/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef GFX_FONT_UTILS_H #define GFX_FONT_UTILS_H #include #include #include #include #include "gfxPlatform.h" #include "harfbuzz/hb.h" #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/Casting.h" #include "mozilla/EndianUtils.h" #include "mozilla/ServoStyleConstsInlines.h" #include "mozilla/MemoryReporting.h" #include "mozilla/UniquePtr.h" #include "nsStringFwd.h" #include "nsTArray.h" #include "nscore.h" #include "zlib.h" class PickleIterator; class gfxFontEntry; struct gfxFontVariationAxis; struct gfxFontVariationInstance; namespace mozilla { class Encoding; class ServoStyleSet; } // namespace mozilla /* Bug 341128 - w32api defines min/max which causes problems with */ #ifdef __MINGW32__ # undef min # undef max #endif #undef ERROR /* defined by Windows.h, conflicts with some generated bindings \ code when this gets indirectly included via shared font list \ */ typedef struct hb_blob_t hb_blob_t; class SharedBitSet; namespace IPC { template struct ParamTraits; } class gfxSparseBitSet { private: friend class SharedBitSet; enum { BLOCK_SIZE = 32 }; // ==> 256 codepoints per block enum { BLOCK_SIZE_BITS = BLOCK_SIZE * 8 }; enum { NO_BLOCK = 0xffff }; // index value indicating missing (empty) block struct Block { explicit Block(unsigned char memsetValue = 0) { memset(mBits, memsetValue, BLOCK_SIZE); } uint8_t mBits[BLOCK_SIZE]; }; friend struct IPC::ParamTraits; friend struct IPC::ParamTraits; public: gfxSparseBitSet() = default; bool Equals(const gfxSparseBitSet* aOther) const { if (mBlockIndex.Length() != aOther->mBlockIndex.Length()) { return false; } size_t n = mBlockIndex.Length(); for (size_t i = 0; i < n; ++i) { uint32_t b1 = mBlockIndex[i]; uint32_t b2 = aOther->mBlockIndex[i]; if ((b1 == NO_BLOCK) != (b2 == NO_BLOCK)) { return false; } if (b1 == NO_BLOCK) { continue; } if (memcmp(&mBlocks[b1].mBits, &aOther->mBlocks[b2].mBits, BLOCK_SIZE) != 0) { return false; } } return true; } bool test(uint32_t aIndex) const { uint32_t i = aIndex / BLOCK_SIZE_BITS; if (i >= mBlockIndex.Length() || mBlockIndex[i] == NO_BLOCK) { return false; } const Block& block = mBlocks[mBlockIndex[i]]; return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) & (1 << (aIndex & 0x7))) != 0; } // dump out contents of bitmap void Dump(const char* aPrefix, eGfxLog aWhichLog) const; bool TestRange(uint32_t aStart, uint32_t aEnd) { // start point is beyond the end of the block array? return false // immediately uint32_t startBlock = aStart / BLOCK_SIZE_BITS; uint32_t blockLen = mBlockIndex.Length(); if (startBlock >= blockLen) { return false; } // check for blocks in range, if none, return false bool hasBlocksInRange = false; uint32_t endBlock = aEnd / BLOCK_SIZE_BITS; for (uint32_t bi = startBlock; bi <= endBlock; bi++) { if (bi < blockLen && mBlockIndex[bi] != NO_BLOCK) { hasBlocksInRange = true; break; } } if (!hasBlocksInRange) { return false; } // first block, check bits if (mBlockIndex[startBlock] != NO_BLOCK) { const Block& block = mBlocks[mBlockIndex[startBlock]]; uint32_t start = aStart; uint32_t end = std::min(aEnd, ((startBlock + 1) * BLOCK_SIZE_BITS) - 1); for (uint32_t i = start; i <= end; i++) { if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) { return true; } } } if (endBlock == startBlock) { return false; } // [2..n-1] blocks check bytes for (uint32_t i = startBlock + 1; i < endBlock; i++) { if (i >= blockLen || mBlockIndex[i] == NO_BLOCK) { continue; } const Block& block = mBlocks[mBlockIndex[i]]; for (uint32_t index = 0; index < BLOCK_SIZE; index++) { if (block.mBits[index]) { return true; } } } // last block, check bits if (endBlock < blockLen && mBlockIndex[endBlock] != NO_BLOCK) { const Block& block = mBlocks[mBlockIndex[endBlock]]; uint32_t start = endBlock * BLOCK_SIZE_BITS; uint32_t end = aEnd; for (uint32_t i = start; i <= end; i++) { if ((block.mBits[(i >> 3) & (BLOCK_SIZE - 1)]) & (1 << (i & 0x7))) { return true; } } } return false; } void set(uint32_t aIndex) { uint32_t i = aIndex / BLOCK_SIZE_BITS; while (i >= mBlockIndex.Length()) { mBlockIndex.AppendElement(NO_BLOCK); } if (mBlockIndex[i] == NO_BLOCK) { mBlocks.AppendElement(); MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!"); mBlockIndex[i] = static_cast(mBlocks.Length() - 1); } Block& block = mBlocks[mBlockIndex[i]]; block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] |= 1 << (aIndex & 0x7); } void set(uint32_t aIndex, bool aValue) { if (aValue) { set(aIndex); } else { clear(aIndex); } } void SetRange(uint32_t aStart, uint32_t aEnd) { const uint32_t startIndex = aStart / BLOCK_SIZE_BITS; const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS; while (endIndex >= mBlockIndex.Length()) { mBlockIndex.AppendElement(NO_BLOCK); } for (uint32_t i = startIndex; i <= endIndex; ++i) { const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS; const uint32_t blockLastBit = blockFirstBit + BLOCK_SIZE_BITS - 1; if (mBlockIndex[i] == NO_BLOCK) { bool fullBlock = (aStart <= blockFirstBit && aEnd >= blockLastBit); mBlocks.AppendElement(Block(fullBlock ? 