summaryrefslogtreecommitdiffstats
path: root/third_party/rust/libloading/src/safe.rs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/rust/libloading/src/safe.rs')
-rw-r--r--third_party/rust/libloading/src/safe.rs299
1 files changed, 299 insertions, 0 deletions
diff --git a/third_party/rust/libloading/src/safe.rs b/third_party/rust/libloading/src/safe.rs
new file mode 100644
index 0000000000..49be0cfc9a
--- /dev/null
+++ b/third_party/rust/libloading/src/safe.rs
@@ -0,0 +1,299 @@
+use super::Error;
+#[cfg(libloading_docs)]
+use super::os::unix as imp; // the implementation used here doesn't matter particularly much...
+#[cfg(all(not(libloading_docs), unix))]
+use super::os::unix as imp;
+#[cfg(all(not(libloading_docs), windows))]
+use super::os::windows as imp;
+use std::ffi::OsStr;
+use std::fmt;
+use std::marker;
+use std::ops;
+
+/// A loaded dynamic library.
+#[cfg_attr(libloading_docs, doc(cfg(any(unix, windows))))]
+pub struct Library(imp::Library);
+
+impl Library {
+ /// Find and load a dynamic library.
+ ///
+ /// The `filename` argument may be either:
+ ///
+ /// * A library filename;
+ /// * The absolute path to the library;
+ /// * A relative (to the current working directory) path to the library.
+ ///
+ /// # Safety
+ ///
+ /// When a library is loaded, initialisation routines contained within it are executed.
+ /// For the purposes of safety, the execution of these routines is conceptually the same calling an
+ /// unknown foreign function and may impose arbitrary requirements on the caller for the call
+ /// to be sound.
+ ///
+ /// Additionally, the callers of this function must also ensure that execution of the
+ /// termination routines contained within the library is safe as well. These routines may be
+ /// executed when the library is unloaded.
+ ///
+ /// # Thread-safety
+ ///
+ /// The implementation strives to be as MT-safe as sanely possible, however on certain
+ /// platforms the underlying error-handling related APIs not always MT-safe. This library
+ /// shares these limitations on those platforms. In particular, on certain UNIX targets
+ /// `dlerror` is not MT-safe, resulting in garbage error messages in certain MT-scenarios.
+ ///
+ /// Calling this function from multiple threads is not MT-safe if used in conjunction with
+ /// library filenames and the library search path is modified (`SetDllDirectory` function on
+ /// Windows, `{DY,}LD_LIBRARY_PATH` environment variable on UNIX).
+ ///
+ /// # Platform-specific behaviour
+ ///
+ /// When a plain library filename is supplied, the locations in which the library is searched are
+ /// platform specific and cannot be adjusted in a portable manner. See the documentation for
+ /// the platform specific [`os::unix::Library::new`] and [`os::windows::Library::new`] methods
+ /// for further information on library lookup behaviour.
+ ///
+ /// If the `filename` specifies a library filename without a path and with the extension omitted,
+ /// the `.dll` extension is implicitly added on Windows.
+ ///
+ /// [`os::unix::Library::new`]: crate::os::unix::Library::new
+ /// [`os::windows::Library::new`]: crate::os::windows::Library::new
+ ///
+ /// # Tips
+ ///
+ /// Distributing your dynamic libraries under a filename common to all platforms (e.g.
+ /// `awesome.module`) allows you to avoid code which has to account for platform’s conventional
+ /// library filenames.
+ ///
+ /// Strive to specify an absolute or at least a relative path to your library, unless
+ /// system-wide libraries are being loaded. Platform-dependent library search locations
+ /// combined with various quirks related to path-less filenames may cause flakiness in
+ /// programs.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// # use ::libloading::Library;
+ /// // Any of the following are valid.
+ /// unsafe {
+ /// let _ = Library::new("/path/to/awesome.module").unwrap();
+ /// let _ = Library::new("../awesome.module").unwrap();
+ /// let _ = Library::new("libsomelib.so.1").unwrap();
+ /// }
+ /// ```
+ pub unsafe fn new<P: AsRef<OsStr>>(filename: P) -> Result<Library, Error> {
+ imp::Library::new(filename).map(From::from)
+ }
+
+ /// Get a pointer to a function or static variable by symbol name.
