/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gc/Allocator.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/OperatorNewExtensions.h"
#include "mozilla/TimeStamp.h"
#include "gc/GCInternals.h"
#include "gc/GCLock.h"
#include "gc/GCProbes.h"
#include "gc/Nursery.h"
#include "threading/CpuCount.h"
#include "util/Poison.h"
#include "vm/BigIntType.h"
#include "vm/JSContext.h"
#include "vm/Runtime.h"
#include "vm/StringType.h"
#include "gc/ArenaList-inl.h"
#include "gc/Heap-inl.h"
#include "gc/PrivateIterators-inl.h"
#include "vm/JSContext-inl.h"
using mozilla::TimeDuration;
using mozilla::TimeStamp;
using namespace js;
using namespace gc;
template
JSObject* gc::detail::AllocateObject(JSContext* cx, AllocKind kind,
size_t nDynamicSlots, gc::InitialHeap heap,
const JSClass* clasp,
AllocSite* site /* = nullptr */) {
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(IsObjectAllocKind(kind));
size_t thingSize = Arena::thingSize(kind);
MOZ_ASSERT(thingSize == Arena::thingSize(kind));
MOZ_ASSERT(thingSize >= sizeof(JSObject_Slots0));
static_assert(
sizeof(JSObject_Slots0) >= MinCellSize,
"All allocations must be at least the allocator-imposed minimum size.");
MOZ_ASSERT_IF(nDynamicSlots != 0, clasp->isNativeObject());
MOZ_ASSERT_IF(site && site->initialHeap() == TenuredHeap,
heap == TenuredHeap);
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap) {
if (!site) {
site = cx->zone()->unknownAllocSite();
}
JSObject* obj = rt->gc.tryNewNurseryObject(
cx, thingSize, nDynamicSlots, clasp, site);
if (obj) {
return obj;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredObject(cx, kind, thingSize,
nDynamicSlots);
}
template JSObject* gc::detail::AllocateObject(
JSContext* cx, gc::AllocKind kind, size_t nDynamicSlots,
gc::InitialHeap heap, const JSClass* clasp, gc::AllocSite* site);
template JSObject* gc::detail::AllocateObject(
JSContext* cx, gc::AllocKind kind, size_t nDynamicSlots,
gc::InitialHeap heap, const JSClass* clasp, gc::AllocSite* site);
// Attempt to allocate a new JSObject out of the nursery. If there is not
// enough room in the nursery or there is an OOM, this method will return
// nullptr.
template
JSObject* GCRuntime::tryNewNurseryObject(JSContext* cx, size_t thingSize,
size_t nDynamicSlots,
const JSClass* clasp,
AllocSite* site) {
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
JSObject* obj =
cx->nursery().allocateObject(site, thingSize, nDynamicSlots, clasp);
if (obj) {
return obj;
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery.
if (cx->nursery().isEnabled()) {
return cx->nursery().allocateObject(site, thingSize, nDynamicSlots,
clasp);
}
}
return nullptr;
}
template
JSObject* GCRuntime::tryNewTenuredObject(JSContext* cx, AllocKind kind,
size_t thingSize,
size_t nDynamicSlots) {
ObjectSlots* slotsHeader = nullptr;
if (nDynamicSlots) {
HeapSlot* allocation =
cx->maybe_pod_malloc(ObjectSlots::allocCount(nDynamicSlots));
if (MOZ_UNLIKELY(!allocation)) {
if (allowGC) {
ReportOutOfMemory(cx);
}
return nullptr;
}
slotsHeader = new (allocation) ObjectSlots(nDynamicSlots, 0);
Debug_SetSlotRangeToCrashOnTouch(slotsHeader->slots(), nDynamicSlots);
}
TenuredCell* cell = tryNewTenuredThing(cx, kind, thingSize);
if (!cell) {
js_free(slotsHeader);
return nullptr;
}
if (nDynamicSlots) {
NativeObject* nobj = new (mozilla::KnownNotNull, cell) NativeObject();
nobj->initSlots(slotsHeader->slots());
AddCellMemory(nobj, ObjectSlots::allocSize(nDynamicSlots),
MemoryUse::ObjectSlots);
return nobj;
}
return new (mozilla::KnownNotNull, cell) JSObject();
}
// Attempt to allocate a new string out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template
Cell* GCRuntime::tryNewNurseryStringCell(JSContext* cx, size_t thingSize,
AllocKind kind) {
MOZ_ASSERT(IsNurseryAllocable(kind));
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
AllocSite* site = cx->zone()->unknownAllocSite();
Cell* cell = cx->nursery().allocateString(site, thingSize);
if (cell) {
return cell;
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery, and
// other heuristics can disable nursery strings for this zone.
