/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include "mozilla/Alignment.h" #include "cairo.h" #include "gfxContext.h" #include "gfxMatrix.h" #include "gfxUtils.h" #include "gfxPattern.h" #include "gfxPlatform.h" #include "gfx2DGlue.h" #include "mozilla/gfx/PathHelpers.h" #include "mozilla/ProfilerLabels.h" #include #include "TextDrawTarget.h" #if XP_WIN # include "gfxWindowsPlatform.h" # include "mozilla/gfx/DeviceManagerDx.h" #endif using namespace mozilla; using namespace mozilla::gfx; #ifdef DEBUG # define CURRENTSTATE_CHANGED() CurrentState().mContentChanged = true; #else # define CURRENTSTATE_CHANGED() #endif PatternFromState::operator mozilla::gfx::Pattern&() { gfxContext::AzureState& state = mContext->CurrentState(); if (state.pattern) { return *state.pattern->GetPattern( mContext->mDT, state.patternTransformChanged ? &state.patternTransform : nullptr); } mPattern = new (mColorPattern.addr()) ColorPattern(state.color); return *mPattern; } gfxContext::gfxContext(DrawTarget* aTarget, const Point& aDeviceOffset) : mPathIsRect(false), mTransformChanged(false), mDT(aTarget) { if (!aTarget) { gfxCriticalError() << "Don't create a gfxContext without a DrawTarget"; } mStateStack.SetLength(1); CurrentState().drawTarget = mDT; CurrentState().deviceOffset = aDeviceOffset; mDT->SetTransform(GetDTTransform()); } /* static */ already_AddRefed gfxContext::CreateOrNull( DrawTarget* aTarget, const mozilla::gfx::Point& aDeviceOffset) { if (!aTarget || !aTarget->IsValid()) { gfxCriticalNote << "Invalid target in gfxContext::CreateOrNull " << hexa(aTarget); return nullptr; } RefPtr result = new gfxContext(aTarget, aDeviceOffset); return result.forget(); } /* static */ already_AddRefed gfxContext::CreatePreservingTransformOrNull( DrawTarget* aTarget) { if (!aTarget || !aTarget->IsValid()) { gfxCriticalNote << "Invalid target in gfxContext::CreatePreservingTransformOrNull " << hexa(aTarget); return nullptr; } Matrix transform = aTarget->GetTransform(); RefPtr result = new gfxContext(aTarget); result->SetMatrix(transform); return result.forget(); } gfxContext::~gfxContext() { for (int i = mStateStack.Length() - 1; i >= 0; i--) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { mStateStack[i].drawTarget->PopClip(); } } } mozilla::layout::TextDrawTarget* gfxContext::GetTextDrawer() { if (mDT->GetBackendType() == BackendType::WEBRENDER_TEXT) { return static_cast(&*mDT); } return nullptr; } void gfxContext::Save() { CurrentState().transform = mTransform; mStateStack.AppendElement(AzureState(CurrentState())); CurrentState().pushedClips.Clear(); #ifdef DEBUG CurrentState().mContentChanged = false; #endif } void gfxContext::Restore() { #ifdef DEBUG // gfxContext::Restore is used to restore AzureState. We need to restore it // only if it was altered. The following APIs do change the content of // AzureState, a user should save the state before using them and restore it // after finishing painting: // 1. APIs to setup how to paint, such as SetColor()/SetAntialiasMode(). All // gfxContext SetXXXX public functions belong to this category, except // gfxContext::SetPath & gfxContext::SetMatrix. // 2. Clip functions, such as Clip() or PopClip(). You may call PopClip() // directly instead of using gfxContext::Save if the clip region is the // only thing that you altered in the target context. // 3. Function of setup transform matrix, such as Multiply() and // SetMatrix(). Using gfxContextMatrixAutoSaveRestore is more recommended // if transform data is the only thing that you are going to alter. // // You will hit the assertion message below if there is no above functions // been used between a pair of gfxContext::Save and gfxContext::Restore. // Considerate to remove that pair of Save/Restore if hitting that assertion. // // In the other hand, the following APIs do not alter the content of the // current AzureState, therefore, there