diff options
Diffstat (limited to 'modules/fdlibm/src/math_private.h')
-rw-r--r-- | modules/fdlibm/src/math_private.h | 962 |
1 files changed, 962 insertions, 0 deletions
diff --git a/modules/fdlibm/src/math_private.h b/modules/fdlibm/src/math_private.h new file mode 100644 index 0000000000..f4373f2783 --- /dev/null +++ b/modules/fdlibm/src/math_private.h @@ -0,0 +1,962 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * from: @(#)fdlibm.h 5.1 93/09/24 + * $FreeBSD$ + */ + +#ifndef _MATH_PRIVATE_H_ +#define _MATH_PRIVATE_H_ + +#include <cfloat> +#include <stdint.h> +#include <sys/types.h> + +#include "mozilla/EndianUtils.h" + +#include "fdlibm.h" + +/* + * Emulate FreeBSD internal double types. + * Adapted from https://github.com/freebsd/freebsd-src/search?q=__double_t + */ + +typedef double __double_t; +typedef __double_t double_t; +typedef float __float_t; + +/* + * The original fdlibm code used statements like: + * n0 = ((*(int*)&one)>>29)^1; * index of high word * + * ix0 = *(n0+(int*)&x); * high word of x * + * ix1 = *((1-n0)+(int*)&x); * low word of x * + * to dig two 32 bit words out of the 64 bit IEEE floating point + * value. That is non-ANSI, and, moreover, the gcc instruction + * scheduler gets it wrong. We instead use the following macros. + * Unlike the original code, we determine the endianness at compile + * time, not at run time; I don't see much benefit to selecting + * endianness at run time. + */ + +#ifndef u_int32_t +#define u_int32_t uint32_t +#endif +#ifndef u_int64_t +#define u_int64_t uint64_t +#endif + +/* A union which permits us to convert between a long double and + four 32 bit ints. */ + +#if MOZ_BIG_ENDIAN() + +typedef union +{ + long double value; + struct { + u_int32_t mswhi; + u_int32_t mswlo; + u_int32_t lswhi; + u_int32_t lswlo; + } parts32; + struct { + u_int64_t msw; + u_int64_t lsw; + } parts64; +} ieee_quad_shape_type; + +#endif + +#if MOZ_LITTLE_ENDIAN() + +typedef union +{ + long double value; + struct { + u_int32_t lswlo; + u_int32_t lswhi; + u_int32_t mswlo; + u_int32_t mswhi; + } parts32; + struct { + u_int64_t lsw; + u_int64_t msw; + } parts64; +} ieee_quad_shape_type; + +#endif + +#if MOZ_BIG_ENDIAN() + +typedef union +{ + double value; + struct + { + u_int32_t msw; + u_int32_t lsw; + } parts; + struct + { + u_int64_t w; + } xparts; +} ieee_double_shape_type; + +#endif + +#if MOZ_LITTLE_ENDIAN() + +typedef union +{ + double value; + struct + { + u_int32_t lsw; + u_int32_t msw; + } parts; + struct + { + u_int64_t w; + } xparts; +} ieee_double_shape_type; + +#endif + +/* Get two 32 bit ints from a double. */ + +#define EXTRACT_WORDS(ix0,ix1,d) \ +do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.parts.msw; \ + (ix1) = ew_u.parts.lsw; \ +} while (0) + +/* Get a 64-bit int from a double. */ +#define EXTRACT_WORD64(ix,d) \ +do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix) = ew_u.xparts.w; \ +} while (0) + +/* Get the more significant 32 bit int from a double. */ + +#define GET_HIGH_WORD(i,d) \ +do { \ + ieee_double_shape_type gh_u; \ + gh_u.value = (d); \ + (i) = gh_u.parts.msw; \ +} while (0) + +/* Get the less significant 32 bit int from a double. */ + +#define GET_LOW_WORD(i,d) \ +do { \ + ieee_double_shape_type gl_u; \ + gl_u.value = (d); \ + (i) = gl_u.parts.lsw; \ +} while (0) + +/* Set a double from two 32 bit ints. */ + +#define INSERT_WORDS(d,ix0,ix1) \ +do { \ + ieee_double_shape_type iw_u; \ + iw_u.parts.msw = (ix0); \ + iw_u.parts.lsw = (ix1); \ + (d) = iw_u.value; \ +} while (0) + +/* Set a double from a 64-bit int. */ +#define INSERT_WORD64(d,ix) \ +do { \ + ieee_double_shape_type iw_u; \ + iw_u.xparts.w = (ix); \ + (d) = iw_u.value; \ +} while (0) + +/* Set the more significant 32 bits of a double from an int. */ + +#define SET_HIGH_WORD(d,v) \ +do { \ + ieee_double_shape_type sh_u; \ + sh_u.value = (d); \ + sh_u.parts.msw = (v); \ + (d) = sh_u.value; \ +} while (0) + +/* Set the less significant 32 bits of a double from an int. */ + +#define SET_LOW_WORD(d,v) \ +do { \ + ieee_double_shape_type sl_u; \ + sl_u.value = (d); \ + sl_u.parts.lsw = (v); \ + (d) = sl_u.value; \ +} while (0) + +/* + * A union which permits us to convert between a float and a 32 bit + * int. + */ + +typedef union +{ + float value; + /* FIXME: Assumes 32 bit int. */ + unsigned int word; +} ieee_float_shape_type; + +/* Get a 32 bit int from a float. */ + +#define GET_FLOAT_WORD(i,d) \ +do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ +} while (0) + +/* Set a float from a 32 bit int. */ + +#define SET_FLOAT_WORD(d,i) \ +do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ +} while (0) + +/* + * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long + * double. + */ + +#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \ +do { \ + union IEEEl2bits ew_u; \ + ew_u.e = (d); \ + (ix0) = ew_u.xbits.expsign; \ + (ix1) = ew_u.xbits.man; \ +} while (0) + +/* + * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit + * long double. + */ + +#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \ +do { \ + union IEEEl2bits ew_u; \ + ew_u.e = (d); \ + (ix0) = ew_u.xbits.expsign; \ + (ix1) = ew_u.xbits.manh; \ + (ix2) = ew_u.xbits.manl; \ +} while (0) + +/* Get expsign as a 16 bit int from a long double. */ + +#define GET_LDBL_EXPSIGN(i,d) \ +do { \ + union IEEEl2bits ge_u; \ + ge_u.e = (d); \ + (i) = ge_u.xbits.expsign; \ +} while (0) + +/* + * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int + * mantissa. + */ + +#define INSERT_LDBL80_WORDS(d,ix0,ix1) \ +do { \ + union IEEEl2bits iw_u; \ + iw_u.xbits.expsign = (ix0); \ + iw_u.xbits.man = (ix1); \ + (d) = iw_u.e; \ +} while (0) + +/* + * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints + * comprising the mantissa. + */ + +#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \ +do { \ + union IEEEl2bits iw_u; \ + iw_u.xbits.expsign = (ix0); \ + iw_u.xbits.manh = (ix1); \ + iw_u.xbits.manl = (ix2); \ + (d) = iw_u.e; \ +} while (0) + +/* Set expsign of a long double from a 16 bit int. */ + +#define SET_LDBL_EXPSIGN(d,v) \ +do { \ + union IEEEl2bits se_u; \ + se_u.e = (d); \ + se_u.xbits.expsign = (v); \ + (d) = se_u.e; \ +} while (0) + +#ifdef __i386__ +/* Long double constants are broken on i386. */ +#define LD80C(m, ex, v) { \ + .xbits.man = __CONCAT(m, ULL), \ + .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \ +} +#else +/* The above works on non-i386 too, but we use this to check v. */ +#define LD80C(m, ex, v) { .e = (v), } +#endif + +#ifdef FLT_EVAL_METHOD +/* + * Attempt to get strict C99 semantics for assignment with non-C99 compilers. + */ +#if !defined(_MSC_VER) && (FLT_EVAL_METHOD == 0 || __GNUC__ == 0) +#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval)) +#else +#define STRICT_ASSIGN(type, lval, rval) do { \ + volatile type __lval; \ + \ + if (sizeof(type) >= sizeof(long double)) \ + (lval) = (rval); \ + else { \ + __lval = (rval); \ + (lval) = __lval; \ + } \ +} while (0) +#endif +#else +#define STRICT_ASSIGN(type, lval, rval) do { \ + volatile type __lval; \ + \ + if (sizeof(type) >= sizeof(long double)) \ + (lval) = (rval); \ + else { \ + __lval = (rval); \ + (lval) = __lval; \ + } \ +} while (0) +#endif /* FLT_EVAL_METHOD */ + +/* Support switching the mode to FP_PE if necessary. */ +#if defined(__i386__) && !defined(NO_FPSETPREC) +#define