/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "VideoUtils.h" #include #include #include "CubebUtils.h" #include "ImageContainer.h" #include "MediaContainerType.h" #include "MediaResource.h" #include "TimeUnits.h" #include "VorbisUtils.h" #include "mozilla/Base64.h" #include "mozilla/dom/ContentChild.h" #include "mozilla/SchedulerGroup.h" #include "mozilla/SharedThreadPool.h" #include "mozilla/StaticPrefs_accessibility.h" #include "mozilla/StaticPrefs_media.h" #include "mozilla/TaskCategory.h" #include "mozilla/TaskQueue.h" #include "mozilla/Telemetry.h" #include "nsCharSeparatedTokenizer.h" #include "nsContentTypeParser.h" #include "nsIConsoleService.h" #include "nsINetworkLinkService.h" #include "nsIRandomGenerator.h" #include "nsMathUtils.h" #include "nsNetCID.h" #include "nsServiceManagerUtils.h" #include "nsThreadUtils.h" #include "AudioStream.h" namespace mozilla { using gfx::ColorRange; using gfx::CICP::ColourPrimaries; using gfx::CICP::MatrixCoefficients; using gfx::CICP::TransferCharacteristics; using layers::PlanarYCbCrImage; using media::TimeUnit; CheckedInt64 SaferMultDiv(int64_t aValue, uint64_t aMul, uint64_t aDiv) { if (aMul > INT64_MAX || aDiv > INT64_MAX) { return CheckedInt64(INT64_MAX) + 1; // Return an invalid checked int. } int64_t mul = aMul; int64_t div = aDiv; int64_t major = aValue / div; int64_t remainder = aValue % div; return CheckedInt64(remainder) * mul / div + CheckedInt64(major) * mul; } // Converts from number of audio frames to microseconds, given the specified // audio rate. CheckedInt64 FramesToUsecs(int64_t aFrames, uint32_t aRate) { return SaferMultDiv(aFrames, USECS_PER_S, aRate); } TimeUnit FramesToTimeUnit(int64_t aFrames, uint32_t aRate) { if (MOZ_UNLIKELY(!aRate)) { return TimeUnit::Invalid(); } int64_t major = aFrames / aRate; int64_t remainder = aFrames % aRate; return TimeUnit::FromMicroseconds(major) * USECS_PER_S + (TimeUnit::FromMicroseconds(remainder) * USECS_PER_S) / aRate; } // Converts from microseconds to number of audio frames, given the specified // audio rate. CheckedInt64 UsecsToFrames(int64_t aUsecs, uint32_t aRate) { return SaferMultDiv(aUsecs, aRate, USECS_PER_S); } // Format TimeUnit as number of frames at given rate. CheckedInt64 TimeUnitToFrames(const TimeUnit& aTime, uint32_t aRate) { return aTime.IsValid() ? UsecsToFrames(aTime.ToMicroseconds(), aRate) : CheckedInt64(INT64_MAX) + 1; } nsresult SecondsToUsecs(double aSeconds, int64_t& aOutUsecs) { if (aSeconds * double(USECS_PER_S) > double(INT64_MAX)) { return NS_ERROR_FAILURE; } aOutUsecs = int64_t(aSeconds * double(USECS_PER_S)); return NS_OK; } static int32_t ConditionDimension(float aValue) { // This will exclude NaNs and too-big values. if (aValue > 1.0 && aValue <= float(INT32_MAX)) { return int32_t(NS_round(aValue)); } return 0; } void ScaleDisplayByAspectRatio(gfx::IntSize& aDisplay, float aAspectRatio) { if (aAspectRatio > 1.0) { // Increase the intrinsic width aDisplay.width = ConditionDimension(aAspectRatio * aDisplay.width); } else { // Increase the intrinsic height aDisplay.height = ConditionDimension(aDisplay.height / aAspectRatio); } } static int64_t BytesToTime(int64_t offset, int64_t length, int64_t durationUs) { NS_ASSERTION(length > 0, "Must have positive length"); double r = double(offset) / double(length); if (r > 1.0) { r = 1.0; } return int64_t(double(durationUs) * r); } media::TimeIntervals GetEstimatedBufferedTimeRanges( mozilla::MediaResource* aStream, int64_t