diff options
Diffstat (limited to 'third_party/rust/crossbeam-epoch/src/epoch.rs')
-rw-r--r-- | third_party/rust/crossbeam-epoch/src/epoch.rs | 133 |
1 files changed, 133 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-epoch/src/epoch.rs b/third_party/rust/crossbeam-epoch/src/epoch.rs new file mode 100644 index 0000000000..663508bd7b --- /dev/null +++ b/third_party/rust/crossbeam-epoch/src/epoch.rs @@ -0,0 +1,133 @@ +//! The global epoch +//! +//! The last bit in this number is unused and is always zero. Every so often the global epoch is +//! incremented, i.e. we say it "advances". A pinned participant may advance the global epoch only +//! if all currently pinned participants have been pinned in the current epoch. +//! +//! If an object became garbage in some epoch, then we can be sure that after two advancements no +//! participant will hold a reference to it. That is the crux of safe memory reclamation. + +use crate::primitive::sync::atomic::AtomicUsize; +use core::sync::atomic::Ordering; + +/// An epoch that can be marked as pinned or unpinned. +/// +/// Internally, the epoch is represented as an integer that wraps around at some unspecified point +/// and a flag that represents whether it is pinned or unpinned. +#[derive(Copy, Clone, Default, Debug, Eq, PartialEq)] +pub(crate) struct Epoch { + /// The least significant bit is set if pinned. The rest of the bits hold the epoch. + data: usize, +} + +impl Epoch { + /// Returns the starting epoch in unpinned state. + #[inline] + pub(crate) fn starting() -> Self { + Self::default() + } + + /// Returns the number of epochs `self` is ahead of `rhs`. + /// + /// Internally, epochs are represented as numbers in the range `(isize::MIN / 2) .. (isize::MAX + /// / 2)`, so the returned distance will be in the same interval. + pub(crate) fn wrapping_sub(self, rhs: Self) -> isize { + // The result is the same with `(self.data & !1).wrapping_sub(rhs.data & !1) as isize >> 1`, + // because the possible difference of LSB in `(self.data & !1).wrapping_sub(rhs.data & !1)` + // will be ignored in the shift operation. + self.data.wrapping_sub(rhs.data & !1) as isize >> 1 + } + + /// Returns `true` if the epoch is marked as pinned. + #[inline] + pub(crate) fn is_pinned(self) -> bool { + (self.data & 1) == 1 + } + + /// Returns the same epoch, but marked as pinned. + #[inline] + pub(crate) fn pinned(self) -> Epoch { + Epoch { + data: self.data | 1, + } + } + + /// Returns the same epoch, but marked as unpinned. + #[inline] + pub(crate) fn unpinned(self) -> Epoch { + Epoch { + data: self.data & !1, + } + } + + /// Returns the successor epoch. + /// + /// The returned epoch will be marked as pinned only if the previous one was as well. + #[inline] + pub(crate) fn successor(self) -> Epoch { + Epoch { + data: self.data.wrapping_add(2), + } + } +} + +/// An atomic value that holds an `Epoch`. +#[derive(Default, Debug)] +pub(crate) struct AtomicEpoch { + /// Since `Epoch` is just a wrapper around `usize`, an `AtomicEpoch` is similarly represented + /// using an `AtomicUsize`. + data: AtomicUsize, +} + +impl AtomicEpoch { + /// Creates a new atomic epoch. + #[inline] + pub(crate) fn new(epoch: Epoch) -> Self { + let data = AtomicUsize::new(epoch.data); + AtomicEpoch { data } + } + + /// Loads a value from the atomic epoch. + #[inline] + pub(crate) fn load(&self, ord: Ordering) -> Epoch { + Epoch { + data: self.data.load(ord), + } + } + + /// Stores a value into the atomic epoch. + #[inline] + pub(crate) fn store(&self, epoch: Epoch, ord: Ordering) { + self.data.store(epoch.data, ord); + } + + /// Stores a value into the atomic epoch if the current value is the same as `current`. + /// + /// The return value is a result indicating whether the new value was written and containing + /// the previous value. On success this value is guaranteed to be equal to `current`. + /// + /// This method takes two `Ordering` arguments to describe the memory + /// ordering of this operation. `success` describes the required ordering for the + /// read-modify-write operation that takes place if the comparison with `current` succeeds. + /// `failure` describes the required ordering for the load operation that takes place when + /// the comparison fails. Using `Acquire` as success ordering makes the store part + /// of this operation `Relaxed`, and using `Release` makes the successful load + /// `Relaxed`. The failure ordering can only be `SeqCst`, `Acquire` or `Relaxed` + /// and must be equivalent to or weaker than the success ordering. + #[inline] + pub(crate) fn compare_exchange( + &self, + current: Epoch, + new: Epoch, + success: Ordering, + failure: Ordering, + ) -> Result<Epoch, Epoch> { + match self + .data + .compare_exchange(current.data, new.data, success, failure) + { + Ok(data) => Ok(Epoch { data }), + Err(data) => Err(Epoch { data }), + } + } +} |