diff options
Diffstat (limited to 'third_party/rust/crossbeam-utils-0.6.6/src/sync/sharded_lock.rs')
-rw-r--r-- | third_party/rust/crossbeam-utils-0.6.6/src/sync/sharded_lock.rs | 600 |
1 files changed, 600 insertions, 0 deletions
diff --git a/third_party/rust/crossbeam-utils-0.6.6/src/sync/sharded_lock.rs b/third_party/rust/crossbeam-utils-0.6.6/src/sync/sharded_lock.rs new file mode 100644 index 0000000000..0fbb29175f --- /dev/null +++ b/third_party/rust/crossbeam-utils-0.6.6/src/sync/sharded_lock.rs @@ -0,0 +1,600 @@ +use std::cell::UnsafeCell; +use std::collections::HashMap; +use std::fmt; +use std::marker::PhantomData; +use std::mem; +use std::ops::{Deref, DerefMut}; +use std::panic::{RefUnwindSafe, UnwindSafe}; +use std::sync::{Mutex, RwLock, RwLockReadGuard, RwLockWriteGuard}; +use std::sync::{LockResult, PoisonError, TryLockError, TryLockResult}; +use std::thread::{self, ThreadId}; + +use CachePadded; + +/// The number of shards per sharded lock. Must be a power of two. +const NUM_SHARDS: usize = 8; + +/// A shard containing a single reader-writer lock. +struct Shard { + /// The inner reader-writer lock. + lock: RwLock<()>, + + /// The write-guard keeping this shard locked. + /// + /// Write operations will lock each shard and store the guard here. These guards get dropped at + /// the same time the big guard is dropped. + write_guard: UnsafeCell<Option<RwLockWriteGuard<'static, ()>>>, +} + +/// A sharded reader-writer lock. +/// +/// This lock is equivalent to [`RwLock`], except read operations are faster and write operations +/// are slower. +/// +/// A `ShardedLock` is internally made of a list of *shards*, each being a [`RwLock`] occupying a +/// single cache line. Read operations will pick one of the shards depending on the current thread +/// and lock it. Write operations need to lock all shards in succession. +/// +/// By splitting the lock into shards, concurrent read operations will in most cases choose +/// different shards and thus update different cache lines, which is good for scalability. However, +/// write operations need to do more work and are therefore slower than usual. +/// +/// The priority policy of the lock is dependent on the underlying operating system's +/// implementation, and this type does not guarantee that any particular policy will be used. +/// +/// # Poisoning +/// +/// A `ShardedLock`, like [`RwLock`], will become poisoned on a panic. Note that it may only be +/// poisoned if a panic occurs while a write operation is in progress. If a panic occurs in any +/// read operation, the lock will not be poisoned. +/// +/// # Examples +/// +/// ``` +/// use crossbeam_utils::sync::ShardedLock; +/// +/// let lock = ShardedLock::new(5); +/// +/// // Any number of read locks can be held at once. +/// { +/// let r1 = lock.read().unwrap(); +/// let r2 = lock.read().unwrap(); +/// assert_eq!(*r1, 5); +/// assert_eq!(*r2, 5); +/// } // Read locks are dropped at this point. +/// +/// // However, only one write lock may be held. +/// { +/// let mut w = lock.write().unwrap(); +/// *w += 1; +/// assert_eq!(*w, 6); +/// } // Write lock is dropped here. +/// ``` +/// +/// [`RwLock`]: https://doc.rust-lang.org/std/sync/struct.RwLock.html +pub struct ShardedLock<T: ?Sized> { + /// A list of locks protecting the internal data. + shards: Box<[CachePadded<Shard>]>, + + /// The internal data. + value: UnsafeCell<T>, +} + +unsafe impl<T: ?Sized + Send> Send for ShardedLock<T> {} +unsafe impl<T: ?Sized + Send + Sync> Sync for ShardedLock<T> {} + +impl<T: ?Sized> UnwindSafe for ShardedLock<T> {} +impl<T: ?Sized> RefUnwindSafe for ShardedLock<T> {} + +impl<T> ShardedLock<T> { + /// Creates a new sharded reader-writer lock. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let lock = ShardedLock::new(5); + /// ``` + pub fn new(value: T) -> ShardedLock<T> { + ShardedLock { + shards: (0..NUM_SHARDS) + .map(|_| CachePadded::new(Shard { + lock: RwLock::new(()), + write_guard: UnsafeCell::new(None), + })) + .collect::<Vec<_>>() + .into_boxed_slice(), + value: UnsafeCell::new(value), + } + } + + /// Consumes this lock, returning the underlying data. + /// + /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write + /// operation panics. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let lock = ShardedLock::new(String::new()); + /// { + /// let mut s = lock.write().unwrap(); + /// *s = "modified".to_owned(); + /// } + /// assert_eq!