/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "gc/Allocator.h" #include "mozilla/DebugOnly.h" #include "mozilla/OperatorNewExtensions.h" #include "mozilla/TimeStamp.h" #include "gc/GCInternals.h" #include "gc/GCLock.h" #include "gc/GCProbes.h" #include "gc/Nursery.h" #include "threading/CpuCount.h" #include "util/Poison.h" #include "vm/BigIntType.h" #include "vm/JSContext.h" #include "vm/Runtime.h" #include "vm/StringType.h" #include "gc/ArenaList-inl.h" #include "gc/Heap-inl.h" #include "gc/PrivateIterators-inl.h" #include "vm/JSContext-inl.h" using mozilla::TimeDuration; using mozilla::TimeStamp; using namespace js; using namespace gc; template JSObject* gc::detail::AllocateObject(JSContext* cx, AllocKind kind, size_t nDynamicSlots, gc::InitialHeap heap, const JSClass* clasp, AllocSite* site /* = nullptr */) { MOZ_ASSERT(!cx->isHelperThreadContext()); MOZ_ASSERT(IsObjectAllocKind(kind)); size_t thingSize = Arena::thingSize(kind); MOZ_ASSERT(thingSize == Arena::thingSize(kind)); MOZ_ASSERT(thingSize >= sizeof(JSObject_Slots0)); static_assert( sizeof(JSObject_Slots0) >= MinCellSize, "All allocations must be at least the allocator-imposed minimum size."); MOZ_ASSERT_IF(nDynamicSlots != 0, clasp->isNativeObject()); MOZ_ASSERT_IF(site && site->initialHeap() == TenuredHeap, heap == TenuredHeap); JSRuntime* rt = cx->runtime(); if (!rt->gc.checkAllocatorState(cx, kind)) { return nullptr; } if (cx->nursery().isEnabled() && heap != TenuredHeap) { if (!site) { site = cx->zone()->unknownAllocSite(); } JSObject* obj = rt->gc.tryNewNurseryObject( cx, thingSize, nDynamicSlots, clasp, site); if (obj) { return obj; } // Our most common non-jit allocation path is NoGC; thus, if we fail the // alloc and cannot GC, we *must* return nullptr here so that the caller // will do a CanGC allocation to clear the nursery. Failing to do so will // cause all allocations on this path to land in Tenured, and we will not // get the benefit of the nursery. if (!allowGC) { return nullptr; } } return GCRuntime::tryNewTenuredObject(cx, kind, thingSize, nDynamicSlots); } template JSObject* gc::detail::AllocateObject( JSContext* cx, gc::AllocKind kind, size_t nDynamicSlots, gc::InitialHeap heap, const JSClass* clasp, gc::AllocSite* site); template JSObject* gc::detail::AllocateObject( JSContext* cx, gc::AllocKind kind, size_t nDynamicSlots, gc::InitialHeap heap, const JSClass* clasp, gc::AllocSite* site); // Attempt to allocate a new JSObject out of the nursery. If there is not // enough room in the nursery or there is an OOM, this method will return // nullptr. template JSObject* GCRuntime::tryNewNurseryObject(JSContext* cx, size_t thingSize, size_t nDynamicSlots, const JSClass* clasp, AllocSite* site) { MOZ_ASSERT(cx->isNurseryAllocAllowed()); MOZ_ASSERT(!cx->zone()->isAtomsZone()); JSObject* obj = cx->nursery().allocateObject(site, thingSize, nDynamicSlots, clasp); if (obj) { return obj; } if (allowGC && !cx->suppressGC) { cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY); // Exceeding gcMaxBytes while tenuring can disable the Nursery. if (cx->nursery().isEnabled()) { return cx->nursery().allocateObject(site, thingSize, nDynamicSlots, clasp); } } return nullptr; } template JSObject* GCRuntime::tryNewTenuredObject(JSContext* cx, AllocKind kind, size_t