CaptureBits::FRAME) { + let path_textures = root.join("textures"); + if !path_textures.is_dir() { + fs::create_dir(&path_textures).unwrap(); + } + + info!("saving GPU cache"); + self.update_gpu_cache(); // flush pending updates + let mut plain_self = PlainRenderer { + device_size: self.device_size, + gpu_cache: Self::save_texture( + self.gpu_cache_texture.get_texture(), + None, "gpu", &root, &mut self.device, + ), + gpu_cache_frame_id: self.gpu_cache_frame_id, + textures: FastHashMap::default(), + }; + + info!("saving cached textures"); + for (id, item) in &self.texture_resolver.texture_cache_map { + let file_name = format!("cache-{}", plain_self.textures.len() + 1); + info!("\t{}", file_name); + let plain = Self::save_texture(&item.texture, Some(item.category), &file_name, &root, &mut self.device); + plain_self.textures.insert(*id, plain); + } + + config.serialize_for_resource(&plain_self, "renderer"); + } + + self.device.reset_read_target(); + self.device.end_frame(); + + let mut stats_file = fs::File::create(config.root.join("profiler-stats.txt")) + .expect(&format!("Unable to create profiler-stats.txt")); + if self.debug_flags.intersects(DebugFlags::PROFILER_DBG | DebugFlags::PROFILER_CAPTURE) { + self.profiler.dump_stats(&mut stats_file).unwrap(); + } else { + writeln!(stats_file, "Turn on PROFILER_DBG or PROFILER_CAPTURE to get stats here!").unwrap(); + } + + info!("done."); + } + + #[cfg(feature = "replay")] + fn load_capture( + &mut self, + config: CaptureConfig, + plain_externals: Vec<PlainExternalImage>, + ) { + use std::{fs::File, io::Read}; + + info!("loading external buffer-backed images"); + assert!(self.texture_resolver.external_images.is_empty()); + let mut raw_map = FastHashMap::<String, Arc<Vec<u8>>>::default(); + let mut image_handler = DummyExternalImageHandler { + data: FastHashMap::default(), + }; + + let root = config.resource_root(); + + // Note: this is a `SCENE` level population of the external image handlers + // It would put both external buffers and texture into the map. + // But latter are going to be overwritten later in this function + // if we are in the `FRAME` level. + for plain_ext in plain_externals { + let data = match raw_map.entry(plain_ext.data) { + Entry::Occupied(e) => e.get().clone(), + Entry::Vacant(e) => { + let mut buffer = Vec::new(); + File::open(root.join(e.key())) + .expect(&format!("Unable to open {}", e.key())) + .read_to_end(&mut buffer) + .unwrap(); + e.insert(Arc::new(buffer)).clone() + } + }; + let ext = plain_ext.external; + let value = (CapturedExternalImageData::Buffer(data), plain_ext.uv); + image_handler.data.insert((ext.id, ext.channel_index), value); + } + + if let Some(external_resources) = config.deserialize_for_resource::<PlainExternalResources, _>("external_resources") { + info!("loading external texture-backed images"); + let mut native_map = FastHashMap::<String, gl::GLuint>::default(); + for ExternalCaptureImage { short_path, external, descriptor } in external_resources.images { + let target = match external.image_type { + ExternalImageType::TextureHandle(target) => target, + ExternalImageType::Buffer => continue, + }; + let plain_ext = config.deserialize_for_resource::<PlainExternalImage, _>(&short_path) + .expect(&format!("Unable to read {}.ron", short_path)); + let key = (external.id, external.channel_index); + + let tid = match native_map.entry(plain_ext.data) { + Entry::Occupied(e) => e.get().clone(), + Entry::Vacant(e) => { + let plain_tex = PlainTexture { + data: e.key().clone(), + size: descriptor.size, + format: descriptor.format, + filter: TextureFilter::Linear, + has_depth: false, + category: None, + }; + let t = Self::load_texture( + target, + &plain_tex, + None, + &root, + &mut self.device + ); + let extex = t.0.into_external(); + self.owned_external_images.insert(key, extex.clone()); + e.insert(extex.internal_id()).clone() + } + }; + + let value = (CapturedExternalImageData::NativeTexture(tid), plain_ext.uv); + image_handler.data.insert(key, value); + } + } + + self.device.begin_frame(); + self.gpu_cache_texture.remove_texture(&mut self.device); + + if let Some(renderer) = config.deserialize_for_resource::<PlainRenderer, _>("renderer") { + info!