(lock.into_inner().unwrap(), "modified"); + /// ``` + pub fn into_inner(self) -> LockResult<T> { + let is_poisoned = self.is_poisoned(); + let inner = self.value.into_inner(); + + if is_poisoned { + Err(PoisonError::new(inner)) + } else { + Ok(inner) + } + } +} + +impl<T: ?Sized> ShardedLock<T> { + /// Returns `true` if the lock is poisoned. + /// + /// If another thread can still access the lock, it may become poisoned at any time. A `false` + /// result should not be trusted without additional synchronization. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// use std::sync::Arc; + /// use std::thread; + /// + /// let lock = Arc::new(ShardedLock::new(0)); + /// let c_lock = lock.clone(); + /// + /// let _ = thread::spawn(move || { + /// let _lock = c_lock.write().unwrap(); + /// panic!(); // the lock gets poisoned + /// }).join(); + /// assert_eq!(lock.is_poisoned(), true); + /// ``` + pub fn is_poisoned(&self) -> bool { + self.shards[0].lock.is_poisoned() + } + + /// Returns a mutable reference to the underlying data. + /// + /// Since this call borrows the lock mutably, no actual locking needs to take place. + /// + /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write + /// operation panics. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let mut lock = ShardedLock::new(0); + /// *lock.get_mut().unwrap() = 10; + /// assert_eq!(*lock.read().unwrap(), 10); + /// ``` + pub fn get_mut(&mut self) -> LockResult<&mut T> { + let is_poisoned = self.is_poisoned(); + let inner = unsafe { &mut *self.value.get() }; + + if is_poisoned { + Err(PoisonError::new(inner)) + } else { + Ok(inner) + } + } + + /// Attempts to acquire this lock with shared read access. + /// + /// If the access could not be granted at this time, an error is returned. Otherwise, a guard + /// is returned which will release the shared access when it is dropped. This method does not + /// provide any guarantees with respect to the ordering of whether contentious readers or + /// writers will acquire the lock first. + /// + /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write + /// operation panics. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let lock = ShardedLock::new(1); + /// + /// match lock.try_read() { + /// Ok(n) => assert_eq!(*n, 1), + /// Err(_) => unreachable!(), + /// }; + /// ``` + pub fn try_read(&self) -> TryLockResult<ShardedLockReadGuard<T>> { + // Take the current thread index and map it to a shard index. Thread indices will tend to + // distribute shards among threads equally, thus reducing contention due to read-locking. + let current_index = current_index().unwrap_or(0); + let shard_index = current_index & (self.shards.len() - 1); + + match self.shards[shard_index].lock.try_read() { + Ok(guard) => Ok(ShardedLockReadGuard { + lock: self, + _guard: guard, + _marker: PhantomData, + }), + Err(TryLockError::Poisoned(err)) => { + let guard = ShardedLockReadGuard { + lock: self, + _guard: err.into_inner(), + _marker: PhantomData, + }; + Err(TryLockError::Poisoned(PoisonError::new(guard))) + }, + Err(TryLockError::WouldBlock) => Err(TryLockError::WouldBlock), + } + } + + /// Locks with shared read access, blocking the current thread until it can be acquired. + /// + /// The calling thread will be blocked until there are no more writers which hold the lock. + /// There may be other readers currently inside the lock when this method returns. This method + /// does not provide any guarantees with respect to the ordering of whether contentious readers + /// or writers will acquire the lock first. + /// + /// Returns a guard which will release the shared access when dropped. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// use std::sync::Arc; + /// use std::thread; + /// + /// let lock = Arc::new(ShardedLock::new(1)); + /// let c_lock = lock.clone(); + /// + /// let n = lock.read().unwrap(); + /// assert_eq!(*n, 1); + /// + /// thread::spawn(move || { + /// let r = c_lock.read(); + /// assert!