0xFF : 0)); MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!"); mBlockIndex[i] = static_cast(mBlocks.Length() - 1); if (fullBlock) { continue; } } Block& block = mBlocks[mBlockIndex[i]]; const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0; const uint32_t end = std::min(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1); for (uint32_t bit = start; bit <= end; ++bit) { block.mBits[bit >> 3] |= 1 << (bit & 0x7); } } } void clear(uint32_t aIndex) { uint32_t i = aIndex / BLOCK_SIZE_BITS; if (i >= mBlockIndex.Length()) { return; } if (mBlockIndex[i] == NO_BLOCK) { mBlocks.AppendElement(); MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!"); mBlockIndex[i] = static_cast(mBlocks.Length() - 1); } Block& block = mBlocks[mBlockIndex[i]]; block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)] &= ~(1 << (aIndex & 0x7)); } void ClearRange(uint32_t aStart, uint32_t aEnd) { const uint32_t startIndex = aStart / BLOCK_SIZE_BITS; const uint32_t endIndex = aEnd / BLOCK_SIZE_BITS; for (uint32_t i = startIndex; i <= endIndex; ++i) { if (i >= mBlockIndex.Length()) { return; } if (mBlockIndex[i] == NO_BLOCK) { continue; } const uint32_t blockFirstBit = i * BLOCK_SIZE_BITS; Block& block = mBlocks[mBlockIndex[i]]; const uint32_t start = aStart > blockFirstBit ? aStart - blockFirstBit : 0; const uint32_t end = std::min(aEnd - blockFirstBit, BLOCK_SIZE_BITS - 1); for (uint32_t bit = start; bit <= end; ++bit) { block.mBits[bit >> 3] &= ~(1 << (bit & 0x7)); } } } size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { return mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf) + mBlockIndex.ShallowSizeOfExcludingThis(aMallocSizeOf); } size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } // clear out all blocks in the array void reset() { mBlocks.Clear(); mBlockIndex.Clear(); } // set this bitset to the union of its current contents and another void Union(const gfxSparseBitSet& aBitset) { // ensure mBlocks is large enough uint32_t blockCount = aBitset.mBlockIndex.Length(); while (blockCount > mBlockIndex.Length()) { mBlockIndex.AppendElement(NO_BLOCK); } // for each block that may be present in aBitset... for (uint32_t i = 0; i < blockCount; ++i) { // if it is missing (implicitly empty), just skip if (aBitset.mBlockIndex[i] == NO_BLOCK) { continue; } // if the block is missing in this set, just copy the other if (mBlockIndex[i] == NO_BLOCK) { mBlocks.AppendElement(aBitset.mBlocks[aBitset.mBlockIndex[i]]); MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow!"); mBlockIndex[i] = static_cast(mBlocks.Length() - 1); continue; } // else set existing block to the union of both uint32_t* dst = reinterpret_cast(&mBlocks[mBlockIndex[i]].mBits); const uint32_t* src = reinterpret_cast( &aBitset.mBlocks[aBitset.mBlockIndex[i]].mBits); for (uint32_t j = 0; j < BLOCK_SIZE / 4; ++j) { dst[j] |= src[j]; } } } inline void Union(const SharedBitSet& aBitset); void Compact() { // TODO: Discard any empty blocks, and adjust index accordingly. // (May not be worth doing, though, because we so rarely clear bits // that were previously set.) mBlocks.Compact(); mBlockIndex.Compact(); } uint32_t GetChecksum() const { uint32_t check = adler32(0, reinterpret_cast(mBlockIndex.Elements()), mBlockIndex.Length() * sizeof(uint16_t)); check = adler32(check, reinterpret_cast(mBlocks.Elements()), mBlocks.Length() * sizeof(Block)); return check; } private: CopyableTArray mBlockIndex; CopyableTArray mBlocks; }; /** * SharedBitSet is a version of gfxSparseBitSet that is intended to be used * in a shared-memory block, and can be used regardless of the address at which * the block has been mapped. The SharedBitSet cannot be modified once it has * been created. * * Max size of a SharedBitSet = 4352 * 32 ; blocks * + 4352 * 2 ; index * + 4 ; counts * = 147972 bytes * * Therefore, SharedFontList must be able to allocate a contiguous block of at * least this size. */ class SharedBitSet { private: // We use the same Block type as gfxSparseBitSet. typedef gfxSparseBitSet::Block Block; enum { BLOCK_SIZE = gfxSparseBitSet::BLOCK_SIZE }; enum { BLOCK_SIZE_BITS = gfxSparseBitSet::BLOCK_SIZE_BITS }; enum { NO_BLOCK = gfxSparseBitSet::NO_BLOCK }; public: static const size_t kMaxSize = 147972; // see above // Returns the size needed for a SharedBitSet version of the given // gfxSparseBitSet. static size_t RequiredSize(const gfxSparseBitSet& aBitset) { size_t total = sizeof(SharedBitSet); size_t len = aBitset.mBlockIndex.Length(); total += len * sizeof(uint16_t); // add size for index array // add size for blocks, excluding any missing ones for (uint16_t i = 0; i < len; i++) { if (aBitset.mBlockIndex[i] != NO_BLOCK) { total += sizeof(Block); } } MOZ_ASSERT(total <= kMaxSize); return total; } // Create a SharedBitSet in the provided buffer, initializing it with the // contents of aBitset. static SharedBitSet* Create(void* aBuffer, size_t aBufSize, const gfxSparseBitSet& aBitset) { MOZ_ASSERT(aBufSize >= RequiredSize(aBitset)); return new (aBuffer) SharedBitSet(aBitset); } bool test(uint32_t aIndex) const { const auto i = static_cast(aIndex / BLOCK_SIZE_BITS); if (i >= mBlockIndexCount) { return false; } const uint16_t* const blockIndex = reinterpret_cast(this + 1); if (blockIndex[i] == NO_BLOCK) { return false; } const Block* const blocks = reinterpret_cast(blockIndex + mBlockIndexCount); const Block& block = blocks[blockIndex[i]]; return ((block.mBits[(aIndex >> 3) & (BLOCK_SIZE - 1)]) & (1 << (aIndex & 0x7))) != 0; } bool Equals(const gfxSparseBitSet* aOther) const { if (mBlockIndexCount != aOther->mBlockIndex.Length()) { return