/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use api::BorderRadius; use api::units::*; use euclid::{Point2D, Rect, Box2D, Size2D, Vector2D, point2, point3}; use euclid::{default, Transform2D, Transform3D, Scale}; use malloc_size_of::{MallocShallowSizeOf, MallocSizeOf, MallocSizeOfOps}; use plane_split::{Clipper, Polygon}; use std::{i32, f32, fmt, ptr}; use std::borrow::Cow; use std::num::NonZeroUsize; use std::os::raw::c_void; use std::sync::Arc; use std::mem::replace; // Matches the definition of SK_ScalarNearlyZero in Skia. const NEARLY_ZERO: f32 = 1.0 / 4096.0; /// A typesafe helper that separates new value construction from /// vector growing, allowing LLVM to ideally construct the element in place. pub struct Allocation<'a, T: 'a> { vec: &'a mut Vec, index: usize, } impl<'a, T> Allocation<'a, T> { // writing is safe because alloc() ensured enough capacity // and `Allocation` holds a mutable borrow to prevent anyone else // from breaking this invariant. #[inline(always)] pub fn init(self, value: T) -> usize { unsafe { ptr::write(self.vec.as_mut_ptr().add(self.index), value); self.vec.set_len(self.index + 1); } self.index } } /// An entry into a vector, similar to `std::collections::hash_map::Entry`. pub enum VecEntry<'a, T: 'a> { Vacant(Allocation<'a, T>), Occupied(&'a mut T), } impl<'a, T> VecEntry<'a, T> { #[inline(always)] pub fn set(self, value: T) { match self { VecEntry::Vacant(alloc) => { alloc.init(value); } VecEntry::Occupied(slot) => { *slot = value; } } } } pub trait VecHelper { /// Growns the vector by a single entry, returning the allocation. fn alloc(&mut self) -> Allocation; /// Either returns an existing elemenet, or grows the vector by one. /// Doesn't expect indices to be higher than the current length. fn entry(&mut self, index: usize) -> VecEntry; /// Equivalent to `mem::replace(&mut vec, Vec::new())` fn take(&mut self) -> Self; /// Call clear and return self (useful for chaining with calls that move the vector). fn cleared(self) -> Self; /// Functionally equivalent to `mem::replace(&mut vec, Vec::new())` but tries /// to keep the allocation in the caller if it is empty or replace it with a /// pre-allocated vector. fn take_and_preallocate(&mut self) -> Self; } impl VecHelper for Vec { fn alloc(&mut self) -> Allocation { let index = self.len(); if self.capacity() == index { self.reserve(1); } Allocation { vec: self, index, } } fn entry(&mut self, index: usize) -> VecEntry { if index < self.len() { VecEntry::Occupied(unsafe { self.get_unchecked_mut(index) }) } else { assert_eq!(index, self.len()); VecEntry::Vacant(self.alloc()) } } fn take(&mut self) -> Self { replace(self, Vec::new()) } fn cleared(mut self) -> Self { self.clear(); self } fn take_and_preallocate(&mut self) -> Self { let len = self.len(); if len == 0 { self.clear(); return Vec::new(); } replace(self, Vec::with_capacity(len + 8)) } } // Represents an optimized transform where there is only // a scale and translation (which are guaranteed to maintain // an axis align rectangle under transformation). The // scaling is applied first, followed by the translation. // TODO(gw): We should try and incorporate F <-> T units here, // but it's a bit tricky to do that now with the // way the current spatial tree works. #[derive(Debug, Clone, Copy, MallocSizeOf, PartialEq)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct ScaleOffset { pub scale: default::Vector2D, pub offset: default::Vector2D, } impl ScaleOffset { pub fn new(sx: f32, sy: f32, tx: f32, ty: f32) -> Self { ScaleOffset { scale: Vector2D::new(sx, sy), offset: Vector2D::new(tx, ty), } } pub fn identity() -> Self { ScaleOffset { scale: Vector2D::new(1.0, 1.0), offset: Vector2D::zero(), } } // Construct a ScaleOffset from a transform. Returns // None if the matrix is not a pure scale / translation. pub fn from_transform( m: &Transform3D, ) -> Option { // To check that we have a pure scale / translation: // Every field must match an identity matrix, except: // - Any value present in tx,ty // - Any value present in sx,sy if m.m12.abs() > NEARLY_ZERO || m.m13.abs() > NEARLY_ZERO || m.m14.abs() > NEARLY_ZERO || m.m21.abs() > NEARLY_ZERO || m.m23.abs() > NEARLY_ZERO || m.m24.abs() > NEARLY_ZERO || m.m31.abs() > NEARLY_ZERO || m.m32.abs() > NEARLY_ZERO || (m.m33 - 1.0).abs() > NEARLY_ZERO || m.m34.abs() > NEARLY_ZERO || m.m43.abs() > NEARLY_ZERO || (m.m44 - 1.0).abs() > NEARLY_ZERO { return None; } Some(ScaleOffset { scale: Vector2D::new(m.m11, m.m22), offset: Vector2D::new(m.m41, m.m42), }) } pub fn from_offset(offset: default::Vector2D) -> Self { ScaleOffset { scale: Vector2D::new(1.0, 1.0), offset, } } pub fn from_scale(scale: default::Vector2D) -> Self { ScaleOffset { scale, offset: Vector2D::new(0.0, 0.0), } } pub fn inverse(&self) -> Self { ScaleOffset { scale: Vector2D::new( 1.0 / self.scale.x, 1.0 / self.scale.y, ), offset: Vector2D::new( -self.offset.x / self.scale.x, -self.offset.y / self.scale.y, ), } } pub fn offset(&self, offset: default::Vector2D) -> Self { self.accumulate( &ScaleOffset { scale: Vector2D::new(1.0, 1.0), offset, } ) } pub fn scale(&self, scale: f32) -> Self { self.accumulate( &ScaleOffset { scale: Vector2D::new(scale, scale), offset: Vector2D::zero(), } ) } /// Produce a ScaleOffset that includes both self and other. /// The 'self' ScaleOffset is applied after other. /// This is