/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "jit/arm64/Lowering-arm64.h" #include "mozilla/MathAlgorithms.h" #include "jit/arm64/Assembler-arm64.h" #include "jit/Lowering.h" #include "jit/MIR.h" #include "jit/shared/Lowering-shared-inl.h" using namespace js; using namespace js::jit; using mozilla::FloorLog2; LBoxAllocation LIRGeneratorARM64::useBoxFixed(MDefinition* mir, Register reg1, Register, bool useAtStart) { MOZ_ASSERT(mir->type() == MIRType::Value); ensureDefined(mir); return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart)); } LAllocation LIRGeneratorARM64::useByteOpRegister(MDefinition* mir) { return useRegister(mir); } LAllocation LIRGeneratorARM64::useByteOpRegisterAtStart(MDefinition* mir) { return useRegisterAtStart(mir); } LAllocation LIRGeneratorARM64::useByteOpRegisterOrNonDoubleConstant( MDefinition* mir) { return useRegisterOrNonDoubleConstant(mir); } LDefinition LIRGeneratorARM64::tempByteOpRegister() { return temp(); } LDefinition LIRGeneratorARM64::tempToUnbox() { return temp(); } void LIRGenerator::visitBox(MBox* box) { MDefinition* opd = box->getOperand(0); // If the operand is a constant, emit near its uses. if (opd->isConstant() && box->canEmitAtUses()) { emitAtUses(box); return; } if (opd->isConstant()) { define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box, LDefinition(LDefinition::BOX)); } else { LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type()); define(ins, box, LDefinition(LDefinition::BOX)); } } void LIRGenerator::visitUnbox(MUnbox* unbox) { MDefinition* box = unbox->getOperand(0); MOZ_ASSERT(box->type() == MIRType::Value); LUnboxBase* lir; if (IsFloatingPointType(unbox->type())) { lir = new (alloc()) LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type()); } else if (unbox->fallible()) { // If the unbox is fallible, load the Value in a register first to // avoid multiple loads. lir = new (alloc()) LUnbox(useRegisterAtStart(box)); } else { // FIXME: It should be possible to useAtStart() here, but the DEBUG // code in CodeGenerator::visitUnbox() needs to handle non-Register // cases. ARM64 doesn't have an Operand type. lir = new (alloc()) LUnbox(useRegisterAtStart(box)); } if (unbox->fallible()) { assignSnapshot(lir, unbox->bailoutKind()); } define(lir, unbox); } void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { MOZ_ASSERT(opd->type() == MIRType::Value); LReturn* ins = new (alloc()) LReturn(isGenerator); ins->setOperand(0, useFixed(opd, JSReturnReg)); add(ins); } // x = !y void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input) { ins->setOperand( 0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } // z = x+y void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs)); ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) : useRegisterOrConstantAtStart(rhs)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input) { ins->setOperand(0, useRegisterAtStart(input)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, useRegisterAtStart(lhs)); ins->setOperand(1, useRegisterAtStart(rhs)); define( ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); } template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); void LIRGeneratorARM64::lowerForALUInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* input) { ins->setInt64Operand(0, useInt64RegisterAtStart(input)); defineInt64(ins, mir); } // These all currently have codegen that depends on reuse but only because the // masm API depends on that. We need new three-address masm APIs, for both // constant and variable rhs. // // MAdd => LAddI64 // MSub => LSubI64 // MBitAnd, MBitOr, MBitXor => LBitOpI64 void LIRGeneratorARM64::lowerForALUInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(INT64_PIECES, useInt64RegisterOrConstantAtStart(rhs)); defineInt64(ins, mir); } void LIRGeneratorARM64::lowerForMulInt64(LMulI64* ins, MMul* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(LMulI64::Lhs, useInt64RegisterAtStart(lhs)); ins->setInt64Operand(LMulI64::Rhs, useInt64RegisterOrConstantAtStart(rhs)); defineInt64(ins, mir); } template void LIRGeneratorARM64::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); static_assert(LShiftI64::Rhs == INT64_PIECES, "Assume Rhs is located at