is no need to save & restore // AzureState: // 1. constant member functions of gfxContext. // 2. Paint calls, such as Line()/Rectangle()/Fill(). Those APIs change the // content of drawing buffer, which is not part of AzureState. // 3. Path building APIs, such as SetPath()/MoveTo()/LineTo()/NewPath(). // Surprisingly, path information is not stored in AzureState either. // Save current AzureState before using these type of APIs does nothing but // make performance worse. NS_ASSERTION( CurrentState().mContentChanged || CurrentState().pushedClips.Length() > 0, "The context of the current AzureState is not altered after " "Save() been called. you may consider to remove this pair of " "gfxContext::Save/Restore."); #endif for (unsigned int c = 0; c < CurrentState().pushedClips.Length(); c++) { mDT->PopClip(); } mStateStack.RemoveLastElement(); mDT = CurrentState().drawTarget; ChangeTransform(CurrentState().transform, false); } // drawing void gfxContext::NewPath() { mPath = nullptr; mPathBuilder = nullptr; mPathIsRect = false; mTransformChanged = false; } already_AddRefed gfxContext::GetPath() { EnsurePath(); RefPtr path(mPath); return path.forget(); } void gfxContext::SetPath(Path* path) { MOZ_ASSERT(path->GetBackendType() == mDT->GetBackendType() || path->GetBackendType() == BackendType::RECORDING || (mDT->GetBackendType() == BackendType::DIRECT2D1_1 && path->GetBackendType() == BackendType::DIRECT2D)); mPath = path; mPathBuilder = nullptr; mPathIsRect = false; mTransformChanged = false; } void gfxContext::Fill() { Fill(PatternFromState(this)); } void gfxContext::Fill(const Pattern& aPattern) { AUTO_PROFILER_LABEL("gfxContext::Fill", GRAPHICS); AzureState& state = CurrentState(); CompositionOp op = GetOp(); if (mPathIsRect) { MOZ_ASSERT(!mTransformChanged); if (op == CompositionOp::OP_SOURCE) { // Emulate cairo operator source which is bound by mask! mDT->ClearRect(mRect); mDT->FillRect(mRect, aPattern, DrawOptions(1.0f)); } else { mDT->FillRect(mRect, aPattern, DrawOptions(1.0f, op, state.aaMode)); } } else { EnsurePath(); mDT->Fill(mPath, aPattern, DrawOptions(1.0f, op, state.aaMode)); } } // XXX snapToPixels is only valid when snapping for filled // rectangles and for even-width stroked rectangles. // For odd-width stroked rectangles, we need to offset x/y by // 0.5... void gfxContext::Rectangle(const gfxRect& rect, bool snapToPixels) { Rect rec = ToRect(rect); if (snapToPixels) { gfxRect newRect(rect); if (UserToDevicePixelSnapped(newRect, SnapOption::IgnoreScale)) { gfxMatrix mat = ThebesMatrix(mTransform); if (mat.Invert()) { // We need the user space rect. rec = ToRect(mat.TransformBounds(newRect)); } else { rec = Rect(); } } } if (!mPathBuilder && !mPathIsRect) { mPathIsRect = true; mRect = rec; return; } EnsurePathBuilder(); mPathBuilder->MoveTo(rec.TopLeft()); mPathBuilder->LineTo(rec.TopRight()); mPathBuilder->LineTo(rec.BottomRight()); mPathBuilder->LineTo(rec.BottomLeft()); mPathBuilder->Close(); } void gfxContext::SnappedClip(const gfxRect& rect) { Rect rec = ToRect(rect); gfxRect newRect(rect); if (UserToDevicePixelSnapped(newRect, SnapOption::IgnoreScale)) { gfxMatrix mat = ThebesMatrix(mTransform); if (mat.Invert()) { // We need the user space rect. rec = ToRect(mat.TransformBounds(newRect)); } else { rec = Rect(); } } Clip(rec); } // transform stuff void gfxContext::Multiply(const gfxMatrix& matrix) { Multiply(ToMatrix(matrix)); } // transform stuff void gfxContext::Multiply(const Matrix& matrix) { CURRENTSTATE_CHANGED() ChangeTransform(matrix * mTransform); } void gfxContext::SetMatrix(const gfx::Matrix& matrix) { CURRENTSTATE_CHANGED() ChangeTransform(matrix); } void gfxContext::SetMatrixDouble(const gfxMatrix& matrix) { SetMatrix(ToMatrix(matrix)); } gfx::Matrix gfxContext::CurrentMatrix() const { return mTransform; } gfxMatrix gfxContext::CurrentMatrixDouble() const { return