aDurationUsecs) { media::TimeIntervals buffered; // Nothing to cache if the media takes 0us to play. if (aDurationUsecs <= 0 || !aStream) { return buffered; } // Special case completely cached files. This also handles local files. if (aStream->IsDataCachedToEndOfResource(0)) { buffered += media::TimeInterval(TimeUnit::Zero(), TimeUnit::FromMicroseconds(aDurationUsecs)); return buffered; } int64_t totalBytes = aStream->GetLength(); // If we can't determine the total size, pretend that we have nothing // buffered. This will put us in a state of eternally-low-on-undecoded-data // which is not great, but about the best we can do. if (totalBytes <= 0) { return buffered; } int64_t startOffset = aStream->GetNextCachedData(0); while (startOffset >= 0) { int64_t endOffset = aStream->GetCachedDataEnd(startOffset); // Bytes [startOffset..endOffset] are cached. NS_ASSERTION(startOffset >= 0, "Integer underflow in GetBuffered"); NS_ASSERTION(endOffset >= 0, "Integer underflow in GetBuffered"); int64_t startUs = BytesToTime(startOffset, totalBytes, aDurationUsecs); int64_t endUs = BytesToTime(endOffset, totalBytes, aDurationUsecs); if (startUs != endUs) { buffered += media::TimeInterval(TimeUnit::FromMicroseconds(startUs), TimeUnit::FromMicroseconds(endUs)); } startOffset = aStream->GetNextCachedData(endOffset); } return buffered; } void DownmixStereoToMono(mozilla::AudioDataValue* aBuffer, uint32_t aFrames) { MOZ_ASSERT(aBuffer); const int channels = 2; for (uint32_t fIdx = 0; fIdx < aFrames; ++fIdx) { #ifdef MOZ_SAMPLE_TYPE_FLOAT32 float sample = 0.0; #else int sample = 0; #endif // The sample of the buffer would be interleaved. sample = (aBuffer[fIdx * channels] + aBuffer[fIdx * channels + 1]) * 0.5f; aBuffer[fIdx * channels] = aBuffer[fIdx * channels + 1] = sample; } } uint32_t DecideAudioPlaybackChannels(const AudioInfo& info) { if (StaticPrefs::accessibility_monoaudio_enable()) { return 1; } if (StaticPrefs::media_forcestereo_enabled()) { return 2; } return info.mChannels; } uint32_t DecideAudioPlaybackSampleRate(const AudioInfo& aInfo) { bool resampling = StaticPrefs::media_resampling_enabled(); uint32_t rate = 0; if (resampling) { rate = 48000; } else if (aInfo.mRate >= 44100) { // The original rate is of good quality and we want to minimize unecessary // resampling, so we let cubeb decide how to resample (if needed). rate = aInfo.mRate; } else { // We will resample all data to match cubeb's preferred sampling rate. rate = AudioStream::GetPreferredRate(); if (rate > 384000) { // bogus rate, fall back to something else; rate = 48000; } } MOZ_DIAGNOSTIC_ASSERT(rate, "output rate can't be 0."); return rate; } bool IsDefaultPlaybackDeviceMono() { return CubebUtils::MaxNumberOfChannels() == 1; } bool IsVideoContentType(const nsCString& aContentType) { constexpr auto video = "video"_ns; return FindInReadable(video, aContentType); } bool IsValidVideoRegion(const gfx::IntSize& aFrame, const gfx::IntRect& aPicture, const gfx::IntSize& aDisplay) { return aFrame.width > 0 && aFrame.width <= PlanarYCbCrImage::MAX_DIMENSION && aFrame.height > 0 && aFrame.height <= PlanarYCbCrImage::MAX_DIMENSION && aFrame.width * aFrame.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT && aPicture.width > 0 && aPicture.width <= PlanarYCbCrImage::MAX_DIMENSION && aPicture.x < PlanarYCbCrImage::MAX_DIMENSION && aPicture.x + aPicture.width < PlanarYCbCrImage::MAX_DIMENSION && aPicture.height > 0 && aPicture.height <= PlanarYCbCrImage::MAX_DIMENSION && aPicture.y < PlanarYCbCrImage::MAX_DIMENSION && aPicture.y + aPicture.height < PlanarYCbCrImage::MAX_DIMENSION && aPicture.width * aPicture.