thingSize, size_t nDynamicSlots) { ObjectSlots* slotsHeader = nullptr; if (nDynamicSlots) { HeapSlot* allocation = cx->maybe_pod_malloc(ObjectSlots::allocCount(nDynamicSlots)); if (MOZ_UNLIKELY(!allocation)) { if (allowGC) { ReportOutOfMemory(cx); } return nullptr; } slotsHeader = new (allocation) ObjectSlots(nDynamicSlots, 0); Debug_SetSlotRangeToCrashOnTouch(slotsHeader->slots(), nDynamicSlots); } TenuredCell* cell = tryNewTenuredThing(cx, kind, thingSize); if (!cell) { js_free(slotsHeader); return nullptr; } if (nDynamicSlots) { NativeObject* nobj = new (mozilla::KnownNotNull, cell) NativeObject(); nobj->initSlots(slotsHeader->slots()); AddCellMemory(nobj, ObjectSlots::allocSize(nDynamicSlots), MemoryUse::ObjectSlots); return nobj; } return new (mozilla::KnownNotNull, cell) JSObject(); } // Attempt to allocate a new string out of the nursery. If there is not enough // room in the nursery or there is an OOM, this method will return nullptr. template Cell* GCRuntime::tryNewNurseryStringCell(JSContext* cx, size_t thingSize, AllocKind kind) { MOZ_ASSERT(IsNurseryAllocable(kind)); MOZ_ASSERT(cx->isNurseryAllocAllowed()); MOZ_ASSERT(!cx->zone()->isAtomsZone()); AllocSite* site = cx->zone()->unknownAllocSite(); Cell* cell = cx->nursery().allocateString(site, thingSize); if (cell) { return cell; } if (allowGC && !cx->suppressGC) { cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY); // Exceeding gcMaxBytes while tenuring can disable the Nursery, and // other heuristics can disable nursery strings for this zone. if (cx->nursery().isEnabled() && cx->zone()->allocNurseryStrings) { return cx->nursery().allocateString(site, thingSize); } } return nullptr; } template Cell* gc::CellAllocator::AllocateStringCell(JSContext* cx, AllocKind kind, size_t size, InitialHeap heap) { MOZ_ASSERT(!cx->isHelperThreadContext()); MOZ_ASSERT(size == Arena::thingSize(kind)); MOZ_ASSERT(size == sizeof(JSString) || size == sizeof(JSFatInlineString)); MOZ_ASSERT( IsNurseryAllocable(kind)); // Atoms are allocated using Allocate(). JSRuntime* rt = cx->runtime(); if (!rt->gc.checkAllocatorState(cx, kind)) { return nullptr; } if (cx->nursery().isEnabled() && heap != TenuredHeap && cx->nursery().canAllocateStrings() && cx->zone()->allocNurseryStrings) { Cell* cell = rt->gc.tryNewNurseryStringCell(cx, size, kind); if (cell) { return cell; } // Our most common non-jit allocation path is NoGC; thus, if we fail the // alloc and cannot GC, we *must* return nullptr here so that the caller // will do a CanGC allocation to clear the nursery. Failing to do so will // cause all allocations on this path to land in Tenured, and we will not // get the benefit of the nursery. if (!allowGC) { return nullptr; } } return GCRuntime::tryNewTenuredThing(cx, kind, size); } template Cell* gc::CellAllocator::AllocateStringCell(JSContext*, AllocKind, size_t, InitialHeap); template Cell* gc::CellAllocator::AllocateStringCell(JSContext*, AllocKind, size_t, InitialHeap); // Attempt to allocate a new BigInt out of the nursery. If there is not enough // room in the nursery or there is an OOM, this method will return nullptr. template JS::BigInt* GCRuntime::tryNewNurseryBigInt(JSContext* cx, size_t thingSize, AllocKind kind) { MOZ_ASSERT(IsNurseryAllocable(kind)); MOZ_ASSERT(cx->isNurseryAllocAllowed()); MOZ_ASSERT(!cx->zone()->isAtomsZone()); AllocSite* site = cx->zone()->unknownAllocSite(); Cell* cell = cx->nursery().allocateBigInt(site, thingSize); if (cell) { return JS::BigInt::emplace(cell); } if (allowGC && !cx->suppressGC) { cx->runtime()->gc.minorGC(JS::GCReason::OUT_OF_NURSERY); // Exceeding gcMaxBytes while tenuring can disable the Nursery, and // other heuristics can disable nursery BigInts for this zone. if (cx->nursery().isEnabled() && cx->zone()->allocNurseryBigInts) { Cell* cell = cx->nursery().allocateBigInt(site, thingSize); if (cell) { return JS::BigInt::emplace(cell); } } } return nullptr; } template JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx, InitialHeap heap) { MOZ_ASSERT(!cx->isHelperThreadContext()); AllocKind kind = MapTypeToAllocKind::kind; size_t size = sizeof(JS::BigInt); MOZ_ASSERT(size == Arena::thingSize(kind)); JSRuntime* rt = cx->runtime(); if (!rt->gc.checkAllocatorState(cx, kind)) { return nullptr; } if (cx->nursery().isEnabled() && heap != TenuredHeap && cx->nursery().canAllocateBigInts() && cx->zone()->allocNurseryBigInts) { auto* bi = rt->gc.tryNewNurseryBigInt(cx, size, kind); if (bi) { return bi; } // Our most common non-jit allocation path is NoGC; thus, if we fail the // alloc and cannot GC, we *must* return nullptr here so that the caller // will do a CanGC allocation to clear the nursery. Failing to do so will // cause all allocations on this path to land in Tenured, and we will not // get the benefit of the nursery. if (!allowGC) { return nullptr; } } TenuredCell* cell = GCRuntime::tryNewTenuredThing(cx, kind, size); if (!cell) { return nullptr; } return JS::BigInt::emplace(cell); } template JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx, gc::InitialHeap heap); template JS::BigInt* gc::detail::AllocateBigInt(JSContext* cx, gc::InitialHeap heap); template TenuredCell* gc::detail::AllocateTenuredImpl(JSContext* cx, gc::AllocKind kind, size_t size) { MOZ_ASSERT(!cx->isHelperThreadContext()); MOZ_ASSERT(!IsNurseryAllocable(kind)); MOZ_ASSERT(size == Arena::thingSize(kind)); MOZ_ASSERT( size >= gc::MinCellSize, "All allocations must be at least the allocator-imposed minimum size."); if (!cx->runtime()->gc.checkAllocatorState(cx, kind)) { return nullptr; } return GCRuntime::tryNewTenuredThing(cx, kind, size); } template TenuredCell* gc::detail::AllocateTenuredImpl(JSContext*, AllocKind, size_t); template TenuredCell* gc::detail::AllocateTenuredImpl(JSContext*, AllocKind, size_t); template /* static */ TenuredCell* GCRuntime::tryNewTenuredThing(JSContext* cx, AllocKind kind, size_t thingSize) { // Bump allocate in the arena's current free-list span. Zone* zone = cx->zone(); void* t = zone->arenas.freeLists().allocate(kind); if (MOZ_UNLIKELY(!t)) { // Get the next available free list and allocate out of it. This may // acquire a new arena, which will lock the chunk list. If there are no // chunks available it may also allocate new memory directly. t = refillFreeList(cx, kind); if (MOZ_UNLIKELY(!t)) { if constexpr (allowGC) { cx->runtime()->gc.attemptLastDitchGC(cx); TenuredCell* cell = tryNewTenuredThing(cx, kind, thingSize); if (cell) { return cell; } ReportOutOfMemory(cx); } return nullptr; } } TenuredCell* cell = new (mozilla::KnownNotNull, t) TenuredCell(); checkIncrementalZoneState(cx, cell); gcprobes::TenuredAlloc(cell, kind); // We