ENTERI() ENTERIT(long double) +#define ENTERIT(returntype) \ + returntype __retval; \ + fp_prec_t __oprec; \ + \ + if ((__oprec = fpgetprec()) != FP_PE) \ + fpsetprec(FP_PE) +#define RETURNI(x) do { \ + __retval = (x); \ + if (__oprec != FP_PE) \ + fpsetprec(__oprec); \ + RETURNF(__retval); \ +} while (0) +#define ENTERV() \ + fp_prec_t __oprec; \ + \ + if ((__oprec = fpgetprec()) != FP_PE) \ + fpsetprec(FP_PE) +#define RETURNV() do { \ + if (__oprec != FP_PE) \ + fpsetprec(__oprec); \ + return; \ +} while (0) +#else +#define ENTERI() +#define ENTERIT(x) +#define RETURNI(x) RETURNF(x) +#define ENTERV() +#define RETURNV() return +#endif + +/* Default return statement if hack*_t() is not used. */ +#define RETURNF(v) return (v) + +/* + * 2sum gives the same result as 2sumF without requiring |a| >= |b| or + * a == 0, but is slower. + */ +#define _2sum(a, b) do { \ + __typeof(a) __s, __w; \ + \ + __w = (a) + (b); \ + __s = __w - (a); \ + (b) = ((a) - (__w - __s)) + ((b) - __s); \ + (a) = __w; \ +} while (0) + +/* + * 2sumF algorithm. + * + * "Normalize" the terms in the infinite-precision expression a + b for + * the sum of 2 floating point values so that b is as small as possible + * relative to 'a'. (The resulting 'a' is the value of the expression in + * the same precision as 'a' and the resulting b is the rounding error.) + * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and + * exponent overflow or underflow must not occur. This uses a Theorem of + * Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum" + * is apparently due to Skewchuk (1997). + * + * For this to always work, assignment of a + b to 'a' must not retain any + * extra precision in a + b. This is required by C standards but broken + * in many compilers. The brokenness cannot be worked around using + * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this + * algorithm would be destroyed by non-null strict assignments. (The + * compilers are correct to be broken -- the efficiency of all floating + * point code calculations would be destroyed similarly if they forced the + * conversions.) + * + * Fortunately, a case that works well can usually be arranged by building + * any extra precision into the type of 'a' -- 'a' should have type float_t, + * double_t or long double. b's type should be no larger than 'a's type. + * Callers should use these types with scopes as large as possible, to + * reduce their own extra-precision and efficiciency problems. In + * particular, they shouldn't convert back and forth just to call here. + */ +#ifdef DEBUG +#define _2sumF(a, b) do { \ + __typeof(a) __w; \ + volatile __typeof(a) __ia, __ib, __r, __vw; \ + \ + __ia = (a); \ + __ib = (b); \ + assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \ + \ + __w = (a) + (b); \ + (b) = ((a) - __w) + (b); \ + (a) = __w; \ + \ + /* The next 2 assertions are weak if (a) is already long double. */ \ + assert((long double)__ia + __ib == (long double)(a) + (b)); \ + __vw = __ia + __ib; \ + __r = __ia - __vw; \ + __r += __ib; \ + assert(__vw == (a) && __r == (b)); \ +} while (0) +#else /* !DEBUG */ +#define _2sumF(a, b) do { \ + __typeof(a) __w; \ + \ + __w = (a) + (b); \ + (b) = ((a) - __w) + (b); \ + (a) = __w; \ +} while (0) +#endif /* DEBUG */ + +/* + * Set x += c, where x is represented in extra precision as a + b. + * x must be sufficiently normalized and sufficiently larger than c, + * and the result is then sufficiently normalized. + * + * The details of ordering are that |a| must be >= |c| (so that (a, c) + * can be normalized without extra work to swap 'a' with c). The details of + * the normalization are that b must be small relative to the