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT && aDisplay.width > 0 && aDisplay.width <= PlanarYCbCrImage::MAX_DIMENSION && aDisplay.height > 0 && aDisplay.height <= PlanarYCbCrImage::MAX_DIMENSION && aDisplay.width * aDisplay.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT; } already_AddRefed GetMediaThreadPool(MediaThreadType aType) { const char* name; uint32_t threads = 4; switch (aType) { case MediaThreadType::PLATFORM_DECODER: name = "MediaPDecoder"; break; case MediaThreadType::WEBRTC_CALL_THREAD: name = "WebrtcCallThread"; threads = 1; break; case MediaThreadType::WEBRTC_WORKER: name = "WebrtcWorker"; break; case MediaThreadType::MDSM: name = "MediaDecoderStateMachine"; threads = 1; break; case MediaThreadType::PLATFORM_ENCODER: name = "MediaPEncoder"; break; default: MOZ_FALLTHROUGH_ASSERT("Unexpected MediaThreadType"); case MediaThreadType::SUPERVISOR: name = "MediaSupervisor"; break; } RefPtr pool = SharedThreadPool::Get(nsDependentCString(name), threads); // Ensure a larger stack for platform decoder threads if (aType == MediaThreadType::PLATFORM_DECODER) { const uint32_t minStackSize = 512 * 1024; uint32_t stackSize; MOZ_ALWAYS_SUCCEEDS(pool->GetThreadStackSize(&stackSize)); if (stackSize < minStackSize) { MOZ_ALWAYS_SUCCEEDS(pool->SetThreadStackSize(minStackSize)); } } return pool.forget(); } bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aLevel, uint8_t& aBitDepth) { uint8_t dummyChromaSubsampling = 1; VideoColorSpace dummyColorspace; return ExtractVPXCodecDetails(aCodec, aProfile, aLevel, aBitDepth, dummyChromaSubsampling, dummyColorspace); } bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aLevel, uint8_t& aBitDepth, uint8_t& aChromaSubsampling, VideoColorSpace& aColorSpace) { // Assign default value. aChromaSubsampling = 1; auto splitter = aCodec.Split(u'.'); auto fieldsItr = splitter.begin(); auto fourCC = *fieldsItr; if (!fourCC.EqualsLiteral("vp09") && !fourCC.EqualsLiteral("vp08")) { // Invalid 4CC return false; } ++fieldsItr; uint8_t primary, transfer, matrix, range; uint8_t* fields[] = {&aProfile, &aLevel, &aBitDepth, &aChromaSubsampling, &primary, &transfer, &matrix, &range}; int fieldsCount = 0; nsresult rv; for (; fieldsItr != splitter.end(); ++fieldsItr, ++fieldsCount) { if (fieldsCount > 7) { // No more than 8 fields are expected. return false; } *(fields[fieldsCount]) = static_cast((*fieldsItr).ToInteger(&rv, 10)); // We got invalid field value, parsing error. NS_ENSURE_SUCCESS(rv, false); } // Mandatory Fields // .... // Optional Fields // ... // . // First three fields are mandatory(we have parsed 4CC). if (fieldsCount < 3) { // Invalid number of fields. return false; } // Start to validate the parsing value. // profile should be 0,1,2 or 3. // See https://www.webmproject.org/vp9/profiles/ if (aProfile > 3) { // Invalid profile. return false; } // level, See https://www.webmproject.org/vp9/mp4/#semantics_1 switch (aLevel) { case 10: case 11: case 20: case 21: case 30: case 31: case 40: case 41: case 50: case 51: case 52: case 60: case 61: case 62: break; default: // Invalid level. return false; } if (aBitDepth != 8 && aBitDepth != 10 && aBitDepth != 12) { // Invalid bitDepth: return false; } if (fieldsCount == 3) { // No more options. return true; } // chromaSubsampling should be 0,1,2,3...4~7 are reserved. if (aChromaSubsampling > 3) { return