count this regardless of the profiler's state, assuming that it costs // just as much to count it, as to check the profiler's state and decide not // to count it. zone->noteTenuredAlloc(); return cell; } void GCRuntime::attemptLastDitchGC(JSContext* cx) { // Either there was no memory available for a new chunk or the heap hit its // size limit. Try to perform an all-compartments, non-incremental, shrinking // GC and wait for it to finish. if (!lastLastDitchTime.IsNull() && TimeStamp::Now() - lastLastDitchTime <= tunables.minLastDitchGCPeriod()) { return; } JS::PrepareForFullGC(cx); gc(JS::GCOptions::Shrink, JS::GCReason::LAST_DITCH); waitBackgroundAllocEnd(); waitBackgroundFreeEnd(); lastLastDitchTime = mozilla::TimeStamp::Now(); } template bool GCRuntime::checkAllocatorState(JSContext* cx, AllocKind kind) { if (allowGC) { if (!gcIfNeededAtAllocation(cx)) { return false; } } #if defined(JS_GC_ZEAL) || defined(DEBUG) MOZ_ASSERT_IF(cx->zone()->isAtomsZone(), kind == AllocKind::ATOM || kind == AllocKind::FAT_INLINE_ATOM || kind == AllocKind::SYMBOL || kind == AllocKind::JITCODE || kind == AllocKind::SCOPE); MOZ_ASSERT_IF(!cx->zone()->isAtomsZone(), kind != AllocKind::ATOM && kind != AllocKind::FAT_INLINE_ATOM); MOZ_ASSERT(!JS::RuntimeHeapIsBusy()); #endif // Crash if we perform a GC action when it is not safe. if (allowGC && !cx->suppressGC) { cx->verifyIsSafeToGC(); } // For testing out of memory conditions if (js::oom::ShouldFailWithOOM()) { // If we are doing a fallible allocation, percolate up the OOM // instead of reporting it. if (allowGC) { ReportOutOfMemory(cx); } return false; } return true; } inline bool GCRuntime::gcIfNeededAtAllocation(JSContext* cx) { #ifdef JS_GC_ZEAL if (needZealousGC()) { runDebugGC(); } #endif // Invoking the interrupt callback can fail and we can't usefully // handle that here. Just check in case we need to collect instead. if (cx->hasAnyPendingInterrupt()) { gcIfRequested(); } return true; } template /* static */ void GCRuntime::checkIncrementalZoneState(JSContext* cx, T* t) { #ifdef DEBUG MOZ_ASSERT(t); TenuredCell* cell = &t->asTenured(); Zone* zone = cell->zone(); if (zone->isGCMarkingOrSweeping()) { MOZ_ASSERT(cell->isMarkedBlack()); } else { MOZ_ASSERT(!cell->isMarkedAny()); } #endif } TenuredCell* js::gc::AllocateCellInGC(Zone* zone, AllocKind thingKind) { TenuredCell* cell = zone->arenas.allocateFromFreeList(thingKind); if (!cell) { AutoEnterOOMUnsafeRegion oomUnsafe; cell = GCRuntime::refillFreeListInGC(zone, thingKind); if (!cell) { oomUnsafe.crash(ChunkSize, "Failed to allocate new chunk during GC"); } } return cell; } // /////////// Arena -> Thing Allocator ////////////////////////////////////// void GCRuntime::startBackgroundAllocTaskIfIdle() { AutoLockHelperThreadState lock; if (!allocTask.wasStarted(lock)) { // Join the previous invocation of the task. This will return immediately // if the thread has never been started. allocTask.joinWithLockHeld(lock); allocTask.startWithLockHeld(lock); } } /* static */ TenuredCell* GCRuntime::refillFreeList(JSContext* cx, AllocKind thingKind) { MOZ_ASSERT(cx->zone()->arenas.freeLists().isEmpty(thingKind)); MOZ_ASSERT(!cx->isHelperThreadContext()); // It should not be possible to allocate on the main thread