equivalent to `Transform3D::pre_transform`. pub fn accumulate(&self, other: &ScaleOffset) -> Self { ScaleOffset { scale: Vector2D::new( self.scale.x * other.scale.x, self.scale.y * other.scale.y, ), offset: Vector2D::new( self.offset.x + self.scale.x * other.offset.x, self.offset.y + self.scale.y * other.offset.y, ), } } pub fn map_rect(&self, rect: &Box2D) -> Box2D { // TODO(gw): The logic below can return an unexpected result if the supplied // rect is invalid (has size < 0). Since Gecko currently supplied // invalid rects in some cases, adding a max(0) here ensures that // mapping an invalid rect retains the property that rect.is_empty() // will return true (the mapped rect output will have size 0 instead // of a negative size). In future we could catch / assert / fix // these invalid rects earlier, and assert here instead. let w = rect.width().max(0.0); let h = rect.height().max(0.0); let mut x0 = rect.min.x * self.scale.x + self.offset.x; let mut y0 = rect.min.y * self.scale.y + self.offset.y; let mut sx = w * self.scale.x; let mut sy = h * self.scale.y; // Handle negative scale. Previously, branchless float math was used to find the // min / max vertices and size. However, that sequence of operations was producind // additional floating point accuracy on android emulator builds, causing one test // to fail an assert. Instead, we retain the same math as previously, and adjust // the origin / size if required. if self.scale.x < 0.0 { x0 += sx; sx = -sx; } if self.scale.y < 0.0 { y0 += sy; sy = -sy; } Box2D::from_origin_and_size( Point2D::new(x0, y0), Size2D::new(sx, sy), ) } pub fn unmap_rect(&self, rect: &Box2D) -> Box2D { // TODO(gw): The logic below can return an unexpected result if the supplied // rect is invalid (has size < 0). Since Gecko currently supplied // invalid rects in some cases, adding a max(0) here ensures that // mapping an invalid rect retains the property that rect.is_empty() // will return true (the mapped rect output will have size 0 instead // of a negative size). In future we could catch / assert / fix // these invalid rects earlier, and assert here instead. let w = rect.width().max(0.0); let h = rect.height().max(0.0); let mut x0 = (rect.min.x - self.offset.x) / self.scale.x; let mut y0 = (rect.min.y - self.offset.y) / self.scale.y; let mut sx = w / self.scale.x; let mut sy = h / self.scale.y; // Handle negative scale. Previously, branchless float math was used to find the // min / max vertices and size. However, that sequence of operations was producind // additional floating point accuracy on android emulator builds, causing one test // to fail an assert. Instead, we retain the same math as previously, and adjust // the origin / size if required. if self.scale.x < 0.0 { x0 += sx; sx = -sx; } if self.scale.y < 0.0 { y0 += sy; sy = -sy; } Box2D::from_origin_and_size( Point2D::new(x0, y0), Size2D::new(sx, sy), ) } pub fn map_vector(&self, vector: &Vector2D) -> Vector2D { Vector2D::new( vector.x * self.scale.x, vector.y * self.scale.y, ) } pub fn unmap_vector(&self, vector: &Vector2D) -> Vector2D { Vector2D::new( vector.x / self.scale.x, vector.y / self.scale.y, ) } pub fn map_point(&self, point: &Point2D) -> Point2D { Point2D::new( point.x * self.scale.x + self.offset.x, point.y * self.scale.y + self.offset.y, ) } pub fn unmap_point(&self, point: &Point2D) -> Point2D { Point2D::new( (point.x - self.offset.x) / self.scale.x, (point.y - self.offset.y) / self.scale.y, ) } pub fn to_transform(&self) -> Transform3D { Transform3D::new( self.scale.x, 0.0, 0.0, 0.0, 0.0, self.scale.y, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, self.offset.x, self.offset.y, 0.0, 1.0, ) } } // TODO: Implement these in euclid! pub trait MatrixHelpers { /// A port of the preserves2dAxisAlignment function in Skia. /// Defined in the SkMatrix44 class. fn preserves_2d_axis_alignment(&self) -> bool; fn has_perspective_component(&self) -> bool; fn has_2d_inverse(&self) -> bool; /// Check if the matrix post-scaling on either the X or Y axes could cause geometry /// transformed by this matrix to have scaling exceeding the supplied limit. fn exceeds_2d_scale(&self, limit: f64) -> bool; fn inverse_project(&self, target: &Point2D) -> Option>; fn inverse_rect_footprint(&self, rect: &Box2D) -> Option>; fn transform_kind(&self) -> TransformedRectKind; fn is_simple_translation(&self) -> bool; fn is_simple_2d_translation(&self) -> bool; fn is_2d_scale_translation(&self) -> bool; /// Return the determinant of the 2D part of the matrix. fn determinant_2d(&self) -> f32; /// This function returns a point in the `Src` space that projects into zero XY. /// It ignores the Z coordinate and is usable for "flattened" transformations, /// since they are not generally inversible. fn inverse_project_2d_origin(&self) -> Option>; /// Turn Z transformation into identity. This is useful when crossing "flat" /// transform styled stacking contexts upon traversing the coordinate systems. fn flatten_z_output(&mut self); fn cast_unit(&self) -> Transform3D; } impl MatrixHelpers for Transform3D { fn preserves_2d_axis_alignment(&self) -> bool { if self.m14 != 0.0 || self.m24 != 0.0 { return false; } let mut col0 = 0; let mut col1 = 0; let mut row0 = 0; let mut row1 = 0; if self.m11.abs() > NEARLY_ZERO { col0 += 1; row0 += 1; } if self.m12.abs() > NEARLY_ZERO { col1 += 1; row0 += 1; } if