if (cx->nursery().isEnabled() && cx->zone()->allocNurseryStrings) {
return cx->nursery().allocateString(site, thingSize);
}
}
return nullptr;
}
template
Cell* gc::CellAllocator::AllocateStringCell(JSContext* cx, AllocKind kind,
size_t size, InitialHeap heap) {
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(size == Arena::thingSize(kind));
MOZ_ASSERT(size == sizeof(JSString) || size == sizeof(JSFatInlineString));
MOZ_ASSERT(
IsNurseryAllocable(kind)); // Atoms are allocated using Allocate().
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap &&
cx->nursery().canAllocateStrings() && cx->zone()->allocNurseryStrings) {
Cell* cell = rt->gc.tryNewNurseryStringCell(cx, size, kind);
if (cell) {
return cell;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
return GCRuntime::tryNewTenuredThing(cx, kind, size);
}
template Cell* gc::CellAllocator::AllocateStringCell(JSContext*,
AllocKind, size_t,
InitialHeap);
template Cell* gc::CellAllocator::AllocateStringCell(JSContext*,
AllocKind, size_t,
InitialHeap);
// Attempt to allocate a new BigInt out of the nursery. If there is not enough
// room in the nursery or there is an OOM, this method will return nullptr.
template
JS::BigInt* GCRuntime::tryNewNurseryBigInt(JSContext* cx, size_t thingSize,
AllocKind kind) {
MOZ_ASSERT(IsNurseryAllocable(kind));
MOZ_ASSERT(cx->isNurseryAllocAllowed());
MOZ_ASSERT(!cx->zone()->isAtomsZone());
AllocSite* site = cx->zone()->unknownAllocSite();
Cell* cell = cx->nursery().allocateBigInt(site, thingSize);
if (cell) {
return JS::BigInt::emplace(cell);
}
if (allowGC && !cx->suppressGC) {
cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY);
// Exceeding gcMaxBytes while tenuring can disable the Nursery, and
// other heuristics can disable nursery BigInts for this zone.
if (cx->nursery().isEnabled() && cx->zone()->allocNurseryBigInts) {
Cell* cell = cx->nursery().allocateBigInt(site, thingSize);
if (cell) {
return JS::BigInt::emplace(cell);
}
}
}
return nullptr;
}
template
JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx, InitialHeap heap) {
MOZ_ASSERT(!cx->isHelperThreadContext());
AllocKind kind = MapTypeToAllocKind::kind;
size_t size = sizeof(JS::BigInt);
MOZ_ASSERT(size == Arena::thingSize(kind));
JSRuntime* rt = cx->runtime();
if (!rt->gc.checkAllocatorState(cx, kind)) {
return nullptr;
}
if (cx->nursery().isEnabled() && heap != TenuredHeap &&
cx->nursery().canAllocateBigInts() && cx->zone()->allocNurseryBigInts) {
auto* bi = rt->gc.tryNewNurseryBigInt(cx, size, kind);
if (bi) {
return bi;
}
// Our most common non-jit allocation path is NoGC; thus, if we fail the
// alloc and cannot GC, we *must* return nullptr here so that the caller
// will do a CanGC allocation to clear the nursery. Failing to do so will
// cause all allocations on this path to land in Tenured, and we will not
// get the benefit of the nursery.