+ ///
+ /// The `symbol` may not contain any null bytes, with the exception of the last byte. Providing a
+ /// null-terminated `symbol` may help to avoid an allocation.
+ ///
+ /// The symbol is interpreted as-is; no mangling is done. This means that symbols like `x::y` are
+ /// most likely invalid.
+ ///
+ /// # Safety
+ ///
+ /// Users of this API must specify the correct type of the function or variable loaded.
+ ///
+ /// # Platform-specific behaviour
+ ///
+ /// The implementation of thread-local variables is extremely platform specific and uses of such
+ /// variables that work on e.g. Linux may have unintended behaviour on other targets.
+ ///
+ /// On POSIX implementations where the `dlerror` function is not confirmed to be MT-safe (such
+ /// as FreeBSD), this function will unconditionally return an error when the underlying `dlsym`
+ /// call returns a null pointer. There are rare situations where `dlsym` returns a genuine null
+ /// pointer without it being an error. If loading a null pointer is something you care about,
+ /// consider using the [`os::unix::Library::get_singlethreaded`] call.
+ ///
+ /// [`os::unix::Library::get_singlethreaded`]: crate::os::unix::Library::get_singlethreaded
+ ///
+ /// # Examples
+ ///
+ /// Given a loaded library:
+ ///
+ /// ```no_run
+ /// # use ::libloading::Library;
+ /// let lib = unsafe {
+ /// Library::new("/path/to/awesome.module").unwrap()
+ /// };
+ /// ```
+ ///
+ /// Loading and using a function looks like this:
+ ///
+ /// ```no_run
+ /// # use ::libloading::{Library, Symbol};
+ /// # let lib = unsafe {
+ /// # Library::new("/path/to/awesome.module").unwrap()
+ /// # };
+ /// unsafe {
+ /// let awesome_function: Symbol<unsafe extern fn(f64) -> f64> =
+ /// lib.get(b"awesome_function\0").unwrap();
+ /// awesome_function(0.42);
+ /// }
+ /// ```
+ ///
+ /// A static variable may also be loaded and inspected:
+ ///
+ /// ```no_run
+ /// # use ::libloading::{Library, Symbol};
+ /// # let lib = unsafe { Library::new("/path/to/awesome.module").unwrap() };
+ /// unsafe {
+ /// let awesome_variable: Symbol<*mut f64> = lib.get(b"awesome_variable\0").unwrap();
+ /// **awesome_variable = 42.0;
+ /// };
+ /// ```
+ pub unsafe fn get<'lib, T>(&'lib self, symbol: &[u8]) -> Result<Symbol<'lib, T>, Error> {
+ self.0.get(symbol).map(|from| Symbol::from_raw(from, self))
+ }
+
+ /// Unload the library.
+ ///
+ /// This method might be a no-op, depending on the flags with which the `Library` was opened,
+ /// what library was opened or other platform specifics.
+ ///
+ /// You only need to call this if you are interested in handling any errors that may arise when
+ /// library is unloaded. Otherwise the implementation of `Drop` for `Library` will close the
+ /// library and ignore the errors were they arise.
+ ///
+ /// The underlying data structures may still get leaked if an error does occur.
+ pub fn close(self) -> Result<(), Error> {
+ self.0.close()
+ }
+}
+
+impl fmt::Debug for Library {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.0.fmt(f)
+ }
+}
+
+impl From<imp::Library> for Library {
+ fn from(lib: imp::Library) -> Library {
+ Library(lib)
+ }
+}
+
+impl From<Library> for imp::Library {
+ fn from(lib: Library) -> imp::Library {
+ lib.0
+ }
+}
+
+unsafe impl Send for Library {}
+unsafe impl Sync for Library {}
+
+/// Symbol from a library.
+///
+/// This type is a safeguard against using dynamically loaded symbols after a `Library` is
+/// unloaded. The primary method to create an instance of a `Symbol` is via [`Library::get`].