while we are // inside a GC. MOZ_ASSERT(!JS::RuntimeHeapIsBusy(), "allocating while under GC"); return cx->zone()->arenas.refillFreeListAndAllocate( thingKind, ShouldCheckThresholds::CheckThresholds); } /* static */ TenuredCell* GCRuntime::refillFreeListInGC(Zone* zone, AllocKind thingKind) { // Called by compacting GC to refill a free list while we are in a GC. MOZ_ASSERT(JS::RuntimeHeapIsCollecting()); MOZ_ASSERT_IF(!JS::RuntimeHeapIsMinorCollecting(), !zone->runtimeFromMainThread()->gc.isBackgroundSweeping()); return zone->arenas.refillFreeListAndAllocate( thingKind, ShouldCheckThresholds::DontCheckThresholds); } TenuredCell* ArenaLists::refillFreeListAndAllocate( AllocKind thingKind, ShouldCheckThresholds checkThresholds) { MOZ_ASSERT(freeLists().isEmpty(thingKind)); JSRuntime* rt = runtimeFromAnyThread(); mozilla::Maybe maybeLock; // See if we can proceed without taking the GC lock. if (concurrentUse(thingKind) != ConcurrentUse::None) { maybeLock.emplace(rt); } Arena* arena = arenaList(thingKind).takeNextArena(); if (arena) { // Empty arenas should be immediately freed. MOZ_ASSERT(!arena->isEmpty()); return freeLists().setArenaAndAllocate(arena, thingKind); } // Parallel threads have their own ArenaLists, but chunks are shared; // if we haven't already, take the GC lock now to avoid racing. if (maybeLock.isNothing()) { maybeLock.emplace(rt); } TenuredChunk* chunk = rt->gc.pickChunk(maybeLock.ref()); if (!chunk) { return nullptr; } // Although our chunk should definitely have enough space for another arena, // there are other valid reasons why TenuredChunk::allocateArena() may fail. arena = rt->gc.allocateArena(chunk, zone_, thingKind, checkThresholds, maybeLock.ref()); if (!arena) { return nullptr; } ArenaList& al = arenaList(thingKind); MOZ_ASSERT(al.isCursorAtEnd()); al.insertBeforeCursor(arena); return freeLists().setArenaAndAllocate(arena, thingKind); } inline TenuredCell* FreeLists::setArenaAndAllocate(Arena* arena, AllocKind kind) { #ifdef DEBUG auto old = freeLists_[kind]; if (!old->isEmpty()) { old->getArena()->checkNoMarkedFreeCells(); } #endif FreeSpan* span = arena->getFirstFreeSpan(); freeLists_[kind] = span; Zone* zone = arena->zone; if (MOZ_UNLIKELY(zone->isGCMarkingOrSweeping())) { arena->arenaAllocatedDuringGC(); } TenuredCell* thing = span->allocate(Arena::thingSize(kind)); MOZ_ASSERT(thing); // This allocation is infallible. return thing; } void Arena::arenaAllocatedDuringGC() { // Ensure that anything allocated during the mark or sweep phases of an // incremental GC will be marked black by pre-marking all free cells in the // arena we are about to allocate from. MOZ_ASSERT(zone->isGCMarkingOrSweeping()); for (ArenaFreeCellIter cell(this); !cell.done(); cell.next()) { MOZ_ASSERT(!cell->isMarkedAny()); cell->markBlack(); } } // /////////// TenuredChunk -> Arena Allocator /////////////////////////////// bool GCRuntime::wantBackgroundAllocation(const AutoLockGC& lock) const { // To minimize memory waste, we do not want to run the background chunk // allocation if we already have some empty chunks or when the runtime has // a small heap size (and therefore likely has a small growth rate). return allocTask.enabled() && emptyChunks(lock).count() < minEmptyChunkCount(lock) && (fullChunks(lock).count() + availableChunks(lock).count()) >= 