("loading cached textures"); + self.device_size = renderer.device_size; + + for (_id, item) in self.texture_resolver.texture_cache_map.drain() { + self.device.delete_texture(item.texture); + } + for (id, texture) in renderer.textures { + info!("\t{}", texture.data); + let target = ImageBufferKind::Texture2D; + let t = Self::load_texture( + target, + &texture, + Some(RenderTargetInfo { has_depth: texture.has_depth }), + &root, + &mut self.device + ); + self.texture_resolver.texture_cache_map.insert(id, CacheTexture { + texture: t.0, + category: texture.category.unwrap_or(TextureCacheCategory::Standalone), + }); + } + + info!("loading gpu cache"); + let (t, gpu_cache_data) = Self::load_texture( + ImageBufferKind::Texture2D, + &renderer.gpu_cache, + Some(RenderTargetInfo { has_depth: false }), + &root, + &mut self.device, + ); + self.gpu_cache_texture.load_from_data(t, gpu_cache_data); + self.gpu_cache_frame_id = renderer.gpu_cache_frame_id; + } else { + info!("loading cached textures"); + self.device.begin_frame(); + for (_id, item) in self.texture_resolver.texture_cache_map.drain() { + self.device.delete_texture(item.texture); + } + } + self.device.end_frame(); + + self.external_image_handler = Some(Box::new(image_handler) as Box<_>); + info!("done."); + } +} + +#[derive(Clone, Copy, PartialEq)] +enum FramebufferKind { + Main, + Other, +} + +fn should_skip_batch(kind: &BatchKind, flags: DebugFlags) -> bool { + match kind { + BatchKind::TextRun(_) => { + flags.contains(DebugFlags::DISABLE_TEXT_PRIMS) + } + BatchKind::Brush(BrushBatchKind::LinearGradient) => { + flags.contains(DebugFlags::DISABLE_GRADIENT_PRIMS) + } + _ => false, + } +} + +impl CompositeState { + /// Use the client provided native compositor interface to add all picture + /// cache tiles to the OS compositor + fn composite_native( + &self, + clear_color: ColorF, + dirty_rects: &[DeviceIntRect], + compositor: &mut dyn Compositor, + ) { + // Add each surface to the visual tree. z-order is implicit based on + // order added. Offset and clip rect apply to all tiles within this + // surface. + for surface in &self.descriptor.surfaces { + compositor.add_surface( + surface.surface_id.expect("bug: no native surface allocated"), + surface.transform, + surface.clip_rect.to_i32(), + surface.image_rendering, + ); + } + compositor.start_compositing(clear_color, dirty_rects, &[]); + } +} + +mod tests { + #[test] + fn test_buffer_damage_tracker() { + use super::BufferDamageTracker; + use api::units::{DevicePoint, DeviceRect, DeviceSize}; + + let mut tracker = BufferDamageTracker::default(); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(3), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(4), None); + + let damage1 = DeviceRect::from_origin_and_size(DevicePoint::new(10.0, 10.0), DeviceSize::new(10.0, 10.0)); + let damage2 = DeviceRect::from_origin_and_size(DevicePoint::new(20.0, 20.0), DeviceSize::new(10.0, 10.0)); + let combined = damage1.union(&damage2); + + tracker.push_dirty_rect(&damage1); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(damage1)); + assert_eq!(tracker.get_damage_rect(3), Some(damage1)); + assert_eq!(tracker.get_damage_rect(4), None); + + tracker.push_dirty_rect(&damage2); + assert_eq!(tracker.get_damage_rect(0), None); + assert_eq!(tracker.get_damage_rect(1), Some(DeviceRect::zero())); + assert_eq!(tracker.get_damage_rect(2), Some(damage2)); + assert_eq!(tracker.get_damage_rect(3), Some(combined)); + assert_eq!(tracker.get_damage_rect(4), None); + } +} |