if (!allowGC) {
return nullptr;
}
}
TenuredCell* cell = GCRuntime::tryNewTenuredThing(cx, kind, size);
if (!cell) {
return nullptr;
}
return JS::BigInt::emplace(cell);
}
template JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx,
gc::InitialHeap heap);
template JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx,
gc::InitialHeap heap);
template
TenuredCell* gc::detail::AllocateTenuredImpl(JSContext* cx, gc::AllocKind kind,
size_t size) {
MOZ_ASSERT(!cx->isHelperThreadContext());
MOZ_ASSERT(!IsNurseryAllocable(kind));
MOZ_ASSERT(size == Arena::thingSize(kind));
MOZ_ASSERT(
size >= gc::MinCellSize,
"All allocations must be at least the allocator-imposed minimum size.");
if (!cx->runtime()->gc.checkAllocatorState(cx, kind)) {
return nullptr;
}
return GCRuntime::tryNewTenuredThing(cx, kind, size);
}
template TenuredCell* gc::detail::AllocateTenuredImpl(JSContext*,
AllocKind, size_t);
template TenuredCell* gc::detail::AllocateTenuredImpl(JSContext*,
AllocKind, size_t);
template
/* static */
TenuredCell* GCRuntime::tryNewTenuredThing(JSContext* cx, AllocKind kind,
size_t thingSize) {
// Bump allocate in the arena's current free-list span.
Zone* zone = cx->zone();
void* t = zone->arenas.freeLists().allocate(kind);
if (MOZ_UNLIKELY(!t)) {
// Get the next available free list and allocate out of it. This may
// acquire a new arena, which will lock the chunk list. If there are no
// chunks available it may also allocate new memory directly.
t = refillFreeList(cx, kind);
if (MOZ_UNLIKELY(!t)) {
if constexpr (allowGC) {
cx->runtime()->gc.attemptLastDitchGC(cx);
TenuredCell* cell = tryNewTenuredThing(cx, kind, thingSize);
if (cell) {
return cell;
}
ReportOutOfMemory(cx);
}
return nullptr;
}
}
TenuredCell* cell = new (mozilla::KnownNotNull, t) TenuredCell();
checkIncrementalZoneState(cx, cell);
gcprobes::TenuredAlloc(cell, kind);
// We count this regardless of the profiler's state, assuming that it costs
// just as much to count it, as to check the profiler's state and decide not
// to count it.
zone->noteTenuredAlloc();
return cell;
}
void GCRuntime::attemptLastDitchGC(JSContext* cx) {
// Either there was no memory available for a new chunk or the heap hit its
// size limit. Try to perform an all-compartments, non-incremental, shrinking
// GC and wait for it to finish.
if (!lastLastDitchTime.IsNull() &&
TimeStamp::Now() - lastLastDitchTime <= tunables.minLastDitchGCPeriod()) {
return;
}
JS::PrepareForFullGC(cx);
gc(JS::GCOptions::Shrink, JS::GCReason::LAST_DITCH);
waitBackgroundAllocEnd();
waitBackgroundFreeEnd();
lastLastDitchTime = mozilla::TimeStamp::Now();
}
template
bool GCRuntime::checkAllocatorState(JSContext* cx, AllocKind kind) {
if (allowGC) {
if (!gcIfNeededAtAllocation(cx)) {
return false;
}
}
#if defined(JS_GC_ZEAL) || defined(DEBUG)
MOZ_ASSERT_IF(cx->zone()->isAtomsZone(),
kind == AllocKind::ATOM || kind == AllocKind::FAT_INLINE_ATOM ||
kind == AllocKind::SYMBOL || kind == AllocKind::JITCODE ||
kind == AllocKind::SCOPE);
MOZ_ASSERT_IF(!cx->zone()->isAtomsZone(),
kind != AllocKind::ATOM && kind != AllocKind::FAT_INLINE_ATOM);
MOZ_ASSERT(!JS::RuntimeHeapIsBusy());
#endif
// Crash if we perform a GC action when it is not safe.