self.m21.abs() > NEARLY_ZERO { col0 += 1; row1 += 1; } if self.m22.abs() > NEARLY_ZERO { col1 += 1; row1 += 1; } col0 < 2 && col1 < 2 && row0 < 2 && row1 < 2 } fn has_perspective_component(&self) -> bool { self.m14.abs() > NEARLY_ZERO || self.m24.abs() > NEARLY_ZERO || self.m34.abs() > NEARLY_ZERO || (self.m44 - 1.0).abs() > NEARLY_ZERO } fn has_2d_inverse(&self) -> bool { self.determinant_2d() != 0.0 } fn exceeds_2d_scale(&self, limit: f64) -> bool { let limit2 = (limit * limit) as f32; self.m11 * self.m11 + self.m12 * self.m12 > limit2 || self.m21 * self.m21 + self.m22 * self.m22 > limit2 } /// Find out a point in `Src` that would be projected into the `target`. fn inverse_project(&self, target: &Point2D) -> Option> { // form the linear equation for the hyperplane intersection let m = Transform2D::::new( self.m11 - target.x * self.m14, self.m12 - target.y * self.m14, self.m21 - target.x * self.m24, self.m22 - target.y * self.m24, self.m41 - target.x * self.m44, self.m42 - target.y * self.m44, ); let inv = m.inverse()?; // we found the point, now check if it maps to the positive hemisphere if inv.m31 * self.m14 + inv.m32 * self.m24 + self.m44 > 0.0 { Some(Point2D::new(inv.m31, inv.m32)) } else { None } } fn inverse_rect_footprint(&self, rect: &Box2D) -> Option> { Some(Box2D::from_points(&[ self.inverse_project(&rect.top_left())?, self.inverse_project(&rect.top_right())?, self.inverse_project(&rect.bottom_left())?, self.inverse_project(&rect.bottom_right())?, ])) } fn transform_kind(&self) -> TransformedRectKind { if self.preserves_2d_axis_alignment() { TransformedRectKind::AxisAligned } else { TransformedRectKind::Complex } } fn is_simple_translation(&self) -> bool { if (self.m11 - 1.0).abs() > NEARLY_ZERO || (self.m22 - 1.0).abs() > NEARLY_ZERO || (self.m33 - 1.0).abs() > NEARLY_ZERO || (self.m44 - 1.0).abs() > NEARLY_ZERO { return false; } self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO && self.m14.abs() < NEARLY_ZERO && self.m21.abs() < NEARLY_ZERO && self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO && self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO && self.m34.abs() < NEARLY_ZERO } fn is_simple_2d_translation(&self) -> bool { if !self.is_simple_translation() { return false; } self.m43.abs() < NEARLY_ZERO } /* is this... * X 0 0 0 * 0 Y 0 0 * 0 0 1 0 * a b 0 1 */ fn is_2d_scale_translation(&self) -> bool { (self.m33 - 1.0).abs() < NEARLY_ZERO && (self.m44 - 1.0).abs() < NEARLY_ZERO && self.m12.abs() < NEARLY_ZERO && self.m13.abs() < NEARLY_ZERO && self.m14.abs() < NEARLY_ZERO && self.m21.abs() < NEARLY_ZERO && self.m23.abs() < NEARLY_ZERO && self.m24.abs() < NEARLY_ZERO && self.m31.abs() < NEARLY_ZERO && self.m32.abs() < NEARLY_ZERO && self.m34.abs() < NEARLY_ZERO && self.m43.abs() < NEARLY_ZERO } fn determinant_2d(&self) -> f32 { self.m11 * self.m22 - self.m12 * self.m21 } fn inverse_project_2d_origin(&self) -> Option> { let det = self.determinant_2d(); if det != 0.0 { let x = (self.m21 * self.m42 - self.m41 * self.m22) / det; let y = (self.m12 * self.m41 - self.m11 * self.m42) / det; Some(Point2D::new(x, y)) } else { None } } fn flatten_z_output(&mut self) { self.m13 = 0.0; self.m23 = 0.0; self.m33 = 1.0; self.m43 = 0.0; //Note: we used to zero out m3? as well, see "reftests/flatten-all-flat.yaml" test } fn cast_unit(&self) -> Transform3D { Transform3D::new( self.m11, self.m12, self.m13, self.m14, self.m21, self.m22, self.m23, self.m24, self.m31, self.m32, self.m33, self.m34, self.m41, self.m42, self.m43, self.m44, ) } } pub trait PointHelpers where Self: Sized, { fn snap(&self) -> Self; } impl PointHelpers for Point2D { fn snap(&self) -> Self { Point2D::new( (self.x + 0.5).floor(), (self.y + 0.5).floor(), ) } } pub trait RectHelpers where Self: Sized, { fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self; fn snap(&self) -> Self; } impl RectHelpers for Rect { fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self { Rect::new( Point2D::new(x0, y0), Size2D::new(x1 - x0, y1 - y0), ) } fn snap(&self) -> Self { let origin = Point2D::new( (self.origin.x + 0.5).floor(), (self.origin.y + 0.5).floor(), ); Rect::new( origin, Size2D::new( (self.origin.x + self.size.width + 0.5).floor() - origin.x, (self.origin.y + self.size.height + 0.5).floor() - origin.y, ), ) } } impl RectHelpers for Box2D { fn from_floats(x0: f32, y0: f32, x1: f32, y1: f32) -> Self { Box2D { min: Point2D::new(x0, y0), max: Point2D::new(x1, y1), } } fn snap(&self) -> Self { self.round() } } pub trait VectorHelpers where Self: Sized, { fn snap(&self) -> Self; } impl VectorHelpers for Vector2D { fn snap(&self) -> Self { Vector2D::new( (self.x + 0.5).floor(), (self.y + 0.5).floor(), ) } } pub fn lerp(a: f32, b: f32, t: f32) -> f32 { (b - a) * t + a } #[repr(u32)] #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub enum TransformedRectKind { AxisAligned = 0, Complex = 1, } #[inline(always)] pub fn pack_as_float(value: u32) -> f32 { value as f32 + 0.5 } #[inline] fn extract_inner_rect_impl( rect: &Box2D, radii: &BorderRadius, k: f32, ) -> Option> { // `k` defines how much border is taken into account // We enforce the offsets to be rounded to pixel boundaries // by `ceil`-ing and `floor`-ing them let xl = (k * radii.top_left.width.max(radii.bottom_left.width)).ceil(); let xr = (rect.width() - k * radii.top_right.width.max(radii.bottom_right.width)).floor(); let