ThebesMatrix(CurrentMatrix()); } gfxPoint gfxContext::DeviceToUser(const gfxPoint& point) const { return ThebesPoint(mTransform.Inverse().TransformPoint(ToPoint(point))); } Size gfxContext::DeviceToUser(const Size& size) const { return mTransform.Inverse().TransformSize(size); } gfxRect gfxContext::DeviceToUser(const gfxRect& rect) const { return ThebesRect(mTransform.Inverse().TransformBounds(ToRect(rect))); } gfxPoint gfxContext::UserToDevice(const gfxPoint& point) const { return ThebesPoint(mTransform.TransformPoint(ToPoint(point))); } Size gfxContext::UserToDevice(const Size& size) const { const Matrix& matrix = mTransform; Size newSize; newSize.width = size.width * matrix._11 + size.height * matrix._12; newSize.height = size.width * matrix._21 + size.height * matrix._22; return newSize; } gfxRect gfxContext::UserToDevice(const gfxRect& rect) const { const Matrix& matrix = mTransform; return ThebesRect(matrix.TransformBounds(ToRect(rect))); } bool gfxContext::UserToDevicePixelSnapped(gfxRect& rect, SnapOptions aOptions) const { if (mDT->GetUserData(&sDisablePixelSnapping)) { return false; } // if we're not at 1.0 scale, don't snap, unless we're // ignoring the scale. If we're not -just- a scale, // never snap. const gfxFloat epsilon = 0.0000001; #define WITHIN_E(a, b) (fabs((a) - (b)) < epsilon) Matrix mat = mTransform; if (!aOptions.contains(SnapOption::IgnoreScale) && (!WITHIN_E(mat._11, 1.0) || !WITHIN_E(mat._22, 1.0) || !WITHIN_E(mat._12, 0.0) || !WITHIN_E(mat._21, 0.0))) { return false; } #undef WITHIN_E gfxPoint p1 = UserToDevice(rect.TopLeft()); gfxPoint p2 = UserToDevice(rect.TopRight()); gfxPoint p3 = UserToDevice(rect.BottomRight()); // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, // two opposite corners define the entire rectangle. So check if // the axis-aligned rectangle with opposite corners p1 and p3 // define an axis-aligned rectangle whose other corners are p2 and p4. // We actually only need to check one of p2 and p4, since an affine // transform maps parallelograms to parallelograms. if (!(p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y))) { return false; } if (aOptions.contains(SnapOption::PrioritizeSize)) { // Snap the dimensions of the rect, to minimize distortion; only after that // will we snap its position. In particular, this guarantees that a square // remains square after snapping, which may not be the case if each edge is // independently snapped to device pixels. // Use the same rounding approach as gfx::BasePoint::Round. rect.SizeTo(std::floor(rect.width + 0.5), std::floor(rect.height + 0.5)); // Find the top-left corner based on the original center and the snapped // size, then snap this new corner to the grid. gfxPoint center = (p1 + p3) / 2; gfxPoint topLeft = center - gfxPoint(rect.width / 2.0, rect.height / 2.0); topLeft.Round(); rect.MoveTo(topLeft); } else { p1.Round(); p3.Round(); rect.MoveTo(gfxPoint(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); rect.SizeTo(gfxSize(std::max(p1.x, p3.x) - rect.X(), std::max(p1.y, p3.y) - rect.Y())); } return true; } bool gfxContext::UserToDevicePixelSnapped(gfxPoint& pt, bool ignoreScale) const { if (mDT->GetUserData(&sDisablePixelSnapping)) { return false; } // if we're not at 1.0 scale, don't snap, unless we're // ignoring the scale. If we're not -just- a scale, // never snap. const gfxFloat epsilon = 0.0000001; #define WITHIN_E(a, b) (fabs((a) - (b)) < epsilon) Matrix mat = mTransform; if (!ignoreScale && (!WITHIN_E(mat._11, 1.0) || !WITHIN_E(mat._22, 1.0) || !WITHIN_E(mat._12, 0.0) || !WITHIN_E(mat._21, 0.0))) { return false; } #undef WITHIN_E pt = UserToDevice(pt); pt.Round(); return true; } void gfxContext::SetAntialiasMode(AntialiasMode mode) { CURRENTSTATE_CHANGED() CurrentState().aaMode = mode; } AntialiasMode gfxContext::CurrentAntialiasMode() const { return CurrentState().aaMode; } void gfxContext::SetDash(const