if (allowGC && !cx->suppressGC) {
cx->verifyIsSafeToGC();
}
// For testing out of memory conditions
if (js::oom::ShouldFailWithOOM()) {
// If we are doing a fallible allocation, percolate up the OOM
// instead of reporting it.
if (allowGC) {
ReportOutOfMemory(cx);
}
return false;
}
return true;
}
inline bool GCRuntime::gcIfNeededAtAllocation(JSContext* cx) {
#ifdef JS_GC_ZEAL
if (needZealousGC()) {
runDebugGC();
}
#endif
// Invoking the interrupt callback can fail and we can't usefully
// handle that here. Just check in case we need to collect instead.
if (cx->hasAnyPendingInterrupt()) {
gcIfRequested();
}
return true;
}
template
/* static */
void GCRuntime::checkIncrementalZoneState(JSContext* cx, T* t) {
#ifdef DEBUG
MOZ_ASSERT(t);
TenuredCell* cell = &t->asTenured();
Zone* zone = cell->zone();
if (zone->isGCMarkingOrSweeping()) {
MOZ_ASSERT(cell->isMarkedBlack());
} else {
MOZ_ASSERT(!cell->isMarkedAny());
}
#endif
}
TenuredCell* js::gc::AllocateCellInGC(Zone* zone, AllocKind thingKind) {
TenuredCell* cell = zone->arenas.allocateFromFreeList(thingKind);
if (!cell) {
AutoEnterOOMUnsafeRegion oomUnsafe;
cell = GCRuntime::refillFreeListInGC(zone, thingKind);
if (!cell) {
oomUnsafe.crash(ChunkSize, "Failed to allocate new chunk during GC");
}
}
return cell;
}
// /////////// Arena -> Thing Allocator //////////////////////////////////////
void GCRuntime::startBackgroundAllocTaskIfIdle() {
AutoLockHelperThreadState lock;
if (!allocTask.wasStarted(lock)) {
// Join the previous invocation of the task. This will return immediately
// if the thread has never been started.
allocTask.joinWithLockHeld(lock);
allocTask.startWithLockHeld(lock);
}
}
/* static */
TenuredCell* GCRuntime::refillFreeList(JSContext* cx, AllocKind thingKind) {
MOZ_ASSERT(cx->zone()->arenas.freeLists().isEmpty(thingKind));
MOZ_ASSERT(!cx->isHelperThreadContext());
// It should not be possible to allocate on the main thread while we are
// inside a GC.
MOZ_ASSERT(!JS::RuntimeHeapIsBusy(), "allocating while under GC");
return cx->zone()->arenas.refillFreeListAndAllocate(
thingKind, ShouldCheckThresholds::CheckThresholds);
}
/* static */
TenuredCell* GCRuntime::refillFreeListInGC(Zone* zone, AllocKind thingKind) {
// Called by compacting GC to refill a free list while we are in a GC.
MOZ_ASSERT(JS::RuntimeHeapIsCollecting());
MOZ_ASSERT_IF(!JS::RuntimeHeapIsMinorCollecting(),
!zone->runtimeFromMainThread()->gc.isBackgroundSweeping());
return zone->arenas.refillFreeListAndAllocate(
thingKind, ShouldCheckThresholds::DontCheckThresholds);
}
TenuredCell* ArenaLists::refillFreeListAndAllocate(
AllocKind thingKind, ShouldCheckThresholds checkThresholds) {
MOZ_ASSERT(freeLists().isEmpty(thingKind));
JSRuntime* rt = runtimeFromAnyThread();
mozilla::Maybe maybeLock;
// See if we can proceed without taking the GC lock.
if (concurrentUse(thingKind) != ConcurrentUse::None) {
maybeLock.emplace(rt);
}
Arena* arena = arenaList(thingKind).takeNextArena();
if (arena) {
// Empty arenas should be immediately freed.