INT64_PIECES."); static_assert(LRotateI64::Count == INT64_PIECES, "Assume Count is located at INT64_PIECES."); ins->setOperand(INT64_PIECES, useRegisterOrConstantAtStart(rhs)); defineInt64(ins, mir); } template void LIRGeneratorARM64::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); template void LIRGeneratorARM64::lowerForShiftInt64( LInstructionHelper* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs); void LIRGeneratorARM64::lowerForCompareI64AndBranch(MTest* mir, MCompare* comp, JSOp op, MDefinition* left, MDefinition* right, MBasicBlock* ifTrue, MBasicBlock* ifFalse) { auto* lir = new (alloc()) LCompareI64AndBranch(comp, op, useInt64Register(left), useInt64RegisterOrConstant(right), ifTrue, ifFalse); add(lir, mir); } void LIRGeneratorARM64::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir, MDefinition* lhs, MDefinition* rhs) { baab->setOperand(0, useRegisterAtStart(lhs)); baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); add(baab, mir); } void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt32( MWasmBuiltinTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); if (opd->type() == MIRType::Double) { define(new (alloc()) LWasmBuiltinTruncateDToInt32( useRegister(opd), useFixed(ins->instance(), InstanceReg), LDefinition::BogusTemp()), ins); return; } define(new (alloc()) LWasmBuiltinTruncateFToInt32( useRegister(opd), useFixed(ins->instance(), InstanceReg), LDefinition::BogusTemp()), ins); } void LIRGeneratorARM64::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex) { lowerTypedPhiInput(phi, inputPosition, block, lirIndex); } void LIRGeneratorARM64::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { ins->setOperand(0, useRegister(lhs)); ins->setOperand(1, useRegisterOrConstant(rhs)); define(ins, mir); } void LIRGeneratorARM64::lowerDivI(MDiv* div) { if (div->isUnsigned()) { lowerUDiv(div); return; } if (div->rhs()->isConstant()) { LAllocation lhs = useRegister(div->lhs()); int32_t rhs = div->rhs()->toConstant()->toInt32(); int32_t shift = mozilla::FloorLog2(mozilla::Abs(rhs)); if (rhs != 0 && uint32_t(1) << shift == mozilla::Abs(rhs)) { LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, rhs < 0); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); return; } if (rhs != 0) { LDivConstantI* lir = new (alloc()) LDivConstantI(lhs, rhs, temp()); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); return; } } LDivI* lir = new (alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); } void LIRGeneratorARM64::lowerNegI(MInstruction* ins, MDefinition* input) { define(new (alloc()) LNegI(useRegisterAtStart(input)), ins); } void LIRGeneratorARM64::lowerNegI64(MInstruction* ins, MDefinition* input) { defineInt64(new (alloc()) LNegI64(useInt64RegisterAtStart(input)), ins); } void LIRGeneratorARM64::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs) { LMulI* lir = new (alloc()) LMulI; if (mul->fallible()) { assignSnapshot(lir, mul->bailoutKind()); } lowerForALU(lir, mul, lhs, rhs); } void LIRGeneratorARM64::lowerModI(MMod* mod) { if (mod->isUnsigned()) { lowerUMod(mod); return; } if (mod->rhs()->isConstant()) { int32_t rhs = mod->rhs()->toConstant()->toInt32(); int32_t shift = FloorLog2(rhs); if (rhs > 0 && 1 << shift == rhs) { LModPowTwoI* lir = new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); return; } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { LModMaskI* lir = new (alloc()) LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); } } LModI* lir = new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs())); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); } void LIRGeneratorARM64::lowerDivI64(MDiv* div) { if (div->isUnsigned()) { lowerUDivI64(div); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs())); defineInt64(lir, div); } void LIRGeneratorARM64::lowerUDivI64(MDiv* div) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs())); defineInt64(lir, div); } void LIRGeneratorARM64::lowerUModI64(MMod* mod) { LUDivOrModI64* lir = new (alloc()) LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs())); defineInt64(lir, mod); } void LIRGeneratorARM64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { MOZ_CRASH("We don't use runtime div for this architecture"); } void LIRGeneratorARM64::lowerModI64(MMod* mod) { if (mod->isUnsigned()) { lowerUModI64(mod); return; } LDivOrModI64* lir = new (alloc()) LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs())); defineInt64(lir, mod); } void LIRGeneratorARM64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { MOZ_CRASH("We don't use runtime mod for this architecture"); } void LIRGenerator::visitPowHalf(MPowHalf* ins) { MDefinition* input = ins->input(); MOZ_ASSERT(input->type() == MIRType::Double); LPowHalfD* lir = new (alloc()) LPowHalfD(useRegister(input)); define(lir, ins); } void LIRGeneratorARM64::lowerWasmSelectI(MWasmSelect* select) { if (select->type() == MIRType::Simd128) { LAllocation t = useRegisterAtStart(select->trueExpr()); LAllocation f = useRegister(select->falseExpr()); LAllocation c = useRegister(select->condExpr()); auto* lir = new (alloc()) LWasmSelect(t, f, c); defineReuseInput(lir, select, LWasmSelect::TrueExprIndex); } else { LAllocation t = useRegisterAtStart(select->trueExpr()); LAllocation f = useRegisterAtStart(select->falseExpr()); LAllocation c = useRegisterAtStart(select->condExpr()); define(new (alloc()) LWasmSelect(t, f, c), select); } } void LIRGeneratorARM64::lowerWasmSelectI64(MWasmSelect* select) { LInt64Allocation t = useInt64RegisterAtStart(select->trueExpr()); LInt64Allocation f = useInt64RegisterAtStart(select->falseExpr()); LAllocation c = useRegisterAtStart(select->condExpr()); defineInt64(new (alloc()) LWasmSelectI64(t, f, c), select); } // On arm64 we specialize the cases: compare is {{U,}Int32, {U,}Int64}, // Float32, Double}, and select is {{U,}Int32, {U,}Int64}, Float32, Double}, // independently. bool LIRGeneratorARM64::canSpecializeWasmCompareAndSelect( MCompare::CompareType compTy, MIRType insTy) { return (insTy == MIRType::Int32 || insTy == MIRType::Int64 || insTy == MIRType::Float32 || insTy == MIRType::Double) && (compTy == MCompare::Compare_Int32 || compTy == MCompare::Compare_UInt32 || compTy == MCompare::Compare_Int64 || compTy == MCompare::Compare_UInt64 || compTy == MCompare::Compare_Float32 || compTy == MCompare::Compare_Double); } void LIRGeneratorARM64::lowerWasmCompareAndSelect(MWasmSelect* ins, MDefinition* lhs, MDefinition* rhs, MCompare::CompareType compTy, JSOp jsop) { MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); LAllocation rhsAlloc; if (compTy == MCompare::Compare_Float32 || compTy == MCompare::Compare_Double) { rhsAlloc = useRegisterAtStart(rhs); } else if (compTy == MCompare::Compare_Int32 || compTy == MCompare::Compare_UInt32 || compTy == MCompare::Compare_Int64 || compTy == MCompare::Compare_UInt64) { rhsAlloc = useRegisterOrConstantAtStart(rhs); } else { MOZ_CRASH("Unexpected type"); } auto* lir = new (alloc()) LWasmCompareAndSelect(useRegisterAtStart(lhs), rhsAlloc, compTy, jsop, useRegisterAtStart(ins->trueExpr()), useRegisterAtStart(ins->falseExpr())); define(lir, ins); } void LIRGenerator::visitAbs(MAbs* ins) { define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins); } LTableSwitch* LIRGeneratorARM64::newLTableSwitch(const LAllocation& in, const LDefinition& inputCopy, MTableSwitch* tableswitch) { return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); } LTableSwitchV* LIRGeneratorARM64::newLTableSwitchV(MTableSwitch* tableswitch) { return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), tempDouble(), temp(), tableswitch); } void LIRGeneratorARM64::lowerUrshD(MUrsh* mir) { MDefinition* lhs = mir->lhs(); MDefinition* rhs = mir->rhs(); MOZ_ASSERT(lhs->type() == MIRType::Int32); MOZ_ASSERT(rhs->type() == MIRType::Int32); LUrshD* lir = new (alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); define(lir, mir); } void LIRGeneratorARM64::lowerPowOfTwoI(MPow* mir) { int32_t base = mir->input()->toConstant()->toInt32(); MDefinition* power = mir->power(); auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base); assignSnapshot(lir, mir->bailoutKind()); define(lir, mir); } void LIRGeneratorARM64::lowerBigIntLsh(MBigIntLsh* ins) { auto* lir = new (alloc()) LBigIntLsh( useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorARM64::lowerBigIntRsh(MBigIntRsh* ins) { auto* lir = new (alloc()) LBigIntRsh( useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorARM64::lowerBigIntDiv(MBigIntDiv* ins) { auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorARM64::lowerBigIntMod(MBigIntMod* ins) { auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } #ifdef ENABLE_WASM_SIMD bool LIRGeneratorARM64::canFoldReduceSimd128AndBranch(wasm::SimdOp op) { switch (op) { case wasm::SimdOp::V128AnyTrue: case wasm::SimdOp::I8x16AllTrue: case wasm::SimdOp::I16x8AllTrue: case wasm::SimdOp::I32x4AllTrue: case wasm::SimdOp::I64x2AllTrue: return true; default: return false; } } bool LIRGeneratorARM64::canEmitWasmReduceSimd128AtUses( MWasmReduceSimd128* ins) { if (!ins->canEmitAtUses()) { return false; } // Only specific ops generating int32. if (ins->type() != MIRType::Int32) { return false; } if (!canFoldReduceSimd128AndBranch(ins->simdOp())) { return false; } // If never used then defer (it will be removed). MUseIterator iter(ins->usesBegin()); if (iter == ins->usesEnd()) { return true; } // We require an MTest consumer. MNode* node = iter->consumer(); if (!node->isDefinition() || !node->toDefinition()->isTest()) { return false; } // Defer only if there's only one use. iter++; return iter == ins->usesEnd(); } #endif void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { switch (ins->type()) { case MIRType::Int32: define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); break; case MIRType::Float32: define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); break; case MIRType::Double: define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); break; default: MOZ_CRASH("unexpected type"); } } void LIRGeneratorARM64::lowerUDiv(MDiv* div) { LAllocation lhs = useRegister(div->lhs()); if (div->rhs()->isConstant()) { int32_t rhs = div->rhs()->toConstant()->toInt32(); int32_t shift = mozilla::FloorLog2(mozilla::Abs(rhs)); if (rhs != 0 && uint32_t(1) << shift == mozilla::Abs(rhs)) { LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, false); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); return; } LUDivConstantI* lir = new (alloc()) LUDivConstantI(lhs, rhs, temp()); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); return; } // Generate UDiv LAllocation rhs = useRegister(div->rhs()); LDefinition remainder = LDefinition::BogusTemp(); if (!div->canTruncateRemainder()) { remainder = temp(); } LUDiv* lir = new (alloc()) LUDiv(lhs, rhs, remainder); if (div->fallible()) { assignSnapshot(lir, div->bailoutKind()); } define(lir, div); } void LIRGeneratorARM64::lowerUMod(MMod* mod) { LUMod* lir = new (alloc()) LUMod(useRegister(mod->getOperand(0)), useRegister(mod->getOperand(1))); if (mod->fallible()) { assignSnapshot(lir, mod->bailoutKind()); } define(lir, mod); } void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToDouble* lir = new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); define(lir, ins); } void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { MOZ_ASSERT(ins->input()->type() == MIRType::Int32); LWasmUint32ToFloat32* lir = new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); define(lir, ins); } void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); MOZ_ASSERT_IF(ins->needsBoundsCheck(), boundsCheckLimit->type() == MIRType::Int32); LAllocation baseAlloc = useRegisterAtStart(base); LAllocation limitAlloc = ins->needsBoundsCheck() ? useRegisterAtStart(boundsCheckLimit) : LAllocation(); // We have no memory-base value, meaning that HeapReg is to be used as the // memory base. This follows from the definition of // FunctionCompiler::maybeLoadMemoryBase() in WasmIonCompile.cpp. MOZ_ASSERT(!ins->hasMemoryBase()); auto* lir = new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation()); define(lir, ins); } void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { MDefinition* base = ins->base(); MOZ_ASSERT(base->type() == MIRType::Int32); MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); MOZ_ASSERT_IF(ins->needsBoundsCheck(), boundsCheckLimit->type() == MIRType::Int32); LAllocation baseAlloc = useRegisterAtStart(base); LAllocation limitAlloc = ins->needsBoundsCheck() ? useRegisterAtStart(boundsCheckLimit) : LAllocation(); // See comment in LIRGenerator::visitAsmJSStoreHeap just above. MOZ_ASSERT(!ins->hasMemoryBase()); add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), limitAlloc, LAllocation()), ins); } void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { MDefinition* base = ins->base(); // See comment in visitWasmLoad re the type of 'base'. MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); // Note, the access type may be Int64 here. LWasmCompareExchangeHeap* lir = new (alloc()) LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()), useRegister(ins->newValue())); define(lir, ins); } void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { MDefinition* base = ins->base(); // See comment in visitWasmLoad re the type of 'base'. MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); // Note, the access type may be Int64 here. LWasmAtomicExchangeHeap* lir = new (alloc()) LWasmAtomicExchangeHeap(useRegister(base), useRegister(ins->value())); define(lir, ins); } void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { MDefinition* base = ins->base(); // See comment in visitWasmLoad re the type of 'base'. MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); // Note, the access type may be Int64 here. if (!ins->hasUses()) { LWasmAtomicBinopHeapForEffect* lir = new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), useRegister(ins->value()), /* flagTemp= */ temp()); add(lir, ins); return; } LWasmAtomicBinopHeap* lir = new (alloc()) LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()), /* temp= */ LDefinition::BogusTemp(), /* flagTemp= */ temp()); define(lir, ins); } void LIRGeneratorARM64::lowerTruncateDToInt32(MTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double); define(new (alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); } void LIRGeneratorARM64::lowerTruncateFToInt32(MTruncateToInt32* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Float32); define(new (alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins); } void LIRGenerator::visitAtomicTypedArrayElementBinop( MAtomicTypedArrayElementBinop* ins) { MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); MOZ_ASSERT(ins->arrayType() != Scalar::Float32); MOZ_ASSERT(ins->arrayType() != Scalar::Float64); MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); LAllocation value = useRegister(ins->value()); if (Scalar::isBigIntType(ins->arrayType())) { LInt64Definition temp1 = tempInt64(); LInt64Definition temp2 = tempInt64(); // Case 1: the result of the operation is not used. // // We can omit allocating the result BigInt. if (ins->isForEffect()) { auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( elements, index, value, temp1, temp2); add(lir, ins); return; } // Case 2: the result of the operation is used. auto* lir = new (alloc()) LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2); define(lir, ins); assignSafepoint(lir, ins); return; } if (ins->isForEffect()) { auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect(elements, index, value, temp()); add(lir, ins); return; } LDefinition tempDef1 = temp(); LDefinition tempDef2 = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32) { tempDef2 = temp(); } LAtomicTypedArrayElementBinop* lir = new (alloc()) LAtomicTypedArrayElementBinop(elements, index, value, tempDef1, tempDef2); define(lir, ins); } void LIRGenerator::visitCompareExchangeTypedArrayElement( MCompareExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->arrayType() != Scalar::Float32); MOZ_ASSERT(ins->arrayType() != Scalar::Float64); MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); const LAllocation newval = useRegister(ins->newval()); const LAllocation oldval = useRegister(ins->oldval()); if (Scalar::isBigIntType(ins->arrayType())) { LInt64Definition temp1 = tempInt64(); LInt64Definition temp2 = tempInt64(); auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( elements, index, oldval, newval, temp1, temp2); define(lir, ins); assignSafepoint(lir, ins); return; } // If the target is an FPReg then we need a temporary at the CodeGenerator // level for creating the result. LDefinition outTemp = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32) { outTemp = temp(); } LCompareExchangeTypedArrayElement* lir = new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, outTemp); define(lir, ins); } void