false; } if (fieldsCount == 4) { // No more options. return true; } // It is an integer that is defined by the "Colour primaries" // section of ISO/IEC 23001-8:2016 Table 2. // We treat reserved value as false case. if (primary == 0 || primary == 3 || primary > 22) { // reserved value. return false; } if (primary > 12 && primary < 22) { // 13~21 are reserved values. return false; } aColorSpace.mPrimaries = static_cast(primary); if (fieldsCount == 5) { // No more options. return true; } // It is an integer that is defined by the // "Transfer characteristics" section of ISO/IEC 23001-8:2016 Table 3. // We treat reserved value as false case. if (transfer == 0 || transfer == 3 || transfer > 18) { // reserved value. return false; } aColorSpace.mTransfer = static_cast(transfer); if (fieldsCount == 6) { // No more options. return true; } // It is an integer that is defined by the // "Matrix coefficients" section of ISO/IEC 23001-8:2016 Table 4. // We treat reserved value as false case. if (matrix == 3 || matrix > 11) { return false; } aColorSpace.mMatrix = static_cast(matrix); // If matrixCoefficients is 0 (RGB), then chroma subsampling MUST be 3 // (4:4:4). if (aColorSpace.mMatrix == MatrixCoefficients::MC_IDENTITY && aChromaSubsampling != 3) { return false; } if (fieldsCount == 7) { // No more options. return true; } // videoFullRangeFlag indicates the black level and range of the luma and // chroma signals. 0 = legal range (e.g. 16-235 for 8 bit sample depth); // 1 = full range (e.g. 0-255 for 8-bit sample depth). aColorSpace.mRange = static_cast(range); return range <= 1; } bool ExtractH264CodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aConstraint, uint8_t& aLevel) { // H.264 codecs parameters have a type defined as avcN.PPCCLL, where // N = avc type. avc3 is avcc with SPS & PPS implicit (within stream) // PP = profile_idc, CC = constraint_set flags, LL = level_idc. // We ignore the constraint_set flags, as it's not clear from any // documentation what constraints the platform decoders support. // See // http://blog.pearce.org.nz/2013/11/what-does-h264avc1-codecs-parameters.html // for more details. if (aCodec.Length() != strlen("avc1.PPCCLL")) { return false; } // Verify the codec starts with "avc1." or "avc3.". const nsAString& sample = Substring(aCodec, 0, 5); if (!sample.EqualsASCII("avc1.") && !sample.EqualsASCII("avc3.")) { return false; } // Extract the profile_idc, constraint_flags and level_idc. nsresult rv = NS_OK; aProfile = Substring(aCodec, 5, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); // Constraint flags are stored on the 6 most significant bits, first two bits // are reserved_zero_2bits. aConstraint = Substring(aCodec, 7, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); aLevel = Substring(aCodec, 9, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); if (aLevel == 9) { aLevel = H264_LEVEL_1_b; } else if (aLevel <= 5) { aLevel *= 10; } return true; } bool ExtractAV1CodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aLevel, uint8_t& aTier, uint8_t& aBitDepth, bool& aMonochrome, bool& aSubsamplingX, bool& aSubsamplingY, uint8_t& aChromaSamplePosition, VideoColorSpace& aColorSpace) { auto fourCC = Substring(aCodec, 0, 4); if (!fourCC.EqualsLiteral("av01")) { // Invalid 4CC return false; } // Format is: // av01.N.NN[MH].NN.B.BBN.NN.NN.NN.B // where // N = decimal digit // [] = single character // B = binary digit // Field order: // ... // [.. // ... // .] // // If any optional