+///
+/// The `Deref` trait implementation allows the use of `Symbol` as if it was a function or variable
+/// itself, without taking care to “extract” the function or variable manually most of the time.
+///
+/// [`Library::get`]: Library::get
+#[cfg_attr(libloading_docs, doc(cfg(any(unix, windows))))]
+pub struct Symbol<'lib, T: 'lib> {
+ inner: imp::Symbol<T>,
+ pd: marker::PhantomData<&'lib T>,
+}
+
+impl<'lib, T> Symbol<'lib, T> {
+ /// Extract the wrapped `os::platform::Symbol`.
+ ///
+ /// # Safety
+ ///
+ /// Using this function relinquishes all the lifetime guarantees. It is up to the developer to
+ /// ensure the resulting `Symbol` is not used past the lifetime of the `Library` this symbol
+ /// was loaded from.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// # use ::libloading::{Library, Symbol};
+ /// unsafe {
+ /// let lib = Library::new("/path/to/awesome.module").unwrap();
+ /// let symbol: Symbol<*mut u32> = lib.get(b"symbol\0").unwrap();
+ /// let symbol = symbol.into_raw();
+ /// }
+ /// ```
+ pub unsafe fn into_raw(self) -> imp::Symbol<T> {
+ self.inner
+ }
+
+ /// Wrap the `os::platform::Symbol` into this safe wrapper.
+ ///
+ /// Note that, in order to create association between the symbol and the library this symbol
+ /// came from, this function requires a reference to the library.
+ ///
+ /// # Safety
+ ///
+ /// The `library` reference must be exactly the library `sym` was loaded from.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// # use ::libloading::{Library, Symbol};
+ /// unsafe {
+ /// let lib = Library::new("/path/to/awesome.module").unwrap();
+ /// let symbol: Symbol<*mut u32> = lib.get(b"symbol\0").unwrap();
+ /// let symbol = symbol.into_raw();
+ /// let symbol = Symbol::from_raw(symbol, &lib);
+ /// }
+ /// ```
+ pub unsafe fn from_raw<L>(sym: imp::Symbol<T>, library: &'lib L) -> Symbol<'lib, T> {
+ let _ = library; // ignore here for documentation purposes.
+ Symbol {
+ inner: sym,
+ pd: marker::PhantomData,
+ }
+ }
+}
+
+impl<'lib, T> Symbol<'lib, Option<T>> {
+ /// Lift Option out of the symbol.
+ ///
+ /// # Examples
+ ///
+ /// ```no_run
+ /// # use ::libloading::{Library, Symbol};
+ /// unsafe {
+ /// let lib = Library::new("/path/to/awesome.module").unwrap();
+ /// let symbol: Symbol<Option<*mut u32>> = lib.get(b"symbol\0").unwrap();
+ /// let symbol: Symbol<*mut u32> = symbol.lift_option().expect("static is not null");
+ /// }
+ /// ```
+ pub fn lift_option(self) -> Option<Symbol<'lib, T>> {
+ self.inner.lift_option().map(|is| Symbol {
+ inner: is,
+ pd: marker::PhantomData,
+ })
+ }
+}
+
+impl<'lib, T> Clone for Symbol<'lib, T> {
+ fn clone(&self) -> Symbol<'lib, T> {
+ Symbol {
+ inner: self.inner.clone(),
+ pd: marker::PhantomData,
+ }
+ }
+}
+
+// FIXME: implement FnOnce for callable stuff instead.
+impl<'lib, T> ops::Deref for Symbol<'lib, T> {
+ type Target = T;
+ fn deref(&self) -> &T {
+ ops::Deref::deref(&self.inner)
+ }
+}
+
+impl<'lib, T> fmt::Debug for Symbol<'lib, T> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ self.inner.fmt(f)
+ }
+}
+
+unsafe impl<'lib, T: Send> Send for Symbol<'lib, T> {}
+unsafe impl<'lib, T: Sync> Sync for Symbol<'lib, T> {}