Float* dashes, int ndash, Float offset, Float devPxScale) { CURRENTSTATE_CHANGED() AzureState& state = CurrentState(); state.dashPattern.SetLength(ndash); for (int i = 0; i < ndash; i++) { state.dashPattern[i] = dashes[i] * devPxScale; } state.strokeOptions.mDashLength = ndash; state.strokeOptions.mDashOffset = offset * devPxScale; state.strokeOptions.mDashPattern = ndash ? state.dashPattern.Elements() : nullptr; } bool gfxContext::CurrentDash(FallibleTArray& dashes, Float* offset) const { const AzureState& state = CurrentState(); int count = state.strokeOptions.mDashLength; if (count <= 0 || !dashes.Assign(state.dashPattern, fallible)) { return false; } *offset = state.strokeOptions.mDashOffset; return true; } void gfxContext::SetLineWidth(Float width) { CurrentState().strokeOptions.mLineWidth = width; } Float gfxContext::CurrentLineWidth() const { return CurrentState().strokeOptions.mLineWidth; } void gfxContext::SetOp(CompositionOp aOp) { CURRENTSTATE_CHANGED() CurrentState().op = aOp; } CompositionOp gfxContext::CurrentOp() const { return CurrentState().op; } void gfxContext::SetLineCap(CapStyle cap) { CURRENTSTATE_CHANGED() CurrentState().strokeOptions.mLineCap = cap; } CapStyle gfxContext::CurrentLineCap() const { return CurrentState().strokeOptions.mLineCap; } void gfxContext::SetLineJoin(JoinStyle join) { CURRENTSTATE_CHANGED() CurrentState().strokeOptions.mLineJoin = join; } JoinStyle gfxContext::CurrentLineJoin() const { return CurrentState().strokeOptions.mLineJoin; } void gfxContext::SetMiterLimit(Float limit) { CURRENTSTATE_CHANGED() CurrentState().strokeOptions.mMiterLimit = limit; } Float gfxContext::CurrentMiterLimit() const { return CurrentState().strokeOptions.mMiterLimit; } // clipping void gfxContext::Clip(const Rect& rect) { AzureState::PushedClip clip = {nullptr, rect, mTransform}; CurrentState().pushedClips.AppendElement(clip); mDT->PushClipRect(rect); NewPath(); } void gfxContext::Clip(const gfxRect& rect) { Clip(ToRect(rect)); } void gfxContext::Clip(Path* aPath) { mDT->PushClip(aPath); AzureState::PushedClip clip = {aPath, Rect(), mTransform}; CurrentState().pushedClips.AppendElement(clip); } void gfxContext::Clip() { if (mPathIsRect) { MOZ_ASSERT(!mTransformChanged); AzureState::PushedClip clip = {nullptr, mRect, mTransform}; CurrentState().pushedClips.AppendElement(clip); mDT->PushClipRect(mRect); } else { EnsurePath(); mDT->PushClip(mPath); AzureState::PushedClip clip = {mPath, Rect(), mTransform}; CurrentState().pushedClips.AppendElement(clip); } } void gfxContext::PopClip() { MOZ_ASSERT(CurrentState().pushedClips.Length() > 0); CurrentState().pushedClips.RemoveLastElement(); mDT->PopClip(); } gfxRect gfxContext::GetClipExtents(ClipExtentsSpace aSpace) const { Rect rect = GetAzureDeviceSpaceClipBounds(); if (rect.IsZeroArea()) { return gfxRect(0, 0, 0, 0); } if (aSpace == eUserSpace) { Matrix mat = mTransform; mat.Invert(); rect = mat.TransformBounds(rect); } return ThebesRect(rect); } bool gfxContext::ExportClip(ClipExporter& aExporter) { for (unsigned int i = 0; i < mStateStack.Length(); i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { AzureState::PushedClip& clip = mStateStack[i].pushedClips[c]; gfx::Matrix transform = clip.transform; transform.PostTranslate(-GetDeviceOffset()); aExporter.BeginClip(transform); if (clip.path) { clip.path->StreamToSink(&aExporter); } else { aExporter.MoveTo(clip.rect.TopLeft()); aExporter.LineTo(clip.rect.TopRight()); aExporter.LineTo(clip.rect.BottomRight()); aExporter.LineTo(clip.rect.BottomLeft()); aExporter.Close(); } aExporter.EndClip(); } } return true; } bool gfxContext::ClipContainsRect(const gfxRect& aRect) { // Since we always return false when the clip list contains a // non-rectangular clip or a non-rectilinear transform, our 'total' clip // is always a rectangle if we hit the end of this function. Rect clipBounds(0, 0, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); for (unsigned int i = 0; i < mStateStack.Length(); i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { AzureState::PushedClip& clip = mStateStack[i].pushedClips[c]; if (clip.path || !clip.transform.IsRectilinear()) { // Cairo behavior is we return false if the clip contains a non- // rectangle. return false; } else { Rect clipRect = mTransform.TransformBounds(clip.rect); clipBounds.IntersectRect(clipBounds, clipRect); } } } return clipBounds.Contains(ToRect(aRect)); } // rendering sources void gfxContext::SetColor(const sRGBColor& aColor) { CURRENTSTATE_CHANGED() CurrentState().pattern = nullptr; CurrentState().color = ToDeviceColor(aColor); } void gfxContext::SetDeviceColor(const DeviceColor& aColor) { CURRENTSTATE_CHANGED() CurrentState().pattern = nullptr; CurrentState().color = aColor; } bool gfxContext::GetDeviceColor(DeviceColor& aColorOut) { if (CurrentState().pattern) { return CurrentState().pattern->GetSolidColor(aColorOut); } aColorOut = CurrentState().color; return true; } void gfxContext::SetPattern(gfxPattern* pattern) { CURRENTSTATE_CHANGED() CurrentState().patternTransformChanged = false; CurrentState().pattern = pattern; } already_AddRefed gfxContext::GetPattern() { RefPtr pat; AzureState& state = CurrentState(); if (state.pattern) { pat = state.pattern; } else { pat = new gfxPattern(state.color); } return pat.forget(); } // masking void gfxContext::Mask(SourceSurface* aSurface, Float aAlpha, const Matrix& aTransform) { Matrix old = mTransform; Matrix mat = aTransform * mTransform; ChangeTransform(mat); mDT->MaskSurface( PatternFromState(this), aSurface, Point(), DrawOptions(aAlpha, CurrentState().op, CurrentState().aaMode)); ChangeTransform(old); } void gfxContext::Mask(SourceSurface* surface, float alpha, const Point& offset) { // We clip here to bind to the mask surface bounds, see above. mDT->MaskSurface( PatternFromState(this), surface, offset, DrawOptions(alpha, CurrentState().op, CurrentState().aaMode)); } void gfxContext::Paint(Float alpha) { AUTO_PROFILER_LABEL("gfxContext::Paint", GRAPHICS); Matrix mat = mDT->GetTransform(); mat.Invert(); Rect paintRect = mat.TransformBounds(Rect(Point(0, 0), Size(mDT->GetSize()))); mDT->FillRect(paintRect, PatternFromState(this), DrawOptions(alpha, GetOp())); } void gfxContext::PushGroupForBlendBack(gfxContentType content, Float aOpacity, SourceSurface* aMask, const Matrix& aMaskTransform) { mDT->PushLayer(content == gfxContentType::COLOR, aOpacity, aMask, aMaskTransform); } void gfxContext::PopGroupAndBlend() { mDT->PopLayer(); } #ifdef MOZ_DUMP_PAINTING void gfxContext::WriteAsPNG(const char* aFile) { gfxUtils::WriteAsPNG(mDT, aFile); } void gfxContext::DumpAsDataURI() { gfxUtils::DumpAsDataURI(mDT); } void gfxContext::CopyAsDataURI() { gfxUtils::CopyAsDataURI(mDT); } #endif void gfxContext::EnsurePath() { if (mPathBuilder) { mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; } if (mPath) { if (mTransformChanged) { Matrix mat = mTransform; mat.Invert(); mat = mPathTransform * mat; mPathBuilder = mPath->TransformedCopyToBuilder(mat); mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; mTransformChanged = false; } return; } EnsurePathBuilder(); mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; } void gfxContext::EnsurePathBuilder() { if (mPathBuilder && !mTransformChanged) { return; } if (mPath) { if (!mTransformChanged) { mPathBuilder = mPath->CopyToBuilder(); mPath = nullptr; } else { Matrix invTransform = mTransform; invTransform.Invert(); Matrix toNewUS = mPathTransform * invTransform; mPathBuilder = mPath->TransformedCopyToBuilder(toNewUS); } return; } DebugOnly oldPath = mPathBuilder.get(); if (!mPathBuilder) { mPathBuilder = mDT->CreatePathBuilder(FillRule::FILL_WINDING); if (mPathIsRect) { mPathBuilder->MoveTo(mRect.TopLeft()); mPathBuilder->LineTo(mRect.TopRight()); mPathBuilder->LineTo(mRect.BottomRight()); mPathBuilder->LineTo(mRect.BottomLeft()); mPathBuilder->Close(); } } if (mTransformChanged) { // This could be an else if since this should never happen when // mPathBuilder is nullptr and mPath is nullptr. But this way we can // assert if all the state is as expected. MOZ_ASSERT(oldPath); MOZ_ASSERT(!mPathIsRect); Matrix invTransform = mTransform; invTransform.Invert(); Matrix toNewUS = mPathTransform * invTransform; RefPtr path = mPathBuilder->Finish(); if (!path) { gfxCriticalError() << "gfxContext::EnsurePathBuilder failed in PathBuilder::Finish"; } mPathBuilder = path->TransformedCopyToBuilder(toNewUS); } mPathIsRect = false; } CompositionOp gfxContext::GetOp() { if (CurrentState().op != CompositionOp::OP_SOURCE) { return CurrentState().op; } AzureState& state = CurrentState(); if (state.pattern) { if (state.pattern->IsOpaque()) { return CompositionOp::OP_OVER; } else { return CompositionOp::OP_SOURCE; } } else { if (state.color.a > 0.999) { return CompositionOp::OP_OVER; } else { return CompositionOp::OP_SOURCE; } } } /* SVG font code can change the transform after having set the pattern on the * context. When the pattern is set it is in user space, if the transform is * changed after doing so the pattern needs to be converted back into userspace. * We just store the old pattern transform here so that we only do the work * needed here if the pattern is actually used. * We need to avoid doing this when this ChangeTransform comes from a restore, * since the current pattern and the current transform are both part of the * state we know the new CurrentState()'s values are valid. But if we assume * a change they might become invalid since patternTransformChanged is part of * the state and might be false for the restored AzureState. */ void gfxContext::ChangeTransform(const Matrix& aNewMatrix, bool aUpdatePatternTransform) { AzureState& state = CurrentState(); if (aUpdatePatternTransform && (state.pattern) && !state.patternTransformChanged) { state.patternTransform = GetDTTransform(); state.patternTransformChanged = true; } if (mPathIsRect) { Matrix invMatrix = aNewMatrix; invMatrix.Invert(); Matrix toNewUS = mTransform * invMatrix; if (toNewUS.IsRectilinear()) { mRect = toNewUS.TransformBounds(mRect); mRect.NudgeToIntegers(); } else { mPathBuilder = mDT->CreatePathBuilder(FillRule::FILL_WINDING); mPathBuilder->MoveTo(toNewUS.TransformPoint(mRect.TopLeft())); mPathBuilder->LineTo(toNewUS.TransformPoint(mRect.TopRight())); mPathBuilder->LineTo(toNewUS.TransformPoint(mRect.BottomRight())); mPathBuilder->LineTo(toNewUS.TransformPoint(mRect.BottomLeft())); mPathBuilder->Close(); mPathIsRect = false; } // No need to consider the transform changed now! mTransformChanged = false; } else if ((mPath || mPathBuilder) && !mTransformChanged) { mTransformChanged = true; mPathTransform = mTransform; } mTransform = aNewMatrix; mDT->SetTransform(GetDTTransform()); } Rect gfxContext::GetAzureDeviceSpaceClipBounds() const { Rect rect(CurrentState().deviceOffset.x + Float(mDT->GetRect().x), CurrentState().deviceOffset.y + Float(mDT->GetRect().y), Float(mDT->GetSize().width), Float(mDT->GetSize().height)); for (unsigned int i = 0; i < mStateStack.Length(); i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { const AzureState::PushedClip& clip = mStateStack[i].pushedClips[c]; if (clip.path) { Rect bounds = clip.path->GetBounds(clip.transform); rect.IntersectRect(rect, bounds); } else { rect.IntersectRect(rect, clip.transform.TransformBounds(clip.rect)); } } } return rect; } Point gfxContext::GetDeviceOffset() const { return CurrentState().deviceOffset; } void gfxContext::SetDeviceOffset(const Point& aOffset) { CurrentState().deviceOffset = aOffset; } Matrix gfxContext::GetDTTransform() const { Matrix mat = mTransform; mat._31 -= CurrentState().deviceOffset.x; mat._32 -= CurrentState().deviceOffset.y; return mat; }