field is found, all the rest must be included. // // Parsing stops but does not fail upon encountering unexpected characters // at the end of an otherwise well-formed string. // // See https://aomediacodec.github.io/av1-isobmff/#codecsparam struct AV1Field { uint8_t* field; size_t length; }; uint8_t monochrome; uint8_t subsampling; uint8_t primary; uint8_t transfer; uint8_t matrix; uint8_t range; AV1Field fields[] = {{&aProfile, 1}, {&aLevel, 2}, // parsing loop skips tier {&aBitDepth, 2}, {&monochrome, 1}, {&subsampling, 3}, {&primary, 2}, {&transfer, 2}, {&matrix, 2}, {&range, 1}}; auto splitter = aCodec.Split(u'.'); auto iter = splitter.begin(); ++iter; size_t fieldCount = 0; while (iter != splitter.end()) { // Exit if there are too many fields. if (fieldCount >= 9) { return false; } AV1Field& field = fields[fieldCount]; auto fieldStr = *iter; if (field.field == &aLevel) { // Parse tier and remove it from the level field. if (fieldStr.Length() < 3) { return false; } auto tier = fieldStr[2]; switch (tier) { case 'M': aTier = 0; break; case 'H': aTier = 1; break; default: return false; } fieldStr.SetLength(2); } if (fieldStr.Length() < field.length) { return false; } // Manually parse values since nsString.ToInteger silently stops parsing // upon encountering unknown characters. uint8_t value = 0; for (size_t i = 0; i < field.length; i++) { uint8_t oldValue = value; char16_t character = fieldStr[i]; if ('0' <= character && character <= '9') { value = (value * 10) + (character - '0'); } else { return false; } if (value < oldValue) { // Overflow is possible on the 3-digit subsampling field. return false; } } *field.field = value; ++fieldCount; ++iter; // Field had extra characters, exit early. if (fieldStr.Length() > field.length) { // Disallow numbers as unexpected characters. char16_t character = fieldStr[field.length]; if ('0' <= character && character <= '9') { return false; } break; } } // Spec requires profile, level/tier, bitdepth, or for all possible fields to // be present. if (fieldCount != 3 && fieldCount != 9) { return false; } // Valid profiles are: Main (0), High (1), Professional (2). // Levels range from 0 to 23, or 31 to remove level restrictions. if (aProfile > 2 || (aLevel > 23 && aLevel != 31)) { return false; } if (fieldCount == 3) { // If only required fields are included, set to the spec defaults for the // rest and continue validating. aMonochrome = false; aSubsamplingX = true; aSubsamplingY = true; aChromaSamplePosition = 0; aColorSpace.mPrimaries = ColourPrimaries::CP_BT709; aColorSpace.mTransfer = TransferCharacteristics::TC_BT709; aColorSpace.mMatrix = MatrixCoefficients::MC_BT709; aColorSpace.mRange = ColorRange::LIMITED; } else { // Extract the individual values for the remaining fields, and check for // valid values for each. // Monochrome is a boolean. if (monochrome > 1) { return false; } aMonochrome = !!monochrome; // Extract individual digits of the subsampling field. // Subsampling is two binary digits for x and y // and one enumerated sample position field of // Unknown (0), Vertical (1), Colocated (2). uint8_t subsamplingX = (subsampling / 100) % 10; uint8_t subsamplingY = (subsampling / 10) % 10; if (subsamplingX > 1 || subsamplingY > 1) { return false; } aSubsamplingX = !!subsamplingX; aSubsamplingY = !!subsamplingY; aChromaSamplePosition = subsampling % 10; if (aChromaSamplePosition > 2) { return false; } // We can validate the color space values using CICP enums, as the values // are standardized in Rec. ITU-T H.273. aColorSpace.mPrimaries = static_cast(primary); aColorSpace.mTransfer = static_cast(transfer); aColorSpace.mMatrix = static_cast(matrix); if (gfx::CICP::IsReserved(aColorSpace.mPrimaries) || gfx::CICP::IsReserved(aColorSpace.mTransfer) || gfx::CICP::IsReserved(aColorSpace.mMatrix)) { return false; } // Range is a boolean, true meaning full and false meaning limited range. if (range > 1) { return false; } aColorSpace.mRange = static_cast(range); } // Begin validating all parameter values: // Only Levels 8 and above (4.0 and greater) can specify Tier. // See: 5.5.1. General sequence header OBU syntax, // if ( seq_level_idx[ i ] > 7 ) seq_tier[ i ] = f(1) // https://aomediacodec.github.io/av1-spec/av1-spec.pdf#page=42 // Also: Annex A, A.3. Levels, columns MainMbps and HighMbps // at https://aomediacodec.github.io/av1-spec/av1-spec.pdf#page=652 if (aLevel < 8 && aTier > 0) { return false; } // Supported bit depths are 8, 10 and 12. if (aBitDepth != 8 && aBitDepth != 10 && aBitDepth != 12) { return false; } // Profiles 0 and 1 only support 8-bit and 10-bit. if (aProfile < 2 && aBitDepth == 12) { return false; } // x && y subsampling is used to specify monochrome 4:0:0 as well bool is420or400 = aSubsamplingX && aSubsamplingY; bool is422 = aSubsamplingX && !aSubsamplingY; bool is444 = !aSubsamplingX && !aSubsamplingY; // Profile 0 only supports 4:2:0. if (aProfile == 0 && !is420or400) { return false; } // Profile 1 only supports 4:4:4. if (aProfile == 1 && !is444) { return false; } // Profile 2 only allows 4:2:2 at 10 bits and below. if (aProfile == 2 && aBitDepth < 12 && !is422) { return false; } // Chroma sample position can only be specified with 4:2:0. if (aChromaSamplePosition != 0 && !is420or400) { return false; } // When video is monochrome, subsampling must be 4:0:0. if (aMonochrome && (aChromaSamplePosition != 0 || !is420or400)) { return false; } // Monochrome can only be signaled when profile is 0 or 2. // Note: This check is redundant with the above subsampling check, // as profile 1 only supports 4:4:4. if (aMonochrome && aProfile != 0 && aProfile != 2) { return false; } // Identity matrix requires 4:4:4 subsampling. if (aColorSpace.mMatrix == MatrixCoefficients::MC_IDENTITY && (aSubsamplingX || aSubsamplingY || aColorSpace.mRange != gfx::ColorRange::FULL)) { return false; } return true; } nsresult GenerateRandomName(nsCString& aOutSalt, uint32_t aLength) { nsresult rv; nsCOMPtr rg = do_GetService("@mozilla.org/security/random-generator;1", &rv); if (NS_FAILED(rv)) { return rv; } // For each three bytes of random data we will get four bytes of ASCII. const uint32_t requiredBytesLength = static_cast((aLength + 3) / 4 * 3); uint8_t* buffer; rv = rg->GenerateRandomBytes(requiredBytesLength, &buffer); if (NS_FAILED(rv)) { return rv; } nsCString temp; nsDependentCSubstring randomData(reinterpret_cast(buffer), requiredBytesLength); rv = Base64Encode(randomData, temp); free(buffer); buffer = nullptr; if (NS_FAILED(rv)) { return rv; } aOutSalt = std::move(temp); return NS_OK; } nsresult GenerateRandomPathName(nsCString& aOutSalt, uint32_t aLength) { nsresult rv = GenerateRandomName(aOutSalt, aLength); if (NS_FAILED(rv)) { return rv; } // Base64 characters are alphanumeric (a-zA-Z0-9) and '+' and '/', so we need // to replace illegal characters -- notably '/' aOutSalt.ReplaceChar(FILE_PATH_SEPARATOR FILE_ILLEGAL_CHARACTERS, '_'); return NS_OK; } already_AddRefed CreateMediaDecodeTaskQueue(const