MOZ_ASSERT(!arena->isEmpty());
return freeLists().setArenaAndAllocate(arena, thingKind);
}
// Parallel threads have their own ArenaLists, but chunks are shared;
// if we haven't already, take the GC lock now to avoid racing.
if (maybeLock.isNothing()) {
maybeLock.emplace(rt);
}
TenuredChunk* chunk = rt->gc.pickChunk(maybeLock.ref());
if (!chunk) {
return nullptr;
}
// Although our chunk should definitely have enough space for another arena,
// there are other valid reasons why TenuredChunk::allocateArena() may fail.
arena = rt->gc.allocateArena(chunk, zone_, thingKind, checkThresholds,
maybeLock.ref());
if (!arena) {
return nullptr;
}
ArenaList& al = arenaList(thingKind);
MOZ_ASSERT(al.isCursorAtEnd());
al.insertBeforeCursor(arena);
return freeLists().setArenaAndAllocate(arena, thingKind);
}
inline TenuredCell* FreeLists::setArenaAndAllocate(Arena* arena,
AllocKind kind) {
#ifdef DEBUG
auto old = freeLists_[kind];
if (!old->isEmpty()) {
old->getArena()->checkNoMarkedFreeCells();
}
#endif
FreeSpan* span = arena->getFirstFreeSpan();
freeLists_[kind] = span;
Zone* zone = arena->zone;
if (MOZ_UNLIKELY(zone->isGCMarkingOrSweeping())) {
arena->arenaAllocatedDuringGC();
}
TenuredCell* thing = span->allocate(Arena::thingSize(kind));
MOZ_ASSERT(thing); // This allocation is infallible.
return thing;
}
void Arena::arenaAllocatedDuringGC() {
// Ensure that anything allocated during the mark or sweep phases of an
// incremental GC will be marked black by pre-marking all free cells in the
// arena we are about to allocate from.
MOZ_ASSERT(zone->isGCMarkingOrSweeping());
for (ArenaFreeCellIter cell(this); !cell.done(); cell.next()) {
MOZ_ASSERT(!cell->isMarkedAny());
cell->markBlack();
}
}
// /////////// TenuredChunk -> Arena Allocator ///////////////////////////////
bool GCRuntime::wantBackgroundAllocation(const AutoLockGC& lock) const {
// To minimize memory waste, we do not want to run the background chunk
// allocation if we already have some empty chunks or when the runtime has
// a small heap size (and therefore likely has a small growth rate).
return allocTask.enabled() &&
emptyChunks(lock).count() < minEmptyChunkCount(lock) &&
(fullChunks(lock).count() + availableChunks(lock).count()) >= 4;
}
Arena* GCRuntime::allocateArena(TenuredChunk* chunk, Zone* zone,
AllocKind thingKind,
ShouldCheckThresholds checkThresholds,
const AutoLockGC& lock) {
MOZ_ASSERT(chunk->hasAvailableArenas());
// Fail the allocation if we are over our heap size limits.
if ((checkThresholds != ShouldCheckThresholds::DontCheckThresholds) &&
(heapSize.bytes() >= tunables.gcMaxBytes())) {
return nullptr;
}
Arena* arena = chunk->allocateArena(this, zone, thingKind, lock);
zone->gcHeapSize.addGCArena(heapSize);
// Trigger an incremental slice if needed.