(r.is_ok()); + /// }).join().unwrap(); + /// ``` + pub fn read(&self) -> LockResult<ShardedLockReadGuard<T>> { + // Take the current thread index and map it to a shard index. Thread indices will tend to + // distribute shards among threads equally, thus reducing contention due to read-locking. + let current_index = current_index().unwrap_or(0); + let shard_index = current_index & (self.shards.len() - 1); + + match self.shards[shard_index].lock.read() { + Ok(guard) => Ok(ShardedLockReadGuard { + lock: self, + _guard: guard, + _marker: PhantomData, + }), + Err(err) => Err(PoisonError::new(ShardedLockReadGuard { + lock: self, + _guard: err.into_inner(), + _marker: PhantomData, + })), + } + } + + /// Attempts to acquire this lock with exclusive write access. + /// + /// If the access could not be granted at this time, an error is returned. Otherwise, a guard + /// is returned which will release the exclusive access when it is dropped. This method does + /// not provide any guarantees with respect to the ordering of whether contentious readers or + /// writers will acquire the lock first. + /// + /// This method will return an error if the lock is poisoned. A lock gets poisoned when a write + /// operation panics. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let lock = ShardedLock::new(1); + /// + /// let n = lock.read().unwrap(); + /// assert_eq!(*n, 1); + /// + /// assert!(lock.try_write().is_err()); + /// ``` + pub fn try_write(&self) -> TryLockResult<ShardedLockWriteGuard<T>> { + let mut poisoned = false; + let mut blocked = None; + + // Write-lock each shard in succession. + for (i, shard) in self.shards.iter().enumerate() { + let guard = match shard.lock.try_write() { + Ok(guard) => guard, + Err(TryLockError::Poisoned(err)) => { + poisoned = true; + err.into_inner() + }, + Err(TryLockError::WouldBlock) => { + blocked = Some(i); + break; + } + }; + + // Store the guard into the shard. + unsafe { + let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); + let dest: *mut _ = shard.write_guard.get(); + *dest = Some(guard); + } + } + + if let Some(i) = blocked { + // Unlock the shards in reverse order of locking. + for shard in self.shards[0..i].iter().rev() { + unsafe { + let dest: *mut _ = shard.write_guard.get(); + let guard = mem::replace(&mut *dest, None); + drop(guard); + } + } + Err(TryLockError::WouldBlock) + } else if poisoned { + let guard = ShardedLockWriteGuard { + lock: self, + _marker: PhantomData, + }; + Err(TryLockError::Poisoned(PoisonError::new(guard))) + } else { + Ok(ShardedLockWriteGuard { + lock: self, + _marker: PhantomData, + }) + } + } + + /// Locks with exclusive write access, blocking the current thread until it can be acquired. + /// + /// The calling thread will be blocked until there are no more writers which hold the lock. + /// There may be other readers currently inside the lock when this method returns. This method + /// does not provide any guarantees with respect to the ordering of whether contentious readers + /// or writers will acquire the lock first. + /// + /// Returns a guard which will release the exclusive access when dropped. + /// + /// # Examples + /// + /// ``` + /// use crossbeam_utils::sync::ShardedLock; + /// + /// let lock = ShardedLock::new(1); + /// + /// let mut n = lock.write().unwrap(); + /// *n = 2; + /// + /// assert!(lock.try_read().is_err()); + /// ``` + pub fn write(&self) -> LockResult<ShardedLockWriteGuard<T>> { + let mut poisoned = false; + + // Write-lock each shard in succession. + for shard in self.shards.iter() { + let guard = match shard.lock.write() { + Ok(guard) => guard, + Err(err) => { + poisoned = true; + err.into_inner() + } + }; + + // Store the guard into the shard. + unsafe { + let guard: RwLockWriteGuard<'_, ()> = guard; + let guard: RwLockWriteGuard<'static, ()> = mem::transmute(guard); + let dest: *mut _ = shard.write_guard.get(); + *dest = Some(guard); + } + } + + if poisoned { + Err(PoisonError::new(ShardedLockWriteGuard { + lock: self, + _marker: PhantomData, + })) + } else { + Ok(ShardedLockWriteGuard { + lock: self, + _marker: PhantomData, + }) + } + } +} + +impl<T: ?Sized + fmt::Debug> fmt::Debug for ShardedLock<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.try_read() { + Ok(guard) => f.debug_struct("ShardedLock").field("data", &&*guard).finish(), + Err(TryLockError::Poisoned(err)) => { + f.debug_struct("ShardedLock").field("data", &&**err.get_ref()).finish() + }, + Err(TryLockError::WouldBlock) => { + struct LockedPlaceholder; + impl fmt::Debug for LockedPlaceholder { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.write_str("<locked>") + } + } + f.debug_struct("ShardedLock").field("data", &LockedPlaceholder).finish() + } + } + } +} + +impl<T: Default> Default for ShardedLock<T> { + fn default() -> ShardedLock<T> { + ShardedLock::new(Default::default()) + } +} + +impl<T> From<T> for ShardedLock<T> { + fn from(t: T) -> Self { + ShardedLock::new(t) + } +} + +/// A guard used to release the shared read access of a [`ShardedLock`] when dropped. +/// +/// [`ShardedLock`]: struct.ShardedLock.html +pub struct ShardedLockReadGuard<'a, T: ?Sized + 'a> { + lock: &'a ShardedLock<T>, + _guard: RwLockReadGuard<'a, ()>, + _marker: PhantomData<RwLockReadGuard<'a, T>>, +} + +unsafe impl<'a, T: ?Sized + Sync> Sync for ShardedLockReadGuard<'a, T> {} + +impl<'a, T: ?Sized> Deref for ShardedLockReadGuard<'a, T> { + type Target = T; + + fn deref(&self) -> &T { + unsafe { &*self.lock.value.get() } + } +} + +impl<'a, T: fmt::Debug> fmt::Debug for ShardedLockReadGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("ShardedLockReadGuard") + .field("lock", &self.lock) + .finish() + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for ShardedLockReadGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + (**self).fmt(f) + } +} + +/// A guard used to release the exclusive write access of a [`ShardedLock`] when dropped. +/// +/// [`ShardedLock`]: struct.ShardedLock.html +pub struct ShardedLockWriteGuard<'a, T: ?Sized + 'a> { + lock: &'a ShardedLock<T>, + _marker: PhantomData<RwLockWriteGuard<'a, T>>, +} + +unsafe impl<'a, T: ?Sized + Sync> Sync for ShardedLockWriteGuard<'a, T> {} + +impl<'a, T: ?Sized> Drop for ShardedLockWriteGuard<'a, T> { + fn drop(&mut self) { + // Unlock the shards in reverse order of locking. + for shard in self.lock.shards.iter().rev() { + unsafe { + let dest: *mut _ = shard.write_guard.get(); + let guard = mem::replace(&mut *dest, None); + drop(guard); + } + } + } +} + +impl<'a, T: fmt::Debug> fmt::Debug for ShardedLockWriteGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("ShardedLockWriteGuard") + .field("lock", &self.lock) + .finish() + } +} + +impl<'a, T: ?Sized + fmt::Display> fmt::Display for ShardedLockWriteGuard<'a, T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + (**self).fmt(f) + } +} + +impl<'a, T: ?Sized> Deref for ShardedLockWriteGuard<'a, T> { + type Target = T; + + fn deref(&self) -> &T { + unsafe { &*self.lock.value.get() } + } +} + +impl<'a, T: ?Sized> DerefMut for ShardedLockWriteGuard<'a, T> { + fn deref_mut(&mut self) -> &mut T { + unsafe { &mut *self.lock.value.get() } + } +} + +/// Returns a `usize` that identifies the current thread. +/// +/// Each thread is associated with an 'index'. While there are no particular guarantees, indices +/// usually tend to be consecutive numbers between 0 and the number of running threads. +/// +/// Since this function accesses TLS, `None` might be returned if the current thread's TLS is +/// tearing down. +#[inline] +fn current_index() -> Option<usize> { + REGISTRATION.try_with(|reg| reg.index).ok() +} + +/// The global registry keeping track of registered threads and indices. +struct ThreadIndices { + /// Mapping from `ThreadId` to thread index. + mapping: HashMap<ThreadId, usize>, + + /// A list of free indices. + free_list: Vec<usize>, + + /// The next index to allocate if the free list is empty. + next_index: usize, +} + +lazy_static! { + static ref THREAD_INDICES: Mutex<ThreadIndices> = Mutex::new(ThreadIndices { + mapping: HashMap::new(), + free_list: Vec::new(), + next_index: 0, + }); +} + +/// A registration of a thread with an index. +/// +/// When dropped, unregisters the thread and frees the reserved index. +struct Registration { + index: usize, + thread_id: ThreadId, +} + +impl Drop for Registration { + fn drop(&mut self) { + let mut indices = THREAD_INDICES.lock().unwrap(); + indices.mapping.remove(&self.thread_id); + indices.free_list.push(self.index); + } +} + +thread_local! { + static REGISTRATION: Registration = { + let thread_id = thread::current().id(); + let mut indices = THREAD_INDICES.lock().unwrap(); + + let index = match indices.free_list.pop() { + Some(i) => i, + None => { + let i = indices.next_index; + indices.next_index += 1; + i + } + }; + indices.mapping.insert(thread_id, index); + + Registration { + index, + thread_id, + } + }; +} |