char* aName) { RefPtr queue = TaskQueue::Create( GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER), aName); return queue.forget(); } void SimpleTimer::Cancel() { if (mTimer) { #ifdef DEBUG nsCOMPtr target; mTimer->GetTarget(getter_AddRefs(target)); bool onCurrent; nsresult rv = target->IsOnCurrentThread(&onCurrent); MOZ_ASSERT(NS_SUCCEEDED(rv) && onCurrent); #endif mTimer->Cancel(); mTimer = nullptr; } mTask = nullptr; } NS_IMETHODIMP SimpleTimer::Notify(nsITimer* timer) { RefPtr deathGrip(this); if (mTask) { mTask->Run(); mTask = nullptr; } return NS_OK; } NS_IMETHODIMP SimpleTimer::GetName(nsACString& aName) { aName.AssignLiteral("SimpleTimer"); return NS_OK; } nsresult SimpleTimer::Init(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIEventTarget* aTarget) { nsresult rv; // Get target thread first, so we don't have to cancel the timer if it fails. nsCOMPtr target; if (aTarget) { target = aTarget; } else { target = GetMainThreadEventTarget(); if (!target) { return NS_ERROR_NOT_AVAILABLE; } } rv = NS_NewTimerWithCallback(getter_AddRefs(mTimer), this, aTimeoutMs, nsITimer::TYPE_ONE_SHOT, target); if (NS_FAILED(rv)) { return rv; } mTask = aTask; return NS_OK; } NS_IMPL_ISUPPORTS(SimpleTimer, nsITimerCallback, nsINamed) already_AddRefed SimpleTimer::Create(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIEventTarget* aTarget) { RefPtr t(new SimpleTimer()); if (NS_FAILED(t->Init(aTask, aTimeoutMs, aTarget))) { return nullptr; } return t.forget(); } void LogToBrowserConsole(const nsAString& aMsg) { if (!NS_IsMainThread()) { nsString msg(aMsg); nsCOMPtr task = NS_NewRunnableFunction( "LogToBrowserConsole", [msg]() { LogToBrowserConsole(msg); }); SchedulerGroup::Dispatch(TaskCategory::Other, task.forget()); return; } nsCOMPtr console( do_GetService("@mozilla.org/consoleservice;1")); if (!console) { NS_WARNING("Failed to log message to console."); return; } nsAutoString msg(aMsg); console->LogStringMessage(msg.get()); } bool ParseCodecsString(const nsAString& aCodecs, nsTArray& aOutCodecs) { aOutCodecs.Clear(); bool expectMoreTokens = false; nsCharSeparatedTokenizer tokenizer(aCodecs, ','); while (tokenizer.hasMoreTokens()) { const nsAString& token = tokenizer.nextToken(); expectMoreTokens = tokenizer.separatorAfterCurrentToken(); aOutCodecs.AppendElement(token); } if (expectMoreTokens) { // Last codec name was empty return false; } return true; } bool ParseMIMETypeString(const nsAString& aMIMEType, nsString& aOutContainerType, nsTArray& aOutCodecs) { nsContentTypeParser parser(aMIMEType); nsresult rv = parser.GetType(aOutContainerType); if (NS_FAILED(rv)) { return false; } nsString codecsStr; parser.GetParameter("codecs", codecsStr); return ParseCodecsString(codecsStr, aOutCodecs); } template static bool StartsWith(const nsACString& string, const char (&prefix)[N]) { if (N - 1 > string.Length()) { return false; } return memcmp(string.Data(), prefix, N - 1) == 0; } bool IsH264CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t constraint = 0; uint8_t level = 0; return ExtractH264CodecDetails(aCodec, profile, constraint, level); } bool IsAACCodecString(const nsAString& aCodec) { return aCodec.EqualsLiteral("mp4a.40.2") || // MPEG4 AAC-LC aCodec.EqualsLiteral( "mp4a.40.02") || // MPEG4 AAC-LC(for compatibility) aCodec.EqualsLiteral("mp4a.40.5") || // MPEG4 HE-AAC aCodec.EqualsLiteral( "mp4a.40.05") || // MPEG4 HE-AAC(for compatibility) aCodec.EqualsLiteral("mp4a.67") || // MPEG2 AAC-LC