normalized 'a'. + * Normalization of (a, c) makes the normalized c tiny relative to the + * normalized a, so b remains small relative to 'a' in the result. However, + * b need not ever be tiny relative to 'a'. For example, b might be about + * 2**20 times smaller than 'a' to give about 20 extra bits of precision. + * That is usually enough, and adding c (which by normalization is about + * 2**53 times smaller than a) cannot change b significantly. However, + * cancellation of 'a' with c in normalization of (a, c) may reduce 'a' + * significantly relative to b. The caller must ensure that significant + * cancellation doesn't occur, either by having c of the same sign as 'a', + * or by having |c| a few percent smaller than |a|. Pre-normalization of + * (a, b) may help. + * + * This is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2 + * exercise 19). We gain considerable efficiency by requiring the terms to + * be sufficiently normalized and sufficiently increasing. + */ +#define _3sumF(a, b, c) do { \ + __typeof(a) __tmp; \ + \ + __tmp = (c); \ + _2sumF(__tmp, (a)); \ + (b) += (a); \ + (a) = __tmp; \ +} while (0) + +/* + * Common routine to process the arguments to nan(), nanf(), and nanl(). + */ +void _scan_nan(uint32_t *__words, int __num_words, const char *__s); + +/* + * Mix 0, 1 or 2 NaNs. First add 0 to each arg. This normally just turns + * signaling NaNs into quiet NaNs by setting a quiet bit. We do this + * because we want to never return a signaling NaN, and also because we + * don't want the quiet bit to affect the result. Then mix the converted + * args using the specified operation. + * + * When one arg is NaN, the result is typically that arg quieted. When both + * args are NaNs, the result is typically the quietening of the arg whose + * mantissa is largest after quietening. When neither arg is NaN, the + * result may be NaN because it is indeterminate, or finite for subsequent + * construction of a NaN as the indeterminate 0.0L/0.0L. + * + * Technical complications: the result in bits after rounding to the final + * precision might depend on the runtime precision and/or on compiler + * optimizations, especially when different register sets are used for + * different precisions. Try to make the result not depend on at least the + * runtime precision by always doing the main mixing step in long double + * precision. Try to reduce dependencies on optimizations by adding the + * the 0's in different precisions (unless everything is in long double + * precision). + */ +#define nan_mix(x, y) (nan_mix_op((x), (y), +)) +#define nan_mix_op(x, y, op) (((x) + 0.0L) op ((y) + 0)) + +#ifdef _COMPLEX_H + +/* + * C99 specifies that complex numbers have the same representation as + * an array of two elements, where the first element is the real part + * and the second element is the imaginary part. + */ +typedef union { + float complex f; + float a[2]; +} float_complex; +typedef union { + double complex f; + double a[2]; +} double_complex; +typedef union { + long double complex f; + long double a[2]; +} long_double_complex; +#define REALPART(z) ((z).a[0]) +#define IMAGPART(z) ((z).a[1]) + +/* + * Inline functions that can be used to construct complex values. + * + * The C99 standard intends x+I*y to be used for this, but x+I*y is + * currently unusable in general since gcc introduces many overflow, + * underflow, sign and efficiency bugs by rewriting I*y as + * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product. + * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted + * to -0.0+I*0.0. + * + * The C11 standard introduced the macros CMPLX(), CMPLXF() and CMPLXL() + * to construct