/* * Copyright (C) 2010 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Reverb.h" #include "ReverbConvolverStage.h" #include #include "ReverbConvolver.h" #include "mozilla/FloatingPoint.h" using namespace mozilla; namespace WebCore { // Empirical gain calibration tested across many impulse responses to ensure // perceived volume is same as dry (unprocessed) signal const float GainCalibration = 0.00125f; const float GainCalibrationSampleRate = 44100; // A minimum power value to when normalizing a silent (or very quiet) impulse // response const float MinPower = 0.000125f; static float calculateNormalizationScale(const nsTArray& response, size_t aLength, float sampleRate) { // Normalize by RMS power size_t numberOfChannels = response.Length(); float power = 0; for (size_t i = 0; i < numberOfChannels; ++i) { float channelPower = AudioBufferSumOfSquares(response[i], aLength); power += channelPower; } power = sqrt(power / (numberOfChannels * aLength)); // Protect against accidental overload if (!IsFinite(power) || IsNaN(power) || power < MinPower) power = MinPower; float scale = 1 / power; scale *= GainCalibration; // calibrate to make perceived volume same as // unprocessed // Scale depends on sample-rate. if (sampleRate) scale *= GainCalibrationSampleRate / sampleRate; // True-stereo compensation if (numberOfChannels == 4) scale *= 0.5f; return scale; } Reverb::Reverb(const AudioChunk& impulseResponse, size_t maxFFTSize, bool useBackgroundThreads, bool normalize, float sampleRate, bool* aAllocationFailure) { MOZ_ASSERT(aAllocationFailure); size_t impulseResponseBufferLength = impulseResponse.mDuration; float scale = impulseResponse.mVolume; CopyableAutoTArray irChannels( impulseResponse.ChannelData()); AutoTArray tempBuf; if (normalize) { scale = calculateNormalizationScale(irChannels, impulseResponseBufferLength, sampleRate); } if (scale != 1.0f) { bool rv = tempBuf.SetLength( irChannels.Length() * impulseResponseBufferLength, mozilla::fallible); *aAllocationFailure = !rv; if (*aAllocationFailure) { return; } for (uint32_t i = 0; i < irChannels.Length(); ++i) { float* buf = &tempBuf[i * impulseResponseBufferLength]; AudioBufferCopyWithScale(irChannels[i], scale, buf, impulseResponseBufferLength); irChannels[i] = buf; } } *aAllocationFailure = !initialize(irChannels, impulseResponseBufferLength, maxFFTSize, useBackgroundThreads); } size_t Reverb::sizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { size_t amount = aMallocSizeOf(this); amount += m_convolvers.ShallowSizeOfExcludingThis(aMallocSizeOf); for (size_t i = 0; i < m_convolvers.Length(); i++) { if (m_convolvers[i]) { amount += m_convolvers[i]->sizeOfIncludingThis(aMallocSizeOf); } } amount += m_tempBuffer.SizeOfExcludingThis(aMallocSizeOf, false); return amount; } bool Reverb::initialize(const nsTArray& impulseResponseBuffer, size_t impulseResponseBufferLength, size_t maxFFTSize, bool useBackgroundThreads) { m_impulseResponseLength = impulseResponseBufferLength; // The reverb can handle a mono impulse response and still do stereo // processing size_t numResponseChannels = impulseResponseBuffer.Length(); MOZ_ASSERT(numResponseChannels > 0); // The number of convolvers required is at least the number of audio // channels. Even if there is initially only one audio channel, another // may be added later, and so a second convolver is created now while the // impulse response is available. size_t numConvolvers = std::max(numResponseChannels, 2); m_convolvers.SetCapacity(numConvolvers); int convolverRenderPhase = 0; for (size_t i = 0; i < numConvolvers; ++i) { size_t channelIndex = i < numResponseChannels ? i : 0; const float* channel = impulseResponseBuffer[channelIndex]; size_t length = impulseResponseBufferLength; bool allocationFailure; UniquePtr convolver( new ReverbConvolver(channel, length, maxFFTSize, convolverRenderPhase, useBackgroundThreads, &allocationFailure)); if (allocationFailure) { return false; } m_convolvers.AppendElement(std::move(convolver)); convolverRenderPhase += WEBAUDIO_BLOCK_SIZE; } // For "True" stereo processing we allocate a temporary buffer to avoid // repeatedly