aCodec.EqualsLiteral("mp4a.40.29"); // MPEG4 HE-AACv2 } bool IsVP8CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t level = 0; uint8_t bitDepth = 0; return aCodec.EqualsLiteral("vp8") || aCodec.EqualsLiteral("vp8.0") || (StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp08") && ExtractVPXCodecDetails(aCodec, profile, level, bitDepth)); } bool IsVP9CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t level = 0; uint8_t bitDepth = 0; return aCodec.EqualsLiteral("vp9") || aCodec.EqualsLiteral("vp9.0") || (StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp09") && ExtractVPXCodecDetails(aCodec, profile, level, bitDepth)); } bool IsAV1CodecString(const nsAString& aCodec) { uint8_t profile, level, tier, bitDepth, chromaPosition; bool monochrome, subsamplingX, subsamplingY; VideoColorSpace colorSpace; return aCodec.EqualsLiteral("av1") || (StartsWith(NS_ConvertUTF16toUTF8(aCodec), "av01") && ExtractAV1CodecDetails(aCodec, profile, level, tier, bitDepth, monochrome, subsamplingX, subsamplingY, chromaPosition, colorSpace)); } UniquePtr CreateTrackInfoWithMIMEType( const nsACString& aCodecMIMEType) { UniquePtr trackInfo; if (StartsWith(aCodecMIMEType, "audio/")) { trackInfo.reset(new AudioInfo()); trackInfo->mMimeType = aCodecMIMEType; } else if (StartsWith(aCodecMIMEType, "video/")) { trackInfo.reset(new VideoInfo()); trackInfo->mMimeType = aCodecMIMEType; } return trackInfo; } UniquePtr CreateTrackInfoWithMIMETypeAndContainerTypeExtraParameters( const nsACString& aCodecMIMEType, const MediaContainerType& aContainerType) { UniquePtr trackInfo = CreateTrackInfoWithMIMEType(aCodecMIMEType); if (trackInfo) { VideoInfo* videoInfo = trackInfo->GetAsVideoInfo(); if (videoInfo) { Maybe maybeWidth = aContainerType.ExtendedType().GetWidth(); if (maybeWidth && *maybeWidth > 0) { videoInfo->mImage.width = *maybeWidth; videoInfo->mDisplay.width = *maybeWidth; } Maybe maybeHeight = aContainerType.ExtendedType().GetHeight(); if (maybeHeight && *maybeHeight > 0) { videoInfo->mImage.height = *maybeHeight; videoInfo->mDisplay.height = *maybeHeight; } } else if (trackInfo->GetAsAudioInfo()) { AudioInfo* audioInfo = trackInfo->GetAsAudioInfo(); Maybe maybeChannels = aContainerType.ExtendedType().GetChannels(); if (maybeChannels && *maybeChannels > 0) { audioInfo->mChannels = *maybeChannels; } Maybe maybeSamplerate = aContainerType.ExtendedType().GetSamplerate(); if (maybeSamplerate && *maybeSamplerate > 0) { audioInfo->mRate = *maybeSamplerate; } } } return trackInfo; } bool OnCellularConnection() { uint32_t linkType = nsINetworkLinkService::LINK_TYPE_UNKNOWN; if (XRE_IsContentProcess()) { mozilla::dom::ContentChild* cpc = mozilla::dom::ContentChild::GetSingleton(); if (!cpc) { NS_WARNING("Can't get ContentChild singleton in content process!"); return false; } linkType = cpc->NetworkLinkType(); } else { nsresult rv; nsCOMPtr nls = do_GetService(NS_NETWORK_LINK_SERVICE_CONTRACTID, &rv); if (NS_FAILED(rv)) { NS_WARNING("Can't get nsINetworkLinkService."); return false; } rv = nls->GetLinkType(&linkType); if (NS_FAILED(rv)) { NS_WARNING("Can't get network link type."); return false; } } switch (linkType) { case nsINetworkLinkService::LINK_TYPE_UNKNOWN: case nsINetworkLinkService::LINK_TYPE_ETHERNET: case nsINetworkLinkService::LINK_TYPE_USB: case nsINetworkLinkService::LINK_TYPE_WIFI: return false; case nsINetworkLinkService::LINK_TYPE_WIMAX: case nsINetworkLinkService::LINK_TYPE_MOBILE: return true; } return false; } } // end namespace mozilla