yt = (k * radii.top_left.height.max(radii.top_right.height)).ceil(); let yb = (rect.height() - k * radii.bottom_left.height.max(radii.bottom_right.height)).floor(); if xl <= xr && yt <= yb { Some(Box2D::from_origin_and_size( Point2D::new(rect.min.x + xl, rect.min.y + yt), Size2D::new(xr - xl, yb - yt), )) } else { None } } /// Return an aligned rectangle that is inside the clip region and doesn't intersect /// any of the bounding rectangles of the rounded corners. pub fn extract_inner_rect_safe( rect: &Box2D, radii: &BorderRadius, ) -> Option> { // value of `k==1.0` is used for extraction of the corner rectangles // see `SEGMENT_CORNER_*` in `clip_shared.glsl` extract_inner_rect_impl(rect, radii, 1.0) } #[cfg(test)] use euclid::vec3; #[cfg(test)] pub mod test { use super::*; use euclid::default::{Point2D, Size2D, Transform3D}; use euclid::{Angle, approxeq::ApproxEq}; use std::f32::consts::PI; use crate::clip::{is_left_of_line, polygon_contains_point}; use crate::prim_store::PolygonKey; use api::FillRule; #[test] fn inverse_project() { let m0 = Transform3D::identity(); let p0 = Point2D::new(1.0, 2.0); // an identical transform doesn't need any inverse projection assert_eq!(m0.inverse_project(&p0), Some(p0)); let m1 = Transform3D::rotation(0.0, 1.0, 0.0, Angle::radians(-PI / 3.0)); // rotation by 60 degrees would imply scaling of X component by a factor of 2 assert_eq!(m1.inverse_project(&p0), Some(Point2D::new(2.0, 2.0))); } #[test] fn inverse_project_footprint() { let m = Transform3D::new( 0.477499992, 0.135000005, -1.0, 0.000624999986, -0.642787635, 0.766044438, 0.0, 0.0, 0.766044438, 0.642787635, 0.0, 0.0, 1137.10986, 113.71286, 402.0, 0.748749971, ); let r = Box2D::from_size(Size2D::new(804.0, 804.0)); { let points = &[ r.top_left(), r.top_right(), r.bottom_left(), r.bottom_right(), ]; let mi = m.inverse().unwrap(); // In this section, we do the forward and backward transformation // to confirm that its bijective. // We also do the inverse projection path, and confirm it functions the same way. info!("Points:"); for p in points { let pp = m.transform_point2d_homogeneous(*p); let p3 = pp.to_point3d().unwrap(); let pi = mi.transform_point3d_homogeneous(p3); let px = pi.to_point2d().unwrap(); let py = m.inverse_project(&pp.to_point2d().unwrap()).unwrap(); info!("\t{:?} -> {:?} -> {:?} -> ({:?} -> {:?}, {:?})", p, pp, p3, pi, px, py); assert!(px.approx_eq_eps(p, &Point2D::new(0.001, 0.001))); assert!(py.approx_eq_eps(p, &Point2D::new(0.001, 0.001))); } } // project let rp = project_rect(&m, &r, &Box2D::from_size(Size2D::new(1000.0, 1000.0))).unwrap(); info!("Projected {:?}", rp); // one of the points ends up in the negative hemisphere assert_eq!(m.inverse_project(&rp.min), None); // inverse if let Some(ri) = m.inverse_rect_footprint(&rp) { // inverse footprint should be larger, since it doesn't know the original Z assert!(ri.contains_box(&r), "Inverse {:?}", ri); } } fn validate_convert(xref: &LayoutTransform) { let so = ScaleOffset::from_transform(xref).unwrap(); let xf = so.to_transform(); assert!(xref.approx_eq(&xf)); } #[test] fn negative_scale_map_unmap() { let xref = LayoutTransform::scale(1.0, -1.0, 1.0) .pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0)); let so = ScaleOffset::from_transform(&xref).unwrap(); let local_rect = Box2D { min: LayoutPoint::new(50.0, -100.0), max: LayoutPoint::new(250.0, 300.0), }; let mapped_rect = so.map_rect::(&local_rect); let xf_rect = project_rect( &xref, &local_rect, &LayoutRect::max_rect(), ).unwrap(); assert!(mapped_rect.min.x.approx_eq(&xf_rect.min.x)); assert!(mapped_rect.min.y.approx_eq(&xf_rect.min.y)); assert!(mapped_rect.max.x.approx_eq(&xf_rect.max.x)); assert!(mapped_rect.max.y.approx_eq(&xf_rect.max.y)); let unmapped_rect = so.unmap_rect::(&mapped_rect); assert!(unmapped_rect.min.x.approx_eq(&local_rect.min.x)); assert!(unmapped_rect.min.y.approx_eq(&local_rect.min.y)); assert!(unmapped_rect.max.x.approx_eq(&local_rect.max.x)); assert!(unmapped_rect.max.y.approx_eq(&local_rect.max.y)); } #[test] fn scale_offset_convert() { let xref = LayoutTransform::translation(130.0, 200.0, 0.0); validate_convert(&xref); let xref = LayoutTransform::scale(13.0, 8.0, 1.0); validate_convert(&xref); let xref = LayoutTransform::scale(0.5, 0.5, 1.0) .pre_translate(LayoutVector3D::new(124.0, 38.0, 0.0)); validate_convert(&xref); let xref = LayoutTransform::scale(30.0, 11.0, 1.0) .then_translate(vec3(50.0, 240.0, 0.0)); validate_convert(&xref); } fn validate_inverse(xref: &LayoutTransform) { let s0 = ScaleOffset::from_transform(xref).unwrap(); let s1 = s0.inverse().accumulate(&s0); assert!((s1.scale.x - 1.0).abs() < NEARLY_ZERO && (s1.scale.y - 1.0).abs() < NEARLY_ZERO && s1.offset.x.abs() < NEARLY_ZERO && s1.offset.y.abs() < NEARLY_ZERO, "{:?}", s1); } #[test] fn scale_offset_inverse() { let xref = LayoutTransform::translation(130.0, 200.0, 0.0); validate_inverse(&xref); let xref = LayoutTransform::scale(13.0, 8.0, 1.0); validate_inverse(&xref); let xref = LayoutTransform::translation(124.0, 38.0, 0.0). then_scale(0.5, 0.5, 1.0); validate_inverse(&xref); let xref = LayoutTransform::scale(30.0, 11.0, 1.0) .then_translate(vec3(50.0, 240.0, 0.0)); validate_inverse(&xref); } fn validate_accumulate(x0: &LayoutTransform, x1: &LayoutTransform) { let x = x1.then(&x0); let s0 = ScaleOffset::from_transform(x0).unwrap(); let s1 = ScaleOffset::from_transform(x1).unwrap(); let s = s0.accumulate(&s1).to_transform(); assert!