allocating it in the process() method. It can be bad to allocate // memory in a real-time thread. if (numResponseChannels == 4) { m_tempBuffer.AllocateChannels(2); WriteZeroesToAudioBlock(&m_tempBuffer, 0, WEBAUDIO_BLOCK_SIZE); } return true; } void Reverb::process(const AudioBlock* sourceBus, AudioBlock* destinationBus) { // Do a fairly comprehensive sanity check. // If these conditions are satisfied, all of the source and destination // pointers will be valid for the various matrixing cases. bool isSafeToProcess = sourceBus && destinationBus && sourceBus->ChannelCount() > 0 && destinationBus->mChannelData.Length() > 0 && WEBAUDIO_BLOCK_SIZE <= MaxFrameSize && WEBAUDIO_BLOCK_SIZE <= size_t(sourceBus->GetDuration()) && WEBAUDIO_BLOCK_SIZE <= size_t(destinationBus->GetDuration()); MOZ_ASSERT(isSafeToProcess); if (!isSafeToProcess) return; // For now only handle mono or stereo output MOZ_ASSERT(destinationBus->ChannelCount() <= 2); float* destinationChannelL = static_cast(const_cast(destinationBus->mChannelData[0])); const float* sourceBusL = static_cast(sourceBus->mChannelData[0]); // Handle input -> output matrixing... size_t numInputChannels = sourceBus->ChannelCount(); size_t numOutputChannels = destinationBus->ChannelCount(); size_t numReverbChannels = m_convolvers.Length(); if (numInputChannels == 2 && numReverbChannels == 2 && numOutputChannels == 2) { // 2 -> 2 -> 2 const float* sourceBusR = static_cast(sourceBus->mChannelData[1]); float* destinationChannelR = static_cast(const_cast(destinationBus->mChannelData[1])); m_convolvers[0]->process(sourceBusL, destinationChannelL); m_convolvers[1]->process(sourceBusR, destinationChannelR); } else if (numInputChannels == 1 && numOutputChannels == 2 && numReverbChannels == 2) { // 1 -> 2 -> 2 for (int i = 0; i < 2; ++i) { float* destinationChannel = static_cast( const_cast(destinationBus->mChannelData[i])); m_convolvers[i]->process(sourceBusL, destinationChannel); } } else if (numInputChannels == 1 && numOutputChannels == 1) { // 1 -> 1 -> 1 (Only one of the convolvers is used.) m_convolvers[0]->process(sourceBusL, destinationChannelL); } else if (numInputChannels == 2 && numReverbChannels == 4 && numOutputChannels == 2) { // 2 -> 4 -> 2 ("True" stereo) const float* sourceBusR = static_cast(sourceBus->mChannelData[1]); float* destinationChannelR = static_cast(const_cast(destinationBus->mChannelData[1])); float* tempChannelL = static_cast(const_cast(m_tempBuffer.mChannelData[0])); float* tempChannelR = static_cast(const_cast(m_tempBuffer.mChannelData[1])); // Process left virtual source m_convolvers[0]->process(sourceBusL, destinationChannelL); m_convolvers[1]->process(sourceBusL, destinationChannelR); // Process right virtual source m_convolvers[2]->process(sourceBusR, tempChannelL); m_convolvers[3]->process(sourceBusR, tempChannelR); AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL, sourceBus->GetDuration()); AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR, sourceBus->GetDuration()); } else if (numInputChannels == 1 && numReverbChannels == 4 && numOutputChannels == 2) { // 1 -> 4 -> 2 (Processing mono with "True" stereo impulse response) // This is an inefficient use of a four-channel impulse response, but we // should handle the case. float* destinationChannelR = static_cast(const_cast(destinationBus->mChannelData[1])); float* tempChannelL = static_cast(const_cast(m_tempBuffer.mChannelData[0])); float* tempChannelR = static_cast(const_cast(m_tempBuffer.mChannelData[1])); // Process left virtual source m_convolvers[0]->process(sourceBusL, destinationChannelL); m_convolvers[1]->process(sourceBusL, destinationChannelR); // Process right virtual source m_convolvers[2]->process(sourceBusL, tempChannelL); m_convolvers[3]->process(sourceBusL, tempChannelR); AudioBufferAddWithScale(tempChannelL, 1.0f, destinationChannelL, sourceBus->GetDuration()); AudioBufferAddWithScale(tempChannelR, 1.0f, destinationChannelR, sourceBus->GetDuration()); } else { MOZ_ASSERT_UNREACHABLE("Unexpected Reverb configuration"); destinationBus->SetNull(destinationBus->GetDuration()); } } } // namespace WebCore