false; } const uint16_t* const blockIndex = reinterpret_cast(this + 1); const Block* const blocks = reinterpret_cast(blockIndex + mBlockIndexCount); for (uint16_t i = 0; i < mBlockIndexCount; ++i) { uint16_t index = blockIndex[i]; uint16_t otherIndex = aOther->mBlockIndex[i]; if ((index == NO_BLOCK) != (otherIndex == NO_BLOCK)) { return false; } if (index == NO_BLOCK) { continue; } const Block& b1 = blocks[index]; const Block& b2 = aOther->mBlocks[otherIndex]; if (memcmp(&b1.mBits, &b2.mBits, BLOCK_SIZE) != 0) { return false; } } return true; } private: friend class gfxSparseBitSet; SharedBitSet() = delete; explicit SharedBitSet(const gfxSparseBitSet& aBitset) : mBlockIndexCount( mozilla::AssertedCast(aBitset.mBlockIndex.Length())), mBlockCount(0) { uint16_t* blockIndex = reinterpret_cast(this + 1); Block* blocks = reinterpret_cast(blockIndex + mBlockIndexCount); for (uint16_t i = 0; i < mBlockIndexCount; i++) { if (aBitset.mBlockIndex[i] != NO_BLOCK) { const Block& srcBlock = aBitset.mBlocks[aBitset.mBlockIndex[i]]; std::memcpy(&blocks[mBlockCount], &srcBlock, sizeof(Block)); blockIndex[i] = mBlockCount; mBlockCount++; } else { blockIndex[i] = NO_BLOCK; } } } // We never manage SharedBitSet as a "normal" object, it's a view onto a // buffer of shared memory. So we should never be trying to call this. ~SharedBitSet() = delete; uint16_t mBlockIndexCount; uint16_t mBlockCount; // After the two "header" fields above, we have a block index array // of uint16_t[mBlockIndexCount], followed by mBlockCount Block records. }; // Union the contents of a SharedBitSet with the target gfxSparseBitSet inline void gfxSparseBitSet::Union(const SharedBitSet& aBitset) { // ensure mBlockIndex is large enough while (mBlockIndex.Length() < aBitset.mBlockIndexCount) { mBlockIndex.AppendElement(NO_BLOCK); } auto blockIndex = reinterpret_cast(&aBitset + 1); auto blocks = reinterpret_cast(blockIndex + aBitset.mBlockIndexCount); for (uint32_t i = 0; i < aBitset.mBlockIndexCount; ++i) { // if it is missing (implicitly empty) in source, just skip if (blockIndex[i] == NO_BLOCK) { continue; } // if the block is missing, just copy from source bitset if (mBlockIndex[i] == NO_BLOCK) { mBlocks.AppendElement(blocks[blockIndex[i]]); MOZ_ASSERT(mBlocks.Length() < 0xffff, "block index overflow"); mBlockIndex[i] = uint16_t(mBlocks.Length() - 1); continue; } // Else set existing target block to the union of both. // Note that blocks in SharedBitSet may not be 4-byte aligned, so we don't // try to optimize by casting to uint32_t* here and processing 4 bytes at // once, as this could result in misaligned access. uint8_t* dst = reinterpret_cast(&mBlocks[mBlockIndex[i]].mBits); const uint8_t* src = reinterpret_cast(&blocks[blockIndex[i]].mBits); for (uint32_t j = 0; j < BLOCK_SIZE; ++j) { dst[j] |= src[j]; } } } #define TRUETYPE_TAG(a, b, c, d) ((a) << 24 | (b) << 16 | (c) << 8 | (d)) namespace mozilla { // Byte-swapping types and name table structure definitions moved from // gfxFontUtils.cpp to .h file so that gfxFont.cpp can also refer to them #pragma pack(1) struct AutoSwap_PRUint16 { #ifdef __SUNPRO_CC AutoSwap_PRUint16& operator=(const uint16_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint16(uint16_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint16_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint64_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint16_t value; }; struct AutoSwap_PRInt16 { #ifdef __SUNPRO_CC AutoSwap_PRInt16& operator=(const int16_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRInt16(int16_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator int16_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: int16_t value; }; struct AutoSwap_PRUint32 { #ifdef __SUNPRO_CC AutoSwap_PRUint32& operator=(const uint32_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint32(uint32_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint32_t value; }; struct AutoSwap_PRInt32 { #ifdef __SUNPRO_CC AutoSwap_PRInt32& operator=(const int32_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRInt32(int32_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator int32_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: int32_t value; }; struct AutoSwap_PRUint64 { #ifdef __SUNPRO_CC AutoSwap_PRUint64& operator=(const uint64_t aValue) { this->value = mozilla::NativeEndian::swapToBigEndian(aValue); return *this; } #else MOZ_IMPLICIT AutoSwap_PRUint64(uint64_t aValue) { value = mozilla::NativeEndian::swapToBigEndian(aValue); } #endif operator uint64_t() const { return mozilla::NativeEndian::swapFromBigEndian(value); } private: uint64_t value; }; struct AutoSwap_PRUint24 { operator uint32_t() const { return value[0] << 16 | value[1] << 8 | value[2]; } private: AutoSwap_PRUint24() = default; uint8_t value[3]; }; struct SFNTHeader { AutoSwap_PRUint32 sfntVersion; // Fixed, 0x00010000 for version 1.0. AutoSwap_PRUint16 numTables; // Number of tables. AutoSwap_PRUint16 searchRange; // (Maximum power of 2 <= numTables) x 16. AutoSwap_PRUint16 entrySelector; // Log2(maximum power of 2 <= numTables). AutoSwap_PRUint16 rangeShift; // NumTables x 16-searchRange. }; struct TTCHeader { AutoSwap_PRUint32 ttcTag; // 4 -byte identifier 'ttcf'. AutoSwap_PRUint16 majorVersion; AutoSwap_PRUint16 minorVersion; AutoSwap_PRUint32 numFonts; // followed by: // AutoSwap_PRUint32 