(x.approx_eq(&s), "{:?}\n{:?}", x, s); } #[test] fn scale_offset_accumulate() { let x0 = LayoutTransform::translation(130.0, 200.0, 0.0); let x1 = LayoutTransform::scale(7.0, 3.0, 1.0); validate_accumulate(&x0, &x1); } #[test] fn inverse_project_2d_origin() { let mut m = Transform3D::identity(); assert_eq!(m.inverse_project_2d_origin(), Some(Point2D::zero())); m.m11 = 0.0; assert_eq!(m.inverse_project_2d_origin(), None); m.m21 = -2.0; m.m22 = 0.0; m.m12 = -0.5; m.m41 = 1.0; m.m42 = 0.5; let origin = m.inverse_project_2d_origin().unwrap(); assert_eq!(origin, Point2D::new(1.0, 0.5)); assert_eq!(m.transform_point2d(origin), Some(Point2D::zero())); } #[test] fn polygon_clip_is_left_of_point() { // Define points of a line through (1, -3) and (-2, 6) to test against. // If the triplet consisting of these two points and the test point // form a counter-clockwise triangle, then the test point is on the // left. The easiest way to visualize this is with an "ascending" // line from low-Y to high-Y. let p0_x = 1.0; let p0_y = -3.0; let p1_x = -2.0; let p1_y = 6.0; // Test some points to the left of the line. assert!(is_left_of_line(-9.0, 0.0, p0_x, p0_y, p1_x, p1_y) > 0.0); assert!(is_left_of_line(-1.0, 1.0, p0_x, p0_y, p1_x, p1_y) > 0.0); assert!(is_left_of_line(1.0, -4.0, p0_x, p0_y, p1_x, p1_y) > 0.0); // Test some points on the line. assert!(is_left_of_line(-3.0, 9.0, p0_x, p0_y, p1_x, p1_y) == 0.0); assert!(is_left_of_line(0.0, 0.0, p0_x, p0_y, p1_x, p1_y) == 0.0); assert!(is_left_of_line(100.0, -300.0, p0_x, p0_y, p1_x, p1_y) == 0.0); // Test some points to the right of the line. assert!(is_left_of_line(0.0, 1.0, p0_x, p0_y, p1_x, p1_y) < 0.0); assert!(is_left_of_line(-4.0, 13.0, p0_x, p0_y, p1_x, p1_y) < 0.0); assert!(is_left_of_line(5.0, -12.0, p0_x, p0_y, p1_x, p1_y) < 0.0); } #[test] fn polygon_clip_contains_point() { // We define the points of a self-overlapping polygon, which we will // use to create polygons with different windings and fill rules. let p0 = LayoutPoint::new(4.0, 4.0); let p1 = LayoutPoint::new(6.0, 4.0); let p2 = LayoutPoint::new(4.0, 7.0); let p3 = LayoutPoint::new(2.0, 1.0); let p4 = LayoutPoint::new(8.0, 1.0); let p5 = LayoutPoint::new(6.0, 7.0); let poly_clockwise_nonzero = PolygonKey::new( &[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Nonzero ); let poly_clockwise_evenodd = PolygonKey::new( &[p5, p4, p3, p2, p1, p0].to_vec(), FillRule::Evenodd ); let poly_counter_clockwise_nonzero = PolygonKey::new( &[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Nonzero ); let poly_counter_clockwise_evenodd = PolygonKey::new( &[p0, p1, p2, p3, p4, p5].to_vec(), FillRule::Evenodd ); // We define a rect that provides a bounding clip area of // the polygon. let rect = LayoutRect::from_size(LayoutSize::new(10.0, 10.0)); // And we'll test three points of interest. let p_inside_once = LayoutPoint::new(5.0, 3.0); let p_inside_twice = LayoutPoint::new(5.0, 5.0); let p_outside = LayoutPoint::new(9.0, 9.0); // We should get the same results for both clockwise and // counter-clockwise polygons. // For nonzero polygons, the inside twice point is considered inside. for poly_nonzero in vec![poly_clockwise_nonzero, poly_counter_clockwise_nonzero].iter() { assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_nonzero), true); assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_nonzero), true); assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_nonzero), false); } // For evenodd polygons, the inside twice point is considered outside. for poly_evenodd in vec![poly_clockwise_evenodd, poly_counter_clockwise_evenodd].iter() { assert_eq!(polygon_contains_point(&p_inside_once, &rect, &poly_evenodd), true); assert_eq!(polygon_contains_point(&p_inside_twice, &rect, &poly_evenodd), false); assert_eq!(polygon_contains_point(&p_outside, &rect, &poly_evenodd), false); } } } pub trait MaxRect { fn max_rect() -> Self; } impl MaxRect for DeviceIntRect { fn max_rect() -> Self { DeviceIntRect::from_origin_and_size( DeviceIntPoint::new(i32::MIN / 2, i32::MIN / 2), DeviceIntSize::new(i32::MAX, i32::MAX), ) } } impl MaxRect for Rect { fn max_rect() -> Self { // Having an unlimited bounding box is fine up until we try // to cast it to `i32`, where we get `-2147483648` for any // values larger than or equal to 2^31. // // Note: clamping to i32::MIN and i32::MAX is not a solution, // with explanation left as an exercise for the reader. const MAX_COORD: f32 = 1.0e9; Rect::new( Point2D::new(-MAX_COORD, -MAX_COORD), Size2D::new(2.0 * MAX_COORD, 2.0 * MAX_COORD), ) } } impl MaxRect for Box2D { fn max_rect() -> Self { // Having an unlimited bounding box is fine up until we try // to cast it to `i32`, where we get `-2147483648` for any // values larger than or equal to 2^31. // // Note: clamping to i32::MIN and i32::MAX is not a solution, // with explanation left as an exercise for the reader. const MAX_COORD: f32 = 1.0e9; Box2D::new( Point2D::new(-MAX_COORD, -MAX_COORD), Point2D::new(MAX_COORD, MAX_COORD), ) } } /// An enum that tries to avoid expensive transformation matrix calculations /// when possible when dealing with non-perspective axis-aligned transformations. #[derive(Debug, MallocSizeOf)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub enum FastTransform { /// A simple offset, which can be used without doing any matrix math. Offset(Vector2D), /// A 2D transformation with an inverse. Transform { transform: Transform3D, inverse: Option>, is_2d: bool, }, } impl Clone for FastTransform { fn clone(&self) -> Self { *self } } impl Copy for FastTransform { } impl FastTransform { pub fn identity() -> Self { FastTransform::Offset(Vector2D::zero()) } pub fn with_vector(offset: Vector2D) -> Self { FastTransform::Offset(offset) } pub fn with_scale_offset(scale_offset: ScaleOffset) -> Self { if scale_offset.scale == Vector2D::new(1.0, 1.0) { FastTransform::Offset(Vector2D::from_untyped(scale_offset.offset)) } else { FastTransform::Transform { transform: scale_offset.to_transform(), inverse: Some(scale_offset.inverse().to_transform()), is_2d: true, } } } #[inline(always)] pub fn with_transform(transform: Transform3D) -> Self { if transform.is_simple_2d_translation() { return FastTransform::Offset(Vector2D::new(transform.m41, transform.m42)); } let inverse = transform.inverse(); let is_2d = transform.is_2d(); FastTransform::Transform { transform, inverse, is_2d} } pub fn to_transform(&self) -> Cow> { match *self { FastTransform::Offset(offset) => Cow::Owned( Transform3D::translation(offset.x, offset.y, 0.0) ), FastTransform::Transform { ref transform, .. } => Cow::Borrowed(transform), } } /// Return true if this is an identity transform #[allow(unused)] pub fn is_identity(&self)-> bool { match *self { FastTransform::Offset(offset) => { offset == Vector2D::zero() } FastTransform::Transform { ref transform, .. } => { *transform == Transform3D::identity() } } } pub fn then(&self, other: &FastTransform) -> FastTransform { match *self { FastTransform::Offset(offset) => match *other { FastTransform::Offset(other_offset) => { FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0)) } FastTransform::Transform { transform: ref other_transform, .. } => { FastTransform::with_transform( other_transform .with_source::() .pre_translate(offset.to_3d()) ) } } FastTransform::Transform { ref transform, ref inverse, is_2d } => match *other { FastTransform::Offset(other_offset) => { FastTransform::with_transform( transform .then_translate(other_offset.to_3d()) .with_destination::() ) } FastTransform::Transform { transform: ref other_transform, inverse: ref other_inverse, is_2d: other_is_2d } => { FastTransform::Transform { transform: transform.then(other_transform), inverse: inverse.as_ref().and_then(|self_inv| other_inverse.as_ref().map(|other_inv| other_inv.then(self_inv)) ), is_2d: is_2d & other_is_2d, } } } } } pub fn pre_transform( &self, other: &FastTransform ) -> FastTransform { other.then(self) } pub fn pre_translate(&self, other_offset: Vector2D) -> Self { match *self { FastTransform::Offset(offset) => FastTransform::Offset(offset + other_offset), FastTransform::Transform { transform, .. } => FastTransform::with_transform(transform.pre_translate(other_offset.to_3d())) } } pub fn then_translate(&self, other_offset: Vector2D) -> Self { match *self { FastTransform::Offset(offset) => { FastTransform::Offset(offset + other_offset * Scale::<_, _, Src>::new(1.0)) } FastTransform::Transform { ref transform, .. } => { let transform = transform.then_translate(other_offset.to_3d()); FastTransform::with_transform(transform) } } } #[inline(always)] pub fn is_backface_visible(&self) -> bool { match *self { FastTransform::Offset(..) => false, FastTransform::Transform { inverse: None, .. } => false, //TODO: fix this properly by taking "det|M33| * det|M34| > 0" // see https://www.w3.org/Bugs/Public/show_bug.cgi?id=23014 FastTransform::Transform { inverse: Some(ref inverse), .. } => inverse.m33 < 0.0, } } #[inline(always)] pub fn transform_point2d(&self, point: Point2D) -> Option> { match *self { FastTransform::Offset(offset) => { let new_point = point + offset; Some(Point2D::from_untyped(new_point.to_untyped())) } FastTransform::Transform { ref transform, .. } => transform.transform_point2d(point), } } #[inline(always)] pub fn project_point2d(&self, point: Point2D) -> Option> { match* self { FastTransform::Offset(..) => self.transform_point2d(point), FastTransform::Transform{ref transform, ..} => { // Find a value for z that will transform to 0. // The transformed value of z is computed as: // z' = point.x * self.m13 + point.y * self.m23 + z * self.m33 + self.m43 // Solving for z when z' = 0 gives us: let z = -(point.x * transform.m13 + point.y * transform.m23 + transform.m43) / transform.m33; transform.transform_point3d(point3(point.x, point.y, z)).map(| p3 | point2(p3.x, p3.y)) } } } #[inline(always)] pub fn inverse(&self) -> Option> { match *self { FastTransform::Offset(offset) => Some(FastTransform::Offset(Vector2D::new(-offset.x, -offset.y))), FastTransform::Transform { transform, inverse: Some(inverse), is_2d, } => Some(FastTransform::Transform { transform: inverse, inverse: Some(transform), is_2d }), FastTransform::Transform { inverse: None, .. } => None, } } } impl From> for FastTransform { fn from(transform: Transform3D) -> Self { FastTransform::with_transform(transform) } } impl From> for FastTransform { fn from(vector: Vector2D) -> Self { FastTransform::with_vector(vector) } } pub type LayoutFastTransform = FastTransform; pub type LayoutToWorldFastTransform = FastTransform; pub fn project_rect( transform: &Transform3D, rect: &Box2D, bounds: &Box2D, ) -> Option> where F: fmt::Debug { let homogens = [ transform.transform_point2d_homogeneous(rect.top_left()), transform.transform_point2d_homogeneous(rect.top_right()), transform.transform_point2d_homogeneous(rect.bottom_left()), transform.transform_point2d_homogeneous(rect.bottom_right()), ]; // Note: we only do the full frustum collision when the polygon approaches the camera plane. // Otherwise, it will be clamped to the screen bounds anyway. if homogens.iter().any(|h| h.w <= 0.0 || h.w.is_nan()) { let mut clipper = Clipper::new(); let polygon = Polygon::from_rect(rect.to_rect().cast().cast_unit(), 1); let planes = match Clipper::::frustum_planes( &transform.cast_unit().cast(), Some(bounds.to_rect().cast_unit().to_f64()), ) { Ok(planes) => planes, Err(..) => return None, }; for plane in planes { clipper.add(plane); } let results = clipper.clip(polygon); if results.is_empty() { return None } Some(Box2D::from_points(results .into_iter() // filter out parts behind the view plane .flat_map(|poly| &poly.points) .map(|p| { let mut homo = transform.transform_point2d_homogeneous(p.to_2d().to_f32().cast_unit()); homo.w = homo.w.max(0.00000001); // avoid infinite values homo.to_point2d().unwrap() }) )) } else { // we just checked for all the points to be in positive hemisphere, so `unwrap` is valid Some(Box2D::from_points(&[ homogens[0].to_point2d().unwrap(), homogens[1].to_point2d().unwrap(), homogens[2].to_point2d().unwrap(), homogens[3].to_point2d().unwrap(), ])) } } /// Run the first callback over all elements in the array. If the callback returns true, /// the element is removed from the array and moved to a second callback. /// /// This is a simple implementation waiting for Vec::drain_filter to be stable. /// When that happens, code like: /// /// let filter = |op| { /// match *op { /// Enum::Foo | Enum::Bar => true, /// Enum::Baz => false, /// } /// }; /// drain_filter( /// &mut ops, /// filter, /// |op| { /// match op { /// Enum::Foo => { foo(); } /// Enum::Bar => { bar(); } /// Enum::Baz => { unreachable!(); } /// } /// }, /// ); /// /// Can be rewritten as: /// /// let filter = |op| { /// match *op { /// Enum::Foo | Enum::Bar => true, /// Enum::Baz => false, /// } /// }; /// for op in ops.drain_filter(filter) { /// match op { /// Enum::Foo => { foo(); } /// Enum::Bar => { bar(); } /// Enum::Baz => { unreachable!(); } /// } /// } /// /// See https://doc.rust-lang.org/std/vec/struct.Vec.html#method.drain_filter pub fn drain_filter( vec: &mut Vec, mut filter: Filter, mut action: Action, ) where Filter: FnMut(&mut T) -> bool, Action: FnMut(T) { let mut i = 0; while i != vec.len() { if filter(&mut vec[i]) { action(vec.remove(i)); } else { i += 1; } } } #[derive(Debug)] pub struct Recycler { pub num_allocations: usize, } impl Recycler { /// Maximum extra capacity that a recycled vector is allowed to have. If the actual capacity /// is larger, we re-allocate the vector storage with lower capacity. const MAX_EXTRA_CAPACITY_PERCENT: usize = 200; /// Minimum extra capacity to keep when re-allocating the vector storage. const MIN_EXTRA_CAPACITY_PERCENT: usize = 20; /// Minimum sensible vector length to consider for re-allocation. const MIN_VECTOR_LENGTH: usize = 16; pub fn new() -> Self { Recycler { num_allocations: 0, } } /// Clear a vector for re-use, while retaining the backing memory buffer. May shrink the buffer /// if it's currently much larger than was actually used. pub fn recycle_vec(&mut self, vec: &mut Vec) { let extra_capacity = (vec.capacity() - vec.len()) * 100 / vec.len().max(Self::MIN_VECTOR_LENGTH); if extra_capacity > Self::MAX_EXTRA_CAPACITY_PERCENT { // Reduce capacity of the buffer if it is a lot larger than it needs to be. This prevents // a frame with exceptionally large allocations to cause subsequent frames to retain // more memory than they need. //TODO: use `shrink_to` when it's stable *vec = Vec::with_capacity(vec.len() + vec.len() * Self::MIN_EXTRA_CAPACITY_PERCENT / 100); self.num_allocations += 1; } else { vec.clear(); } } } /// Record the size of a data structure to preallocate a similar size /// at the next frame and avoid growing it too many time. #[derive(Copy, Clone, Debug)] pub struct Preallocator { size: usize, } impl Preallocator { pub fn new(initial_size: usize) -> Self { Preallocator { size: initial_size, } } /// Record the size of a vector to preallocate it the next frame. pub fn record_vec(&mut self, vec: &Vec) { let len = vec.len(); if len > self.size { self.size = len; } else { self.size = (self.size + len) / 2; } } /// The size that we'll preallocate the vector with. pub fn preallocation_size(&self) -> usize { // Round up to multiple of 16 to avoid small tiny // variations causing reallocations. (self.size + 15) & !15 } /// Preallocate vector storage. /// /// The preallocated amount depends on the length recorded in the last /// record_vec call. pub fn preallocate_vec(&self, vec: &mut Vec) { let len = vec.len(); let cap = self.preallocation_size(); if len < cap { vec.reserve(cap - len); } } } impl Default for Preallocator { fn default() -> Self { Self::new(0) } } /// Arc wrapper to support measurement via MallocSizeOf. /// /// Memory reporting for Arcs is tricky because of the risk of double-counting. /// One way to measure them is to keep a table of pointers that have already been /// traversed. The other way is to use knowledge of the program structure to /// identify which Arc instances should be measured and which should be skipped to /// avoid double-counting. /// /// This struct implements the second approach. It identifies the "main" pointer /// to the Arc-ed resource, and measures the buffer as if it were an owned pointer. /// The programmer should ensure that there is at most one PrimaryArc for a given /// underlying ArcInner. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(Clone, Debug, Hash, PartialEq, Eq)] pub struct PrimaryArc(pub Arc); impl ::std::ops::Deref for PrimaryArc { type Target = Arc; #[inline] fn deref(&self) -> &Arc { &self.0 } } impl MallocShallowSizeOf for PrimaryArc { fn shallow_size_of(&self, ops: &mut MallocSizeOfOps) -> usize { unsafe { // This is a bit sketchy, but std::sync::Arc doesn't expose the // base pointer. let raw_arc_ptr: *const Arc = &self.0; let raw_ptr_ptr: *const *const c_void = raw_arc_ptr as _; let raw_ptr = *raw_ptr_ptr; (ops.size_of_op)(raw_ptr) } } } impl MallocSizeOf for PrimaryArc { fn size_of(&self, ops: &mut MallocSizeOfOps) -> usize { self.shallow_size_of(ops) + (**self).size_of(ops) } } /// Computes the scale factors of this matrix; that is, /// the amounts each basis vector is scaled by. /// /// This code comes from gecko gfx/2d/Matrix.h with the following /// modifications: /// /// * Removed `xMajor` parameter. /// * All arithmetics is done with double precision. pub fn scale_factors( mat: &Transform3D ) -> (f32, f32) { let m11 = mat.m11 as f64; let m12 = mat.m12 as f64; // Determinant is just of the 2D component. let det = m11 * mat.m22 as f64 - m12 * mat.m21 as f64; if det == 0.0 { return (0.0, 0.0); } // ignore mirroring let det = det.abs(); let major = (m11 * m11 + m12 * m12).sqrt(); let minor = if major != 0.0 { det / major } else { 0.0 }; (major as f32, minor as f32) } #[test] fn scale_factors_large() { // https://bugzilla.mozilla.org/show_bug.cgi?id=1748499 let mat = Transform3D::::new( 1.6534229920333123e27, 3.673100922561787e27, 0.0, 0.0, -3.673100922561787e27, 1.6534229920333123e27, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, -828140552192.0, -1771307401216.0, 0.0, 1.0, ); let (major, minor) = scale_factors(&mat); assert!(major.is_normal() && minor.is_normal()); } /// Clamp scaling factor to a power of two. /// /// This code comes from gecko gfx/thebes/gfxUtils.cpp with the following /// modification: /// /// * logs are taken in base 2 instead of base e. pub fn clamp_to_scale_factor(val: f32, round_down: bool) -> f32 { // Arbitary scale factor limitation. We can increase this // for better scaling performance at the cost of worse // quality. const SCALE_RESOLUTION: f32 = 2.0; // Negative scaling is just a flip and irrelevant to // our resolution calculation. let val = val.abs(); let (val, inverse) = if val < 1.0 { (1.0 / val, true) } else { (val, false) }; let power = val.log2() / SCALE_RESOLUTION.log2(); // If power is within 1e-5 of an integer, round to nearest to // prevent floating point errors, otherwise round up to the // next integer value. let power = if (power - power.round()).abs() < 1e-5 { power.round() } else if inverse != round_down { // Use floor when we are either inverted or rounding down, but // not both. power.floor() } else { // Otherwise, ceil when we are not inverted and not rounding // down, or we are inverted and rounding down. power.ceil() }; let scale = SCALE_RESOLUTION.powf(power); if inverse { 1.0 / scale } else { scale } } /// Rounds a value up to the nearest multiple of mul pub fn round_up_to_multiple(val: usize, mul: NonZeroUsize) -> usize { match val % mul.get() { 0 => val, rem => val - rem + mul.get(), } } #[macro_export] macro_rules! c_str { ($lit:expr) => { unsafe { std::ffi::CStr::from_ptr(concat!($lit, "\0").as_ptr() as *const std::os::raw::c_char) } } } /// This is inspired by the `weak-table` crate. /// It holds a Vec of weak pointers that are garbage collected as the Vec pub struct WeakTable { inner: Vec>> } impl WeakTable { pub fn new() -> WeakTable { WeakTable { inner: Vec::new() } } pub fn insert(&mut self, x: std::sync::Weak>) { if self.inner.len() == self.inner.capacity() { self.remove_expired(); // We want to make sure that we change capacity() // even if remove_expired() removes some entries // so that we don't repeatedly hit remove_expired() if self.inner.len() * 3 < self.inner.capacity() { // We use a different multiple for shrinking then // expanding so that we we don't accidentally // oscilate. self.inner.shrink_to_fit(); } else { // Otherwise double our size self.inner.reserve(self.inner.len()) } } self.inner.push(x); } fn remove_expired(&mut self) { self.inner.retain(|x| x.strong_count() > 0) } pub fn iter(&self) -> impl Iterator>> + '_ { self.inner.iter().filter_map(|x| x.upgrade()) } } #[test] fn weak_table() { let mut tbl = WeakTable::new(); let mut things = Vec::new(); let target_count = 50; for _ in 0..target_count { things.push(Arc::new(vec![4])); } for i in &things { tbl.insert(Arc::downgrade(i)) } assert_eq!(tbl.inner.len(), target_count); drop(things); assert_eq!(tbl.iter().count(), 0); // make sure that we shrink the table if it gets too big // by adding a bunch of dead items for _ in 0..target_count*2 { tbl.insert(Arc::downgrade(&Arc::new(vec![5]))) } assert!(tbl.inner.capacity() <= 4); }