if (checkThresholds != ShouldCheckThresholds::DontCheckThresholds) {
maybeTriggerGCAfterAlloc(zone);
}
return arena;
}
Arena* TenuredChunk::allocateArena(GCRuntime* gc, Zone* zone,
AllocKind thingKind,
const AutoLockGC& lock) {
if (info.numArenasFreeCommitted == 0) {
commitOnePage(gc);
MOZ_ASSERT(info.numArenasFreeCommitted == ArenasPerPage);
}
MOZ_ASSERT(info.numArenasFreeCommitted > 0);
Arena* arena = fetchNextFreeArena(gc);
arena->init(zone, thingKind, lock);
updateChunkListAfterAlloc(gc, lock);
verify();
return arena;
}
template
static inline size_t FindFirstBitSet(
const mozilla::BitSet& bitset) {
MOZ_ASSERT(!bitset.IsEmpty());
const auto& words = bitset.Storage();
for (size_t i = 0; i < words.Length(); i++) {
uint32_t word = words[i];
if (word) {
return i * 32 + mozilla::CountTrailingZeroes32(word);
}
}
MOZ_CRASH("No bits found");
}
void TenuredChunk::commitOnePage(GCRuntime* gc) {
MOZ_ASSERT(info.numArenasFreeCommitted == 0);
MOZ_ASSERT(info.numArenasFree >= ArenasPerPage);
uint32_t pageIndex = FindFirstBitSet(decommittedPages);
MOZ_ASSERT(decommittedPages[pageIndex]);
if (DecommitEnabled()) {
MarkPagesInUseSoft(pageAddress(pageIndex), PageSize);
}
decommittedPages[pageIndex] = false;
for (size_t i = 0; i < ArenasPerPage; i++) {
size_t arenaIndex = pageIndex * ArenasPerPage + i;
MOZ_ASSERT(!freeCommittedArenas[arenaIndex]);
freeCommittedArenas[arenaIndex] = true;
arenas[arenaIndex].setAsNotAllocated();
++info.numArenasFreeCommitted;
gc->updateOnArenaFree();
}
verify();
}
inline void GCRuntime::updateOnFreeArenaAlloc(const TenuredChunkInfo& info) {
MOZ_ASSERT(info.numArenasFreeCommitted <= numArenasFreeCommitted);
--numArenasFreeCommitted;
}
Arena* TenuredChunk::fetchNextFreeArena(GCRuntime* gc) {
MOZ_ASSERT(info.numArenasFreeCommitted > 0);
MOZ_ASSERT(info.numArenasFreeCommitted <= info.numArenasFree);
size_t index = FindFirstBitSet(freeCommittedArenas);
MOZ_ASSERT(freeCommittedArenas[index]);
freeCommittedArenas[index] = false;
--info.numArenasFreeCommitted;
--info.numArenasFree;
gc->updateOnFreeArenaAlloc(info);
return &arenas[index];
}
// /////////// System -> TenuredChunk Allocator //////////////////////////////
TenuredChunk* GCRuntime::getOrAllocChunk(AutoLockGCBgAlloc& lock) {
TenuredChunk* chunk = emptyChunks(lock).pop();
if (chunk) {
// Reinitialize ChunkBase; arenas are all free and may or may not be
// committed.
SetMemCheckKind(chunk, sizeof(ChunkBase), MemCheckKind::MakeUndefined);
chunk->initBase(rt, nullptr);
MOZ_ASSERT(chunk->unused());
} else {
void* ptr = TenuredChunk::allocate(this);
if (!ptr) {
return nullptr;
}
chunk = TenuredChunk::emplace(ptr, this, /* allMemoryCommitted = */ true);
MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0);
}
if (wantBackgroundAllocation(lock)) {
lock.tryToStartBackgroundAllocation();
}
return chunk;
}
void GCRuntime::recycleChunk(TenuredChunk* chunk, const AutoLockGC& lock) {
#ifdef DEBUG
MOZ_ASSERT(chunk->unused());
chunk->verify();
#endif
// Poison ChunkBase to catch use after free.