offsetTable[numFonts] }; struct TableDirEntry { AutoSwap_PRUint32 tag; // 4 -byte identifier. AutoSwap_PRUint32 checkSum; // CheckSum for this table. AutoSwap_PRUint32 offset; // Offset from beginning of TrueType font file. AutoSwap_PRUint32 length; // Length of this table. }; struct HeadTable { enum { HEAD_VERSION = 0x00010000, HEAD_MAGIC_NUMBER = 0x5F0F3CF5, HEAD_CHECKSUM_CALC_CONST = 0xB1B0AFBA }; AutoSwap_PRUint32 tableVersionNumber; // Fixed, 0x00010000 for version 1.0. AutoSwap_PRUint32 fontRevision; // Set by font manufacturer. AutoSwap_PRUint32 checkSumAdjustment; // To compute: set it to 0, sum the entire font as // ULONG, then store 0xB1B0AFBA - sum. AutoSwap_PRUint32 magicNumber; // Set to 0x5F0F3CF5. AutoSwap_PRUint16 flags; AutoSwap_PRUint16 unitsPerEm; // Valid range is from 16 to 16384. This value should be a // power of 2 for fonts that have TrueType outlines. AutoSwap_PRUint64 created; // Number of seconds since 12:00 midnight, January // 1, 1904. 64-bit integer AutoSwap_PRUint64 modified; // Number of seconds since 12:00 midnight, // January 1, 1904. 64-bit integer AutoSwap_PRInt16 xMin; // For all glyph bounding boxes. AutoSwap_PRInt16 yMin; // For all glyph bounding boxes. AutoSwap_PRInt16 xMax; // For all glyph bounding boxes. AutoSwap_PRInt16 yMax; // For all glyph bounding boxes. AutoSwap_PRUint16 macStyle; // Bit 0: Bold (if set to 1); AutoSwap_PRUint16 lowestRecPPEM; // Smallest readable size in pixels. AutoSwap_PRInt16 fontDirectionHint; AutoSwap_PRInt16 indexToLocFormat; AutoSwap_PRInt16 glyphDataFormat; }; struct OS2Table { AutoSwap_PRUint16 version; // 0004 = OpenType 1.5 AutoSwap_PRInt16 xAvgCharWidth; AutoSwap_PRUint16 usWeightClass; AutoSwap_PRUint16 usWidthClass; AutoSwap_PRUint16 fsType; AutoSwap_PRInt16 ySubscriptXSize; AutoSwap_PRInt16 ySubscriptYSize; AutoSwap_PRInt16 ySubscriptXOffset; AutoSwap_PRInt16 ySubscriptYOffset; AutoSwap_PRInt16 ySuperscriptXSize; AutoSwap_PRInt16 ySuperscriptYSize; AutoSwap_PRInt16 ySuperscriptXOffset; AutoSwap_PRInt16 ySuperscriptYOffset; AutoSwap_PRInt16 yStrikeoutSize; AutoSwap_PRInt16 yStrikeoutPosition; AutoSwap_PRInt16 sFamilyClass; uint8_t panose[10]; AutoSwap_PRUint32 unicodeRange1; AutoSwap_PRUint32 unicodeRange2; AutoSwap_PRUint32 unicodeRange3; AutoSwap_PRUint32 unicodeRange4; uint8_t achVendID[4]; AutoSwap_PRUint16 fsSelection; AutoSwap_PRUint16 usFirstCharIndex; AutoSwap_PRUint16 usLastCharIndex; AutoSwap_PRInt16 sTypoAscender; AutoSwap_PRInt16 sTypoDescender; AutoSwap_PRInt16 sTypoLineGap; AutoSwap_PRUint16 usWinAscent; AutoSwap_PRUint16 usWinDescent; AutoSwap_PRUint32 codePageRange1; AutoSwap_PRUint32 codePageRange2; AutoSwap_PRInt16 sxHeight; AutoSwap_PRInt16 sCapHeight; AutoSwap_PRUint16 usDefaultChar; AutoSwap_PRUint16 usBreakChar; AutoSwap_PRUint16 usMaxContext; }; struct PostTable { AutoSwap_PRUint32 version; AutoSwap_PRInt32 italicAngle; AutoSwap_PRInt16 underlinePosition; AutoSwap_PRUint16 underlineThickness; AutoSwap_PRUint32 isFixedPitch; AutoSwap_PRUint32 minMemType42; AutoSwap_PRUint32 maxMemType42; AutoSwap_PRUint32 minMemType1; AutoSwap_PRUint32 maxMemType1; }; // This structure is used for both 'hhea' and 'vhea' tables. // The field names here are those of the horizontal version; the // vertical table just exchanges vertical and horizontal coordinates. struct MetricsHeader { AutoSwap_PRUint32 version; AutoSwap_PRInt16 ascender; AutoSwap_PRInt16 descender; AutoSwap_PRInt16 lineGap; AutoSwap_PRUint16 advanceWidthMax; AutoSwap_PRInt16 minLeftSideBearing; AutoSwap_PRInt16 minRightSideBearing; AutoSwap_PRInt16 xMaxExtent; AutoSwap_PRInt16 caretSlopeRise; AutoSwap_PRInt16 caretSlopeRun; AutoSwap_PRInt16 caretOffset; AutoSwap_PRInt16 reserved1; AutoSwap_PRInt16 reserved2; AutoSwap_PRInt16 reserved3; AutoSwap_PRInt16 reserved4; AutoSwap_PRInt16 metricDataFormat; AutoSwap_PRUint16 numOfLongMetrics; }; struct MaxpTableHeader { AutoSwap_PRUint32 version; // CFF: 0x00005000; TrueType: 0x00010000 AutoSwap_PRUint16 numGlyphs; // truetype version has additional fields that we don't currently use }; // old 'kern' table, supported on Windows // see http://www.microsoft.com/typography/otspec/kern.htm struct KernTableVersion0 { AutoSwap_PRUint16 version; // 0x0000 AutoSwap_PRUint16 nTables; }; struct KernTableSubtableHeaderVersion0 { AutoSwap_PRUint16 version; AutoSwap_PRUint16 length; AutoSwap_PRUint16 coverage; }; // newer Mac-only 'kern' table, ignored by Windows // see http://developer.apple.com/textfonts/TTRefMan/RM06/Chap6kern.html struct KernTableVersion1 { AutoSwap_PRUint32 version; // 0x00010000 AutoSwap_PRUint32 nTables; }; struct KernTableSubtableHeaderVersion1 { AutoSwap_PRUint32 length; AutoSwap_PRUint16 coverage; AutoSwap_PRUint16 tupleIndex; }; #pragma pack() // Return just the highest bit of the given value, i.e., the highest // power of 2 that is <= value, or zero if the input value is zero. inline uint32_t FindHighestBit(uint32_t value) { // propagate highest bit into all lower bits of the value value |= (value >> 1); value |= (value >> 2); value |= (value >> 4); value |= (value >> 8); value |= (value >> 16); // isolate the leftmost bit return (value & ~(value >> 1)); } } // namespace mozilla // used for overlaying name changes without touching original font data struct FontDataOverlay { // overlaySrc != 0 ==> use overlay uint32_t