complex values. Compilers that conform to the C99 + * standard require the following functions to avoid the above issues. + */ + +#ifndef CMPLXF +static __inline float complex +CMPLXF(float x, float y) +{ + float_complex z; + + REALPART(z) = x; + IMAGPART(z) = y; + return (z.f); +} +#endif + +#ifndef CMPLX +static __inline double complex +CMPLX(double x, double y) +{ + double_complex z; + + REALPART(z) = x; + IMAGPART(z) = y; + return (z.f); +} +#endif + +#ifndef CMPLXL +static __inline long double complex +CMPLXL(long double x, long double y) +{ + long_double_complex z; + + REALPART(z) = x; + IMAGPART(z) = y; + return (z.f); +} +#endif + +#endif /* _COMPLEX_H */ + +/* + * The rnint() family rounds to the nearest integer for a restricted range + * range of args (up to about 2**MANT_DIG). We assume that the current + * rounding mode is FE_TONEAREST so that this can be done efficiently. + * Extra precision causes more problems in practice, and we only centralize + * this here to reduce those problems, and have not solved the efficiency + * problems. The exp2() family uses a more delicate version of this that + * requires extracting bits from the intermediate value, so it is not + * centralized here and should copy any solution of the efficiency problems. + */ + +static inline double +rnint(__double_t x) +{ + /* + * This casts to double to kill any extra precision. This depends + * on the cast being applied to a double_t to avoid compiler bugs + * (this is a cleaner version of STRICT_ASSIGN()). This is + * inefficient if there actually is extra precision, but is hard + * to improve on. We use double_t in the API to minimise conversions + * for just calling here. Note that we cannot easily change the + * magic number to the one that works directly with double_t, since + * the rounding precision is variable at runtime on x86 so the + * magic number would need to be variable. Assuming that the + * rounding precision is always the default is too fragile. This + * and many other complications will move when the default is + * changed to FP_PE. + */ + return ((double)(x + 0x1.8p52) - 0x1.8p52); +} + +/* + * irint() and i64rint() give the same result as casting to their integer + * return type provided their arg is a floating point integer. They can + * sometimes be more efficient because no rounding is required. + */ +#if defined(amd64) || defined(__i386__) +#define irint(x) \ + (sizeof(x) == sizeof(float) && \ + sizeof(__float_t) == sizeof(long double) ? irintf(x) : \ + sizeof(x) == sizeof(double) && \ + sizeof(__double_t) == sizeof(long double) ? irintd(x) : \ + sizeof(x) == sizeof(long double) ? irintl(x) : (int)(x)) +#else +#define irint(x) ((int)(x)) +#endif + +#define i64rint(x) ((int64_t)(x)) /* only needed for ld128 so not opt. */ + +#if defined(__i386__) +static __inline int +irintf(float x) +{ + int n; + + __asm("fistl %0" : "=m" (n) : "t" (x)); + return (n); +} + +static __inline int +irintd(double x) +{ + int n; + + __asm("fistl %0" : "=m" (n) : "t" (x)); + return (n); +} +#endif + +#if defined(__amd64__) || defined(__i386__) +static __inline int +irintl(long double x) +{ + int n; + + __asm("fistl %0" : "=m" (n) : "t" (x)); + return (n); +} +#endif + +#ifdef DEBUG +#if defined(__amd64__) || defined(__i386__) +#define breakpoint() asm("int $3") +#else +#include <signal.h> + +#define breakpoint() raise(SIGTRAP) +#endif +#endif + +/* Write a pari script to test things externally. */ +#ifdef DOPRINT +#include <stdio.h> + +#ifndef DOPRINT_SWIZZLE +#define DOPRINT_SWIZZLE 0 +#endif + +#ifdef DOPRINT_LD80 + +#define DOPRINT_START(xp) do { \ + uint64_t __lx; \ + uint16_t __hx; \ + \ + /* Hack to