summaryrefslogtreecommitdiffstats
path: root/third_party/rust/tokio-0.1.22/examples/echo.rs
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--third_party/rust/tokio-0.1.22/examples/echo.rs115
1 files changed, 115 insertions, 0 deletions
diff --git a/third_party/rust/tokio-0.1.22/examples/echo.rs b/third_party/rust/tokio-0.1.22/examples/echo.rs
new file mode 100644
index 0000000000..45f808f89d
--- /dev/null
+++ b/third_party/rust/tokio-0.1.22/examples/echo.rs
@@ -0,0 +1,115 @@
+//! A "hello world" echo server with Tokio
+//!
+//! This server will create a TCP listener, accept connections in a loop, and
+//! write back everything that's read off of each TCP connection.
+//!
+//! Because the Tokio runtime uses a thread pool, each TCP connection is
+//! processed concurrently with all other TCP connections across multiple
+//! threads.
+//!
+//! To see this server in action, you can run this in one terminal:
+//!
+//! cargo run --example echo
+//!
+//! and in another terminal you can run:
+//!
+//! cargo run --example connect 127.0.0.1:8080
+//!
+//! Each line you type in to the `connect` terminal should be echo'd back to
+//! you! If you open up multiple terminals running the `connect` example you
+//! should be able to see them all make progress simultaneously.
+
+#![deny(warnings)]
+
+extern crate tokio;
+
+use tokio::io;
+use tokio::net::TcpListener;
+use tokio::prelude::*;
+
+use std::env;
+use std::net::SocketAddr;
+
+fn main() -> Result<(), Box<std::error::Error>> {
+ // Allow passing an address to listen on as the first argument of this
+ // program, but otherwise we'll just set up our TCP listener on
+ // 127.0.0.1:8080 for connections.
+ let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
+ let addr = addr.parse::<SocketAddr>()?;
+
+ // Next up we create a TCP listener which will listen for incoming
+ // connections. This TCP listener is bound to the address we determined
+ // above and must be associated with an event loop, so we pass in a handle
+ // to our event loop. After the socket's created we inform that we're ready
+ // to go and start accepting connections.
+ let socket = TcpListener::bind(&addr)?;
+ println!("Listening on: {}", addr);
+
+ // Here we convert the `TcpListener` to a stream of incoming connections
+ // with the `incoming` method. We then define how to process each element in
+ // the stream with the `for_each` method.
+ //
+ // This combinator, defined on the `Stream` trait, will allow us to define a
+ // computation to happen for all items on the stream (in this case TCP
+ // connections made to the server). The return value of the `for_each`
+ // method is itself a future representing processing the entire stream of
+ // connections, and ends up being our server.
+ let done = socket
+ .incoming()
+ .map_err(|e| println!("failed to accept socket; error = {:?}", e))
+ .for_each(move |socket| {
+ // Once we're inside this closure this represents an accepted client
+ // from our server. The `socket` is the client connection (similar to
+ // how the standard library operates).
+ //
+ // We just want to copy all data read from the socket back onto the
+ // socket itself (e.g. "echo"). We can use the standard `io::copy`
+ // combinator in the `tokio-core` crate to do precisely this!
+ //
+ // The `copy` function takes two arguments, where to read from and where
+ // to write to. We only have one argument, though, with `socket`.
+ // Luckily there's a method, `Io::split`, which will split an Read/Write
+ // stream into its two halves. This operation allows us to work with
+ // each stream independently, such as pass them as two arguments to the
+ // `copy` function.
+ //
+ // The `copy` function then returns a future, and this future will be
+ // resolved when the copying operation is complete, resolving to the
+ // amount of data that was copied.
+ let (reader, writer) = socket.split();
+ let amt = io::copy(reader, writer);
+
+ // After our copy operation is complete we just print out some helpful
+ // information.
+ let msg = amt.then(move |result| {
+ match result {
+ Ok((amt, _, _)) => println!("wrote {} bytes", amt),
+ Err(e) => println!("error: {}", e),
+ }
+
+ Ok(())
+ });
+
+ // And this is where much of the magic of this server happens. We
+ // crucially want all clients to make progress concurrently, rather than
+ // blocking one on completion of another. To achieve this we use the
+ // `tokio::spawn` function to execute the work in the background.
+ //
+ // This function will transfer ownership of the future (`msg` in this
+ // case) to the Tokio runtime thread pool that. The thread pool will
+ // drive the future to completion.
+ //
+ // Essentially here we're executing a new task to run concurrently,
+ // which will allow all of our clients to be processed concurrently.
+ tokio::spawn(msg)
+ });
+
+ // And finally now that we've define what our server is, we run it!
+ //
+ // This starts the Tokio runtime, spawns the server task, and blocks the
+ // current thread until all tasks complete execution. Since the `done` task
+ // never completes (it just keeps accepting sockets), `tokio::run` blocks
+ // forever (until ctrl-c is pressed).
+ tokio::run(done);
+ Ok(())
+}