AlwaysPoison(chunk, JS_FREED_CHUNK_PATTERN, sizeof(ChunkBase),
MemCheckKind::MakeNoAccess);
emptyChunks(lock).push(chunk);
}
TenuredChunk* GCRuntime::pickChunk(AutoLockGCBgAlloc& lock) {
if (availableChunks(lock).count()) {
return availableChunks(lock).head();
}
TenuredChunk* chunk = getOrAllocChunk(lock);
if (!chunk) {
return nullptr;
}
#ifdef DEBUG
chunk->verify();
MOZ_ASSERT(chunk->unused());
MOZ_ASSERT(!fullChunks(lock).contains(chunk));
MOZ_ASSERT(!availableChunks(lock).contains(chunk));
#endif
availableChunks(lock).push(chunk);
return chunk;
}
BackgroundAllocTask::BackgroundAllocTask(GCRuntime* gc, ChunkPool& pool)
: GCParallelTask(gc, gcstats::PhaseKind::NONE),
chunkPool_(pool),
enabled_(CanUseExtraThreads() && GetCPUCount() >= 2) {
// This can occur outside GCs so doesn't have a stats phase.
}
void BackgroundAllocTask::run(AutoLockHelperThreadState& lock) {
AutoUnlockHelperThreadState unlock(lock);
AutoLockGC gcLock(gc);
while (!isCancelled() && gc->wantBackgroundAllocation(gcLock)) {
TenuredChunk* chunk;
{
AutoUnlockGC unlock(gcLock);
void* ptr = TenuredChunk::allocate(gc);
if (!ptr) {
break;
}
chunk = TenuredChunk::emplace(ptr, gc, /* allMemoryCommitted = */ true);
}
chunkPool_.ref().push(chunk);
}
}
/* static */
void* TenuredChunk::allocate(GCRuntime* gc) {
void* chunk = MapAlignedPages(ChunkSize, ChunkSize);
if (!chunk) {
return nullptr;
}
gc->stats().count(gcstats::COUNT_NEW_CHUNK);
return chunk;
}
static inline bool ShouldDecommitNewChunk(bool allMemoryCommitted,
const GCSchedulingState& state) {
if (!DecommitEnabled()) {
return false;
}
return !allMemoryCommitted || !state.inHighFrequencyGCMode();
}
TenuredChunk* TenuredChunk::emplace(void* ptr, GCRuntime* gc,
bool allMemoryCommitted) {
/* The chunk may still have some regions marked as no-access. */
MOZ_MAKE_MEM_UNDEFINED(ptr, ChunkSize);
/*
* Poison the chunk. Note that decommitAllArenas() below will mark the
* arenas as inaccessible (for memory sanitizers).
*/
Poison(ptr, JS_FRESH_TENURED_PATTERN, ChunkSize, MemCheckKind::MakeUndefined);
TenuredChunk* chunk = new (mozilla::KnownNotNull, ptr) TenuredChunk(gc->rt);
if (ShouldDecommitNewChunk(allMemoryCommitted, gc->schedulingState)) {
// Decommit the arenas. We do this after poisoning so that if the OS does
// not have to recycle the pages, we still get the benefit of poisoning.
chunk->decommitAllArenas();
} else {
// The chunk metadata is initialized as decommitted regardless, to avoid
// having to initialize the arenas at this time.
chunk->initAsDecommitted();
}
chunk->verify();
return chunk;
}
void TenuredChunk::decommitAllArenas() {
MOZ_ASSERT(unused());
MarkPagesUnusedSoft(&arenas[0], ArenasPerChunk * ArenaSize);
initAsDecommitted();
}
void TenuredChunkBase::initAsDecommitted() {
// Set the state of all arenas to free and decommitted. They might not
// actually be decommitted, but in that case the re-commit operation is a
// no-op so it doesn't matter.
decommittedPages.SetAll();
freeCommittedArenas.ResetAll();
info.numArenasFree = ArenasPerChunk;
info.numArenasFreeCommitted = 0;
}