4; } Arena* GCRuntime::allocateArena(TenuredChunk* chunk, Zone* zone, AllocKind thingKind, ShouldCheckThresholds checkThresholds, const AutoLockGC& lock) { MOZ_ASSERT(chunk->hasAvailableArenas()); // Fail the allocation if we are over our heap size limits. if ((checkThresholds != ShouldCheckThresholds::DontCheckThresholds) && (heapSize.bytes() >= tunables.gcMaxBytes())) { return nullptr; } Arena* arena = chunk->allocateArena(this, zone, thingKind, lock); zone->gcHeapSize.addGCArena(heapSize); // Trigger an incremental slice if needed. if (checkThresholds != ShouldCheckThresholds::DontCheckThresholds) { maybeTriggerGCAfterAlloc(zone); } return arena; } Arena* TenuredChunk::allocateArena(GCRuntime* gc, Zone* zone, AllocKind thingKind, const AutoLockGC& lock) { if (info.numArenasFreeCommitted == 0) { commitOnePage(gc); MOZ_ASSERT(info.numArenasFreeCommitted == ArenasPerPage); } MOZ_ASSERT(info.numArenasFreeCommitted > 0); Arena* arena = fetchNextFreeArena(gc); arena->init(zone, thingKind, lock); updateChunkListAfterAlloc(gc, lock); verify(); return arena; } template static inline size_t FindFirstBitSet( const mozilla::BitSet& bitset) { MOZ_ASSERT(!bitset.IsEmpty()); const auto& words = bitset.Storage(); for (size_t i = 0; i < words.Length(); i++) { uint32_t word = words[i]; if (word) { return i * 32 + mozilla::CountTrailingZeroes32(word); } } MOZ_CRASH("No bits found"); } void TenuredChunk::commitOnePage(GCRuntime* gc) { MOZ_ASSERT(info.numArenasFreeCommitted == 0); MOZ_ASSERT(info.numArenasFree >= ArenasPerPage); uint32_t pageIndex = FindFirstBitSet(decommittedPages); MOZ_ASSERT(decommittedPages[pageIndex]); if (DecommitEnabled()) { MarkPagesInUseSoft(pageAddress(pageIndex), PageSize); } decommittedPages[pageIndex] = false; for (size_t i = 0; i < ArenasPerPage; i++) { size_t arenaIndex = pageIndex * ArenasPerPage + i; MOZ_ASSERT(!freeCommittedArenas[arenaIndex]); freeCommittedArenas[arenaIndex] = true; arenas[arenaIndex].setAsNotAllocated(); ++info.numArenasFreeCommitted; gc->updateOnArenaFree(); } verify(); } inline void GCRuntime::updateOnFreeArenaAlloc(const TenuredChunkInfo& info) { MOZ_ASSERT(info.numArenasFreeCommitted <= numArenasFreeCommitted); --numArenasFreeCommitted; } Arena* TenuredChunk::fetchNextFreeArena(GCRuntime* gc) { MOZ_ASSERT(info.numArenasFreeCommitted > 0); MOZ_ASSERT(info.numArenasFreeCommitted <= info.numArenasFree); size_t index = FindFirstBitSet(freeCommittedArenas); MOZ_ASSERT(freeCommittedArenas[index]); freeCommittedArenas[index] = false; --info.numArenasFreeCommitted; --info.numArenasFree; gc->updateOnFreeArenaAlloc(info); return &arenas[index]; } // /////////// System -> TenuredChunk Allocator ////////////////////////////// TenuredChunk* GCRuntime::getOrAllocChunk(AutoLockGCBgAlloc& lock) { TenuredChunk* chunk = emptyChunks(lock).pop(); if (chunk) { // Reinitialize ChunkBase; arenas are all free and may or may not be // committed. SetMemCheckKind(chunk, sizeof(ChunkBase), MemCheckKind::MakeUndefined); chunk->initBase(rt, nullptr); MOZ_ASSERT(chunk->unused()); } else { void* ptr = TenuredChunk::allocate(this); if (!ptr) { return nullptr; } chunk = TenuredChunk::emplace(ptr, this, /* allMemoryCommitted = */ true); MOZ_ASSERT(chunk->info.numArenasFreeCommitted == 0); } if (wantBackgroundAllocation(lock)) { lock.tryToStartBackgroundAllocation(); } return chunk; } void GCRuntime::recycleChunk(TenuredChunk* chunk, const AutoLockGC& lock) { #ifdef DEBUG MOZ_ASSERT(chunk->unused()); chunk->verify(); #endif // Poison ChunkBase to catch use after free. AlwaysPoison(chunk, JS_FREED_CHUNK_PATTERN, sizeof(ChunkBase), MemCheckKind::MakeNoAccess); emptyChunks(lock).push(chunk); } TenuredChunk* GCRuntime::pickChunk(AutoLockGCBgAlloc& lock) { if (availableChunks(lock).count()) { return availableChunks(lock).head(); } TenuredChunk* chunk = getOrAllocChunk(lock); if (!chunk) { return nullptr; } #ifdef DEBUG chunk->verify(); MOZ_ASSERT(chunk->unused()); MOZ_ASSERT(!fullChunks(lock).contains(chunk)); MOZ_ASSERT(!availableChunks(lock).contains(chunk)); #endif availableChunks(lock).push(chunk); return chunk; } BackgroundAllocTask::BackgroundAllocTask(GCRuntime* gc, ChunkPool& pool) : GCParallelTask(gc, gcstats::PhaseKind::NONE), chunkPool_(pool), enabled_(CanUseExtraThreads() && GetCPUCount() >= 2) { // This can occur outside GCs so doesn't have a stats phase. } void BackgroundAllocTask::run(AutoLockHelperThreadState& lock) { AutoUnlockHelperThreadState unlock(lock); AutoLockGC gcLock(gc); while (!isCancelled() && gc->wantBackgroundAllocation(gcLock)) { TenuredChunk* chunk; { AutoUnlockGC unlock(gcLock); void* ptr = TenuredChunk::allocate(gc); if (!ptr) { break; } chunk = TenuredChunk::emplace(ptr, gc, /* allMemoryCommitted = */ true); } chunkPool_.ref().push(chunk); } } /* static */ void* TenuredChunk::allocate(GCRuntime* gc) { void* chunk = MapAlignedPages(ChunkSize, ChunkSize); if (!chunk) { return nullptr; } gc->stats().count(gcstats::COUNT_NEW_CHUNK); return chunk; } static inline bool ShouldDecommitNewChunk(bool allMemoryCommitted, const GCSchedulingState& state) { if (!DecommitEnabled()) { return false; } return !allMemoryCommitted || !state.inHighFrequencyGCMode(); } TenuredChunk* TenuredChunk::emplace(void* ptr, GCRuntime* gc, bool allMemoryCommitted) { /* The chunk may still have some regions marked as no-access. */ MOZ_MAKE_MEM_UNDEFINED(ptr, ChunkSize); /* * Poison the chunk. Note that decommitAllArenas() below will mark the * arenas as inaccessible (for memory sanitizers). */ Poison(ptr, JS_FRESH_TENURED_PATTERN, ChunkSize, MemCheckKind::MakeUndefined); TenuredChunk* chunk = new (mozilla::KnownNotNull, ptr) TenuredChunk(gc->rt); if (ShouldDecommitNewChunk(allMemoryCommitted, gc->schedulingState)) { // Decommit the arenas. We do this after poisoning so that if the OS does // not have to recycle the pages, we still get the benefit of poisoning. chunk->decommitAllArenas(); } else { // The chunk metadata is initialized as decommitted regardless, to avoid // having to initialize the arenas at this time. chunk->initAsDecommitted(); } chunk->verify(); return chunk; } void TenuredChunk::decommitAllArenas() { MOZ_ASSERT(unused()); MarkPagesUnusedSoft(&arenas[0], ArenasPerChunk * ArenaSize); initAsDecommitted(); } void TenuredChunkBase::initAsDecommitted() { // Set the state of all arenas to free and decommitted. They might not // actually be decommitted, but in that case the re-commit operation is a // no-op so it doesn't matter. decommittedPages.SetAll(); freeCommittedArenas.ResetAll(); info.numArenasFree = ArenasPerChunk; info.numArenasFreeCommitted = 0; }