overlaySrc; // src offset from start of font data uint32_t overlaySrcLen; // src length uint32_t overlayDest; // dest offset from start of font data }; enum gfxUserFontType { GFX_USERFONT_UNKNOWN = 0, GFX_USERFONT_OPENTYPE = 1, GFX_USERFONT_SVG = 2, GFX_USERFONT_WOFF = 3, GFX_USERFONT_WOFF2 = 4 }; extern const uint8_t sCJKCompatSVSTable[]; class gfxFontUtils { public: // these are public because gfxFont.cpp also looks into the name table enum { NAME_ID_FAMILY = 1, NAME_ID_STYLE = 2, NAME_ID_UNIQUE = 3, NAME_ID_FULL = 4, NAME_ID_VERSION = 5, NAME_ID_POSTSCRIPT = 6, NAME_ID_PREFERRED_FAMILY = 16, NAME_ID_PREFERRED_STYLE = 17, PLATFORM_ALL = -1, PLATFORM_ID_UNICODE = 0, // Mac OS uses this typically PLATFORM_ID_MAC = 1, PLATFORM_ID_ISO = 2, PLATFORM_ID_MICROSOFT = 3, ENCODING_ID_MAC_ROMAN = 0, // traditional Mac OS script manager encodings ENCODING_ID_MAC_JAPANESE = 1, // (there are others defined, but some were never ENCODING_ID_MAC_TRAD_CHINESE = 2, // implemented by Apple, and I have never seen them ENCODING_ID_MAC_KOREAN = 3, // used in font names) ENCODING_ID_MAC_ARABIC = 4, ENCODING_ID_MAC_HEBREW = 5, ENCODING_ID_MAC_GREEK = 6, ENCODING_ID_MAC_CYRILLIC = 7, ENCODING_ID_MAC_DEVANAGARI = 9, ENCODING_ID_MAC_GURMUKHI = 10, ENCODING_ID_MAC_GUJARATI = 11, ENCODING_ID_MAC_SIMP_CHINESE = 25, ENCODING_ID_MICROSOFT_SYMBOL = 0, // Microsoft platform encoding IDs ENCODING_ID_MICROSOFT_UNICODEBMP = 1, ENCODING_ID_MICROSOFT_SHIFTJIS = 2, ENCODING_ID_MICROSOFT_PRC = 3, ENCODING_ID_MICROSOFT_BIG5 = 4, ENCODING_ID_MICROSOFT_WANSUNG = 5, ENCODING_ID_MICROSOFT_JOHAB = 6, ENCODING_ID_MICROSOFT_UNICODEFULL = 10, LANG_ALL = -1, LANG_ID_MAC_ENGLISH = 0, // many others are defined, but most don't affect LANG_ID_MAC_HEBREW = 10, // the charset; should check all the central/eastern LANG_ID_MAC_JAPANESE = 11, // european codes, though LANG_ID_MAC_ARABIC = 12, LANG_ID_MAC_ICELANDIC = 15, LANG_ID_MAC_TURKISH = 17, LANG_ID_MAC_TRAD_CHINESE = 19, LANG_ID_MAC_URDU = 20, LANG_ID_MAC_KOREAN = 23, LANG_ID_MAC_POLISH = 25, LANG_ID_MAC_FARSI = 31, LANG_ID_MAC_SIMP_CHINESE = 33, LANG_ID_MAC_ROMANIAN = 37, LANG_ID_MAC_CZECH = 38, LANG_ID_MAC_SLOVAK = 39, LANG_ID_MICROSOFT_EN_US = 0x0409, // with Microsoft platformID, EN US lang code CMAP_MAX_CODEPOINT = 0x10ffff // maximum possible Unicode codepoint // contained in a cmap }; // name table has a header, followed by name records, followed by string data struct NameHeader { mozilla::AutoSwap_PRUint16 format; // Format selector (=0). mozilla::AutoSwap_PRUint16 count; // Number of name records. mozilla::AutoSwap_PRUint16 stringOffset; // Offset to start of string // storage (from start of table) }; struct NameRecord { mozilla::AutoSwap_PRUint16 platformID; // Platform ID mozilla::AutoSwap_PRUint16 encodingID; // Platform-specific encoding ID mozilla::AutoSwap_PRUint16 languageID; // Language ID mozilla::AutoSwap_PRUint16 nameID; // Name ID. mozilla::AutoSwap_PRUint16 length; // String length (in bytes). mozilla::AutoSwap_PRUint16 offset; // String offset from start of storage // (in bytes). }; // Helper to ensure we free a font table when we return. class AutoHBBlob { public: explicit AutoHBBlob(hb_blob_t* aBlob) : mBlob(aBlob) {} ~AutoHBBlob() { hb_blob_destroy(mBlob); } operator hb_blob_t*() { return mBlob; } private: hb_blob_t* const mBlob; }; // for reading big-endian font data on either big or little-endian platforms static inline uint16_t ReadShortAt(const uint8_t* aBuf, uint32_t aIndex) { return static_cast(aBuf[aIndex] << 8) | aBuf[aIndex + 1]; } static inline uint16_t ReadShortAt16(const uint16_t* aBuf, uint32_t aIndex) { const uint8_t* buf = reinterpret_cast(aBuf); uint32_t index = aIndex << 1; return static_cast(buf[index] << 8) | buf[index + 1]; } static inline uint32_t ReadUint24At(const uint8_t* aBuf, uint32_t aIndex) { return ((aBuf[aIndex] << 16) | (aBuf[aIndex + 1] << 8) | (aBuf[aIndex + 2])); } static inline uint32_t ReadLongAt(const uint8_t* aBuf, uint32_t aIndex) { return ((aBuf[aIndex] << 24) | (aBuf[aIndex + 1] << 16) | (aBuf[aIndex + 2] << 8) | (aBuf[aIndex + 3])); } static nsresult ReadCMAPTableFormat10(const uint8_t* aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap); static nsresult ReadCMAPTableFormat12or13(const uint8_t* aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap); static nsresult ReadCMAPTableFormat4(const uint8_t* aBuf, uint32_t aLength, gfxSparseBitSet& aCharacterMap, bool aIsSymbolFont); static nsresult ReadCMAPTableFormat14(const uint8_t* aBuf, uint32_t aLength, const uint8_t*& aTable); static uint32_t FindPreferredSubtable(const uint8_t* aBuf, uint32_t aBufLength, uint32_t* aTableOffset, uint32_t* aUVSTableOffset, bool* aIsSymbolFont); static nsresult ReadCMAP(const uint8_t* aBuf, uint32_t aBufLength, gfxSparseBitSet& aCharacterMap, uint32_t& aUVSOffset); static uint32_t MapCharToGlyphFormat4(const uint8_t* aBuf, uint32_t aLength, char16_t aCh); static uint32_t MapCharToGlyphFormat10(const uint8_t* aBuf, uint32_t aCh); static uint32_t MapCharToGlyphFormat12or13(const uint8_t* aBuf, uint32_t aCh); static uint16_t MapUVSToGlyphFormat14(const uint8_t* aBuf, uint32_t aCh, uint32_t aVS); // sCJKCompatSVSTable is a 'cmap' format 14 subtable that maps // pairs to the corresponding Unicode // compatibility ideograph codepoints. static MOZ_ALWAYS_INLINE uint32_t GetUVSFallback(uint32_t aCh, uint32_t aVS) { aCh = MapUVSToGlyphFormat14(sCJKCompatSVSTable, aCh, aVS); return aCh >= 0xFB00 ? aCh + (0x2F800 - 0xFB00) : aCh; } static uint32_t MapCharToGlyph(const uint8_t* aCmapBuf, uint32_t aBufLength, uint32_t aUnicode, uint32_t aVarSelector = 0); // For legacy MS Symbol fonts, we try mapping 8-bit character codes to the // Private Use range at U+F0xx used by the cmaps in these fonts. static MOZ_ALWAYS_INLINE uint32_t MapLegacySymbolFontCharToPUA(uint32_t aCh) { return aCh >= 0x20 && aCh <= 0xff ? 