give more-problematic args. */ \ + EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \ + __lx ^= DOPRINT_SWIZZLE; \ + INSERT_LDBL80_WORDS(*xp, __hx, __lx); \ + printf("x = %.21Lg; ", (long double)*xp); \ +} while (0) +#define DOPRINT_END1(v) \ + printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) +#define DOPRINT_END2(hi, lo) \ + printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ + (long double)(hi), (long double)(lo)) + +#elif defined(DOPRINT_D64) + +#define DOPRINT_START(xp) do { \ + uint32_t __hx, __lx; \ + \ + EXTRACT_WORDS(__hx, __lx, *xp); \ + __lx ^= DOPRINT_SWIZZLE; \ + INSERT_WORDS(*xp, __hx, __lx); \ + printf("x = %.21Lg; ", (long double)*xp); \ +} while (0) +#define DOPRINT_END1(v) \ + printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) +#define DOPRINT_END2(hi, lo) \ + printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ + (long double)(hi), (long double)(lo)) + +#elif defined(DOPRINT_F32) + +#define DOPRINT_START(xp) do { \ + uint32_t __hx; \ + \ + GET_FLOAT_WORD(__hx, *xp); \ + __hx ^= DOPRINT_SWIZZLE; \ + SET_FLOAT_WORD(*xp, __hx); \ + printf("x = %.21Lg; ", (long double)*xp); \ +} while (0) +#define DOPRINT_END1(v) \ + printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v)) +#define DOPRINT_END2(hi, lo) \ + printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \ + (long double)(hi), (long double)(lo)) + +#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */ + +#ifndef DOPRINT_SWIZZLE_HIGH +#define DOPRINT_SWIZZLE_HIGH 0 +#endif + +#define DOPRINT_START(xp) do { \ + uint64_t __lx, __llx; \ + uint16_t __hx; \ + \ + EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \ + __llx ^= DOPRINT_SWIZZLE; \ + __lx ^= DOPRINT_SWIZZLE_HIGH; \ + INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \ + printf("x = %.36Lg; ", (long double)*xp); \ +} while (0) +#define DOPRINT_END1(v) \ + printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v)) +#define DOPRINT_END2(hi, lo) \ + printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \ + (long double)(hi), (long double)(lo)) + +#endif /* DOPRINT_LD80 */ + +#else /* !DOPRINT */ +#define DOPRINT_START(xp) +#define DOPRINT_END1(v) +#define DOPRINT_END2(hi, lo) +#endif /* DOPRINT */ + +#define RETURNP(x) do { \ + DOPRINT_END1(x); \ + RETURNF(x); \ +} while (0) +#define RETURNPI(x) do { \ + DOPRINT_END1(x); \ + RETURNI(x); \ +} while (0) +#define RETURN2P(x, y) do { \ + DOPRINT_END2((x), (y)); \ + RETURNF((x) + (y)); \ +} while (0) +#define RETURN2PI(x, y) do { \ + DOPRINT_END2((x), (y)); \ + RETURNI((x) + (y)); \ +} while (0) +#ifdef STRUCT_RETURN +#define RETURNSP(rp) do { \ + if (!(rp)->lo_set) \ + RETURNP((rp)->hi); \ + RETURN2P((rp)->hi, (rp)->lo); \ +} while (0) +#define RETURNSPI(rp) do { \ + if (!(rp)->lo_set) \ + RETURNPI((rp)->hi); \ + RETURN2PI((rp)->hi, (rp)->lo); \ +} while (0) +#endif +#define SUM2P(x, y) ({ \ + const __typeof (x) __x = (x); \ + const __typeof (y) __y = (y); \ + \ + DOPRINT_END2(__x, __y); \ + __x + __y; \ +}) + +/* + * ieee style elementary functions + * + * We rename functions here to improve other sources' diffability + * against fdlibm. + */ +#define __ieee754_sqrt sqrt +#define __ieee754_acos acos +#define __ieee754_acosh acosh +#define __ieee754_log log +#define __ieee754_log2 log2 +#define __ieee754_atanh atanh +#define __ieee754_asin asin +#define __ieee754_atan2 atan2 +#define __ieee754_exp exp +#define __ieee754_cosh cosh +#define __ieee754_fmod fmod +#define __ieee754_pow pow +#define __ieee754_lgamma lgamma +#define __ieee754_gamma gamma +#define __ieee754_lgamma_r lgamma_r +#define __ieee754_gamma_r gamma_r +#define __ieee754_log10 log10 +#define __ieee754_sinh sinh +#define __ieee754_hypot hypot +#define __ieee754_j0 j0 +#define __ieee754_j1 j1 +#define __ieee754_y0 y0 +#define __ieee754_y1 y1 +#define __ieee754_jn jn +#define __ieee754_yn yn +#define __ieee754_remainder remainder +#define __ieee754_scalb scalb +#define __ieee754_sqrtf sqrtf +#define __ieee754_acosf acosf +#define __ieee754_acoshf acoshf +#define __ieee754_logf logf +#define __ieee754_atanhf atanhf +#define __ieee754_asinf asinf +#define __ieee754_atan2f atan2f +#define __ieee754_expf expf +#define __ieee754_coshf coshf +#define __ieee754_fmodf fmodf +#define __ieee754_powf powf +#define __ieee754_lgammaf lgammaf +#define __ieee754_gammaf gammaf +#define __ieee754_lgammaf_r lgammaf_r +#define __ieee754_gammaf_r gammaf_r +#define __ieee754_log10f log10f +#define __ieee754_log2f log2f +#define __ieee754_sinhf sinhf +#define __ieee754_hypotf hypotf +#define __ieee754_j0f j0f +#define __ieee754_j1f j1f +#define __ieee754_y0f y0f +#define __ieee754_y1f y1f +#define __ieee754_jnf jnf +#define __ieee754_ynf ynf +#define __ieee754_remainderf remainderf +#define __ieee754_scalbf scalbf + +#define acos fdlibm::acos +#define acosf fdlibm::acosf +#define asin fdlibm::asin +#define asinf fdlibm::asinf +#define atan fdlibm::atan +#define atanf fdlibm::atanf +#define atan2 fdlibm::atan2 +#define cos fdlibm::cos +#define cosf fdlibm::cosf +#define sin fdlibm::sin +#define sinf fdlibm::sinf +#define tan fdlibm::tan +#define tanf fdlibm::tanf +#define cosh fdlibm::cosh +#define sinh fdlibm::sinh +#define tanh fdlibm::tanh +#define exp fdlibm::exp +#define expf fdlibm::expf +#define exp2 fdlibm::exp2 +#define exp2f fdlibm::exp2f +#define log fdlibm::log +#define logf fdlibm::logf +#define log10 fdlibm::log10 +#define pow fdlibm::pow +#define powf fdlibm::powf +#define ceil fdlibm::ceil +#define ceilf fdlibm::ceilf +#define fabs fdlibm::fabs +#define fabsf fdlibm::fabsf +#define floor fdlibm::floor +#define acosh fdlibm::acosh +#define asinh fdlibm::asinh +#define atanh fdlibm::atanh +#define cbrt fdlibm::cbrt +#define expm1 fdlibm::expm1 +#define hypot fdlibm::hypot +#define log1p fdlibm::log1p +#define log2 fdlibm::log2 +#define scalb fdlibm::scalb +#define copysign fdlibm::copysign +#define scalbn fdlibm::scalbn +#define scalbnf fdlibm::scalbnf +#define trunc fdlibm::trunc +#define truncf fdlibm::truncf +#define floorf fdlibm::floorf +#define nearbyint fdlibm::nearbyint +#define nearbyintf fdlibm::nearbyintf +#define rint fdlibm::rint +#define rintf fdlibm::rintf +#define sqrtf fdlibm::sqrtf + +/* fdlibm kernel function */ +int __kernel_rem_pio2(double*,double*,int,int,int); + +/* double precision kernel functions */ +#ifndef INLINE_REM_PIO2 +int __ieee754_rem_pio2(double,double*); +#endif +double __kernel_sin(double,double,int); +double __kernel_cos(double,double); +double __kernel_tan(double,double,int); +double __ldexp_exp(double,int); +#ifdef _COMPLEX_H +double complex __ldexp_cexp(double complex,int); +#endif + +/* float precision kernel functions */ +#ifndef INLINE_REM_PIO2F +int __ieee754_rem_pio2f(float,double*); +#endif +#ifndef INLINE_KERNEL_SINDF +float __kernel_sindf(double); +#endif +#ifndef INLINE_KERNEL_COSDF +float __kernel_cosdf(double); +#endif +#ifndef INLINE_KERNEL_TANDF +float __kernel_tandf(double,int); +#endif +float __ldexp_expf(float,int); +#ifdef _COMPLEX_H +float complex __ldexp_cexpf(float complex,int); +#endif + +/* long double precision kernel functions */ +long double __kernel_sinl(long double, long double, int); +long double __kernel_cosl(long double, long double); +long double __kernel_tanl(long double, long double, int); + +#endif /* !_MATH_PRIVATE_H_ */ |