0xf000 + aCh : 0; } #ifdef XP_WIN // determine whether a font (which has already been sanitized, so is known // to be a valid sfnt) is CFF format rather than TrueType static bool IsCffFont(const uint8_t* aFontData); #endif // determine the format of font data static gfxUserFontType DetermineFontDataType(const uint8_t* aFontData, uint32_t aFontDataLength); // Read the fullname from the sfnt data (used to save the original name // prior to renaming the font for installation). // This is called with sfnt data that has already been validated, // so it should always succeed in finding the name table. static nsresult GetFullNameFromSFNT(const uint8_t* aFontData, uint32_t aLength, nsACString& aFullName); // helper to get fullname from name table, constructing from family+style // if no explicit fullname is present static nsresult GetFullNameFromTable(hb_blob_t* aNameTable, nsACString& aFullName); // helper to get family name from name table static nsresult GetFamilyNameFromTable(hb_blob_t* aNameTable, nsACString& aFamilyName); // Find the table directory entry for a given table tag, in a (validated) // buffer of 'sfnt' data. Returns null if the tag is not present. static mozilla::TableDirEntry* FindTableDirEntry(const void* aFontData, uint32_t aTableTag); // Return a blob that wraps a table found within a buffer of font data. // The blob does NOT own its data; caller guarantees that the buffer // will remain valid at least as long as the blob. // Returns null if the specified table is not found. // This method assumes aFontData is valid 'sfnt' data; before using this, // caller is responsible to do any sanitization/validation necessary. static hb_blob_t* GetTableFromFontData(const void* aFontData, uint32_t aTableTag); // create a new name table and build a new font with that name table // appended on the end, returns true on success static nsresult RenameFont(const nsAString& aName, const uint8_t* aFontData, uint32_t aFontDataLength, FallibleTArray* aNewFont); // read all names matching aNameID, returning in aNames array static nsresult ReadNames(const char* aNameData, uint32_t aDataLen, uint32_t aNameID, int32_t aPlatformID, nsTArray& aNames); // reads English or first name matching aNameID, returning in aName // platform based on OS static nsresult ReadCanonicalName(hb_blob_t* aNameTable, uint32_t aNameID, nsCString& aName); static nsresult ReadCanonicalName(const char* aNameData, uint32_t aDataLen, uint32_t aNameID, nsCString& aName); // convert a name from the raw name table data into an nsString, // provided we know how; return true if successful, or false // if we can't handle the encoding static bool DecodeFontName(const char* aBuf, int32_t aLength, uint32_t aPlatformCode, uint32_t aScriptCode, uint32_t aLangCode, nsACString& dest); static inline bool IsJoinCauser(uint32_t ch) { return (ch == 0x200D); } // We treat Combining Grapheme Joiner (U+034F) together with the join // controls (ZWJ, ZWNJ) here, because (like them) it is an invisible // char that will be handled by the shaper even if not explicitly // supported by the font. (See bug 1408366.) static inline bool IsJoinControl(uint32_t ch) { return (ch == 0x200C || ch == 0x200D || ch == 0x034f); } enum { kUnicodeVS1 = 0xFE00, kUnicodeVS16 = 0xFE0F, kUnicodeVS17 = 0xE0100, kUnicodeVS256 = 0xE01EF }; static inline bool IsVarSelector(uint32_t ch) { return (ch >= kUnicodeVS1 && ch <= kUnicodeVS16) || (ch >= kUnicodeVS17 && ch <= kUnicodeVS256); } enum { kUnicodeRegionalIndicatorA = 0x1F1E6, kUnicodeRegionalIndicatorZ = 0x1F1FF }; static inline bool IsRegionalIndicator(uint32_t aCh) { return aCh >= kUnicodeRegionalIndicatorA && aCh <= kUnicodeRegionalIndicatorZ; } static inline bool IsEmojiFlagAndTag(uint32_t aCh, uint32_t aNext) { constexpr uint32_t kBlackFlag = 0x1F3F4; constexpr uint32_t kTagLetterA = 0xE0061; constexpr uint32_t kTagLetterZ = 0xE007A; return aCh == kBlackFlag && aNext >= kTagLetterA && aNext <= kTagLetterZ; } static inline bool IsInvalid(uint32_t ch) { return (ch == 0xFFFD); } // Font code may want to know if there is the potential for bidi behavior // to be triggered by any of the characters in a text run; this can be // used to test that possibility. enum { kUnicodeBidiScriptsStart = 0x0590, kUnicodeBidiScriptsEnd = 0x08FF, kUnicodeBidiPresentationStart = 0xFB1D, kUnicodeBidiPresentationEnd = 0xFEFC, kUnicodeFirstHighSurrogateBlock = 0xD800, kUnicodeRLM = 0x200F, kUnicodeRLE = 0x202B, kUnicodeRLO = 0x202E }; static inline bool PotentialRTLChar(char16_t aCh) { if (aCh >= kUnicodeBidiScriptsStart && aCh <= kUnicodeBidiScriptsEnd) // bidi scripts Hebrew, Arabic, Syriac, Thaana, N'Ko are all encoded // together return true; if (aCh == kUnicodeRLM || aCh == kUnicodeRLE || aCh == kUnicodeRLO) // directional controls that trigger bidi layout return true; if (aCh >= kUnicodeBidiPresentationStart && aCh <= kUnicodeBidiPresentationEnd) // presentation forms of Arabic and Hebrew letters return true; if ((aCh & 0xFF00) == kUnicodeFirstHighSurrogateBlock) // surrogate that could be part of a bidi supplementary char // (Cypriot, Aramaic, Phoenecian, etc) return true; // otherwise we know this char cannot trigger bidi reordering return false; } // parse a simple list of font family names into // an array of strings static void ParseFontList(const nsACString& aFamilyList, nsTArray& aFontList); // for a given pref name, initialize a list of font names static void GetPrefsFontList(const char* aPrefName, nsTArray& aFontList, bool aLocalized = false); // generate a unique font name static nsresult MakeUniqueUserFontName(nsAString& aName); // Helper used to implement gfxFontEntry::GetVariation{Axes,Instances} for // platforms where the native font APIs don't provide the info we want // in a convenient form, or when native APIs are too expensive. // (Not used on platforms -- currently, freetype -- where the font APIs // expose variation instance details directly.) static void GetVariationData(gfxFontEntry* aFontEntry, nsTArray* aAxes, nsTArray* aInstances); // Helper method for reading localized family names from the name table // of a single face. static void ReadOtherFamilyNamesForFace( const nsACString& aFamilyName, const char* aNameData, uint32_t aDataLength, nsTArray& aOtherFamilyNames, bool useFullName); // Main, DOM worker or servo thread safe method to check if we are performing // Servo traversal. static bool IsInServoTraversal(); // Main, DOM worker or servo thread safe method to get the current // ServoTypeSet. Always returns nullptr for DOM worker threads. static mozilla::ServoStyleSet* CurrentServoStyleSet(); static void AssertSafeThreadOrServoFontMetricsLocked() #ifdef DEBUG ; #else { } #endif protected: friend struct MacCharsetMappingComparator; static nsresult ReadNames(const char* aNameData, uint32_t aDataLen, uint32_t aNameID, int32_t aLangID, int32_t aPlatformID, nsTArray& aNames); // convert opentype name-table platform/encoding/language values to an // Encoding object we can use to convert the name data to unicode static const mozilla::Encoding* GetCharsetForFontName(uint16_t aPlatform, uint16_t aScript, uint16_t aLanguage); struct MacFontNameCharsetMapping { uint16_t mScript; uint16_t mLanguage; const mozilla::Encoding* mEncoding; bool operator<(const MacFontNameCharsetMapping& rhs) const { return (mScript < rhs.mScript) || ((mScript == rhs.mScript) && (mLanguage < rhs.mLanguage)); } }; static const MacFontNameCharsetMapping gMacFontNameCharsets[]; static const mozilla::Encoding* gISOFontNameCharsets[]; static const mozilla::Encoding* gMSFontNameCharsets[]; }; // Factors used to weight the distances between the available and target font // properties during font-matching. These ensure that we respect the CSS-fonts // requirement that font-stretch >> font-style >> font-weight; and in addition, // a mismatch between the desired and actual glyph presentation (emoji vs text) // will take precedence over any of the style attributes. constexpr double kPresentationMismatch = 1.0e12; constexpr double kStretchFactor = 1.0e8; constexpr double kStyleFactor = 1.0e4; constexpr double kWeightFactor = 1.0e0; // style distance ==> [0,500] static inline double StyleDistance(const mozilla::SlantStyleRange& aRange, mozilla::FontSlantStyle aTargetStyle) { const mozilla::FontSlantStyle minStyle = aRange.Min(); if (aTargetStyle == minStyle) { return 0.0; // styles match exactly ==> 0 } // bias added to angle difference when searching in the non-preferred // direction from a target angle const double kReverse = 100.0; // bias added when we've crossed from positive to negative angles or // vice versa const double kNegate = 200.0; if (aTargetStyle.IsNormal()) { if (minStyle.IsOblique()) { // to distinguish oblique 0deg from normal, we add 1.0 to the angle const double minAngle = minStyle.ObliqueAngle(); if (minAngle >= 0.0) { return 1.0 + minAngle; } const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle >= 0.0) { // [min,max] range includes 0.0, so just return our minimum return 1.0; } // negative oblique is even worse than italic return kNegate - maxAngle; } // must be italic, which is worse than any non-negative oblique; // treat as a match in the wrong search direction MOZ_ASSERT(minStyle.IsItalic()); return kReverse; } const double kDefaultAngle = mozilla::FontSlantStyle::OBLIQUE.ObliqueAngle(); if (aTargetStyle.IsItalic()) { if (minStyle.IsOblique()) { const double minAngle = minStyle.ObliqueAngle(); if (minAngle >= kDefaultAngle) { return 1.0 + (minAngle - kDefaultAngle); } const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle >= kDefaultAngle) { return 1.0; } if (maxAngle > 0.0) { // wrong direction but still > 0, add bias of 100 return kReverse + (kDefaultAngle - maxAngle); } // negative oblique angle, add bias of 300 return kReverse + kNegate + (kDefaultAngle - maxAngle); } // normal is worse than oblique > 0, but better than oblique <= 0 MOZ_ASSERT(minStyle.IsNormal()); return kNegate; } // target is oblique : four different cases depending on // the value of the , which determines the preferred direction // of search const double targetAngle = aTargetStyle.ObliqueAngle(); if (targetAngle >= kDefaultAngle) { if (minStyle.IsOblique()) { const double minAngle = minStyle.ObliqueAngle(); if (minAngle >= targetAngle) { return minAngle - targetAngle; } const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle >= targetAngle) { return 0.0; } if (maxAngle > 0.0) { return kReverse + (targetAngle - maxAngle); } return kReverse + kNegate + (targetAngle - maxAngle); } if (minStyle.IsItalic()) { return kReverse + kNegate; } return kReverse + kNegate + 1.0; } if (targetAngle <= -kDefaultAngle) { if (minStyle.IsOblique()) { const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle <= targetAngle) { return targetAngle - maxAngle; } const double minAngle = minStyle.ObliqueAngle(); if (minAngle <= targetAngle) { return 0.0; } if (minAngle < 0.0) { return kReverse + (minAngle - targetAngle); } return kReverse + kNegate + (minAngle - targetAngle); } if (minStyle.IsItalic()) { return kReverse + kNegate; } return kReverse + kNegate + 1.0; } if (targetAngle >= 0.0) { if (minStyle.IsOblique()) { const double minAngle = minStyle.ObliqueAngle(); if (minAngle > targetAngle) { return kReverse + (minAngle - targetAngle); } const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle >= targetAngle) { return 0.0; } if (maxAngle > 0.0) { return targetAngle - maxAngle; } return kReverse + kNegate + (targetAngle - maxAngle); } if (minStyle.IsItalic()) { return kReverse + kNegate - 2.0; } return kReverse + kNegate - 1.0; } // last case: (targetAngle < 0.0 && targetAngle > kDefaultAngle) if (minStyle.IsOblique()) { const mozilla::FontSlantStyle maxStyle = aRange.Max(); const double maxAngle = maxStyle.ObliqueAngle(); if (maxAngle < targetAngle) { return kReverse + (targetAngle - maxAngle); } const double minAngle = minStyle.ObliqueAngle(); if (minAngle <= targetAngle) { return 0.0; } if (minAngle < 0.0) { return minAngle - targetAngle; } return kReverse + kNegate + (minAngle - targetAngle); } if (minStyle.IsItalic()) { return kReverse + kNegate - 2.0; } return kReverse + kNegate - 1.0; } // stretch distance ==> [0,2000] static inline double StretchDistance(const mozilla::StretchRange& aRange, mozilla::FontStretch aTargetStretch) { const double kReverseDistance = 1000.0; mozilla::FontStretch minStretch = aRange.Min(); mozilla::FontStretch maxStretch = aRange.Max(); // The stretch value is a (non-negative) percentage; currently we support // values in the range 0 .. 1000. (If the upper limit is ever increased, // the kReverseDistance value used here may need to be adjusted.) // If aTargetStretch is >100, we prefer larger values if available; // if <=100, we prefer smaller values if available. if (aTargetStretch < minStretch) { if (aTargetStretch > mozilla::FontStretch::NORMAL) { return minStretch.ToFloat() - aTargetStretch.ToFloat(); } return (minStretch.ToFloat() - aTargetStretch.ToFloat()) + kReverseDistance; } if (aTargetStretch > maxStretch) { if (aTargetStretch <= mozilla::FontStretch::NORMAL) { return aTargetStretch.ToFloat() - maxStretch.ToFloat(); } return (aTargetStretch.ToFloat() - maxStretch.ToFloat()) + kReverseDistance; } return 0.0; } // Calculate weight distance with values in the range (0..1000). In general, // heavier weights match towards even heavier weights while lighter weights // match towards even lighter weights. Target weight values in the range // [400..500] are special, since they will first match up to 500, then down // towards 0, then up again towards 999. // // Example: with target 600 and font weight 800, distance will be 200. With // target 300 and font weight 600, distance will be 900, since heavier // weights are farther away than lighter weights. If the target is 5 and the // font weight 995, the distance would be 1590 for the same reason. // weight distance ==> [0,1600] static inline double WeightDistance(const mozilla::WeightRange& aRange, mozilla::FontWeight aTargetWeight) { const double kNotWithinCentralRange = 100.0; const double kReverseDistance = 600.0; mozilla::FontWeight minWeight = aRange.Min(); mozilla::FontWeight maxWeight = aRange.Max(); if (aTargetWeight >= minWeight && aTargetWeight <= maxWeight) { // Target is within the face's range, so it's a perfect match return 0.0; } if (aTargetWeight < mozilla::FontWeight::NORMAL) { // Requested a lighter-than-400 weight if (maxWeight < aTargetWeight) { return aTargetWeight.ToFloat() - maxWeight.ToFloat(); } // Add reverse-search penalty for bolder faces return (minWeight.ToFloat() - aTargetWeight.ToFloat()) + kReverseDistance; } if (aTargetWeight > mozilla::FontWeight::FromInt(500)) { // Requested a bolder-than-500 weight if (minWeight > aTargetWeight) { return minWeight.ToFloat() - aTargetWeight.ToFloat(); } // Add reverse-search penalty for lighter faces return (aTargetWeight.ToFloat() - maxWeight.ToFloat()) + kReverseDistance; } // Special case for requested weight in the [400..500] range if (minWeight > aTargetWeight) { if (minWeight <= mozilla::FontWeight::FromInt(500)) { // Bolder weight up to 500 is first choice return minWeight.ToFloat() - aTargetWeight.ToFloat(); } // Other bolder weights get a reverse-search penalty return (minWeight.ToFloat() - aTargetWeight.ToFloat()) + kReverseDistance; } // Lighter weights are not as good as bolder ones within [400..500] return (aTargetWeight.ToFloat() - maxWeight.ToFloat()) + kNotWithinCentralRange; } #endif /* GFX_FONT_UTILS_H */