LIRGenerator::visitAtomicExchangeTypedArrayElement( MAtomicExchangeTypedArrayElement* ins) { MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->arrayType()); const LAllocation value = useRegister(ins->value()); if (Scalar::isBigIntType(ins->arrayType())) { LInt64Definition temp1 = tempInt64(); LDefinition temp2 = temp(); auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64( elements, index, value, temp1, temp2); define(lir, ins); assignSafepoint(lir, ins); return; } MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); LDefinition tempDef = LDefinition::BogusTemp(); if (ins->arrayType() == Scalar::Uint32) { tempDef = temp(); } LAtomicExchangeTypedArrayElement* lir = new (alloc()) LAtomicExchangeTypedArrayElement(elements, index, value, tempDef); define(lir, ins); } void LIRGeneratorARM64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { const LUse elements = useRegister(ins->elements()); const LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->storageType()); auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGeneratorARM64::lowerAtomicStore64(MStoreUnboxedScalar* ins) { LUse elements = useRegister(ins->elements()); LAllocation index = useRegisterOrIndexConstant(ins->index(), ins->writeType()); LAllocation value = useRegister(ins->value()); add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins); } void LIRGenerator::visitSubstr(MSubstr* ins) { LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()), useRegister(ins->begin()), useRegister(ins->length()), temp(), temp(), temp()); define(lir, ins); assignSafepoint(lir, ins); } void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins); } void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt64( MWasmBuiltinTruncateToInt64* ins) { MOZ_CRASH("We don't use WasmBuiltinTruncateToInt64 for arm64"); } void LIRGeneratorARM64::lowerBuiltinInt64ToFloatingPoint( MBuiltinInt64ToFloatingPoint* ins) { MOZ_CRASH("We don't use it for this architecture"); } void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); define(lir, ins); } void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { MDefinition* base = ins->base(); // 'base' is a GPR but may be of either type. If it is 32-bit it is // zero-extended and can act as 64-bit. MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); LAllocation ptr = useRegisterOrConstantAtStart(base); if (ins->type() == MIRType::Int64) { auto* lir = new (alloc()) LWasmLoadI64(ptr); defineInt64(lir, ins); } else { auto* lir = new (alloc()) LWasmLoad(ptr); define(lir, ins); } } void LIRGenerator::visitWasmStore(MWasmStore* ins) { MDefinition* base = ins->base(); // See comment in visitWasmLoad re the type of 'base'. MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); MDefinition* value = ins->value(); if (ins->access().type() == Scalar::Int64) { LAllocation baseAlloc = useRegisterOrConstantAtStart(base); LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc); add(lir, ins); return; } LAllocation baseAlloc = useRegisterOrConstantAtStart(base); LAllocation valueAlloc = useRegisterAtStart(value); auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc); add(lir, ins); } void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { MDefinition* opd = ins->input(); MOZ_ASSERT(opd->type() == MIRType::Int64); MOZ_ASSERT(IsFloatingPointType(ins->type())); define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins); } void LIRGenerator::visitCopySign(MCopySign* ins) { MDefinition* lhs = ins->lhs(); MDefinition* rhs = ins->rhs(); MOZ_ASSERT(IsFloatingPointType(lhs->type())); MOZ_ASSERT(lhs->type() == rhs->type()); MOZ_ASSERT(lhs->type() == ins->type()); LInstructionHelper<1, 2, 2>* lir; if (lhs->type() == MIRType::Double) { lir = new (alloc()) LCopySignD(); } else { lir = new (alloc()) LCopySignF(); } lir->setOperand(0, useRegisterAtStart(lhs)); lir->setOperand(1, willHaveDifferentLIRNodes(lhs, rhs) ? useRegister(rhs) : useRegisterAtStart(rhs)); // The copySignDouble and copySignFloat32 are optimized for lhs == output. // It also prevents rhs == output when lhs != output, avoids clobbering. defineReuseInput(lir, ins, 0); } void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { defineInt64( new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); } void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { defineInt64(new (alloc()) LSignExtendInt64(useInt64RegisterAtStart(ins->input())), ins); } void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) { #ifdef ENABLE_WASM_SIMD MOZ_ASSERT(ins->v0()->type() == MIRType::Simd128); MOZ_ASSERT(ins->v1()->type() == MIRType::Simd128); MOZ_ASSERT(ins->v2()->type() == MIRType::Simd128); MOZ_ASSERT(ins->type() == MIRType::Simd128); switch (ins->simdOp()) { case wasm::SimdOp::V128Bitselect: { auto* lir = new (alloc()) LWasmTernarySimd128( ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), useRegisterAtStart(ins->v2())); // On ARM64, control register is used as output at machine instruction. defineReuseInput(lir, ins, LWasmTernarySimd128::V2); break; } case wasm::SimdOp::F32x4RelaxedFma: case wasm::SimdOp::F32x4RelaxedFnma: case wasm::SimdOp::F64x2RelaxedFma: case wasm::SimdOp::F64x2RelaxedFnma: { auto* lir = new (alloc()) LWasmTernarySimd128( ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), useRegisterAtStart(ins->v2())); defineReuseInput(lir, ins, LWasmTernarySimd128::V2); break; } case wasm::SimdOp::I32x4DotI8x16I7x16AddS: { auto* lir = new (alloc()) LWasmTernarySimd128( ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), useRegisterAtStart(ins->v2()), tempSimd128()); defineReuseInput(lir, ins, LWasmTernarySimd128::V2); break; } case wasm::SimdOp::I8x16RelaxedLaneSelect: case wasm::SimdOp::I16x8RelaxedLaneSelect: case wasm::SimdOp::I32x4RelaxedLaneSelect: case wasm::SimdOp::I64x2RelaxedLaneSelect: { auto* lir = new (alloc()) LWasmTernarySimd128( ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), useRegisterAtStart(ins->v2())); defineReuseInput(lir, ins, LWasmTernarySimd128::V2); break; } case wasm::SimdOp::F32x4RelaxedDotBF16x8AddF32x4: { auto* lir = new (alloc()) LWasmTernarySimd128( ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), useRegisterAtStart(ins->v2()), tempSimd128()); defineReuseInput(lir, ins, LWasmTernarySimd128::V2); break; } default: MOZ_CRASH("NYI"); } #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { #ifdef ENABLE_WASM_SIMD MDefinition* lhs = ins->lhs(); MDefinition* rhs = ins->rhs(); wasm::SimdOp op = ins->simdOp(); MOZ_ASSERT(lhs->type() == MIRType::Simd128); MOZ_ASSERT(rhs->type() == MIRType::Simd128); MOZ_ASSERT(ins->type() == MIRType::Simd128); LAllocation lhsAlloc = useRegisterAtStart(lhs); LAllocation rhsAlloc = useRegisterAtStart(rhs); LDefinition tempReg0 = LDefinition::BogusTemp(); LDefinition tempReg1 = LDefinition::BogusTemp(); if (op == wasm::SimdOp::I64x2Mul) { tempReg0 = tempSimd128(); tempReg1 = tempSimd128(); } auto* lir = new (alloc()) LWasmBinarySimd128(op, lhsAlloc, rhsAlloc, tempReg0, tempReg1); define(lir, ins); #else MOZ_CRASH("No SIMD"); #endif } #ifdef ENABLE_WASM_SIMD bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle( int8_t shuffle[16]) { return false; } bool MWasmTernarySimd128::canRelaxBitselect() { return false; } bool MWasmBinarySimd128::canPmaddubsw() { return false; } #endif bool MWasmBinarySimd128::specializeForConstantRhs() { // Probably many we want to do here return false; } void LIRGenerator::visitWasmBinarySimd128WithConstant( MWasmBinarySimd128WithConstant* ins) { MOZ_CRASH("binary SIMD with constant NYI"); } void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { #ifdef ENABLE_WASM_SIMD MDefinition* lhs = ins->lhs(); MDefinition* rhs = ins->rhs(); MOZ_ASSERT(lhs->type() == MIRType::Simd128); MOZ_ASSERT(rhs->type() == MIRType::Int32); MOZ_ASSERT(ins->type() == MIRType::Simd128); if (rhs->isConstant()) { int32_t shiftCount = rhs->toConstant()->toInt32(); switch (ins->simdOp()) { case wasm::SimdOp::I8x16Shl: case wasm::SimdOp::I8x16ShrU: case wasm::SimdOp::I8x16ShrS: shiftCount &= 7; break; case wasm::SimdOp::I16x8Shl: case wasm::SimdOp::I16x8ShrU: case wasm::SimdOp::I16x8ShrS: shiftCount &= 15; break; case wasm::SimdOp::I32x4Shl: case wasm::SimdOp::I32x4ShrU: case wasm::SimdOp::I32x4ShrS: shiftCount &= 31; break; case wasm::SimdOp::I64x2Shl: case wasm::SimdOp::I64x2ShrU: case wasm::SimdOp::I64x2ShrS: shiftCount &= 63; break; default: MOZ_CRASH("Unexpected shift operation"); } # ifdef DEBUG js::wasm::ReportSimdAnalysis("shift -> constant shift"); # endif auto* lir = new (alloc()) LWasmConstantShiftSimd128(useRegisterAtStart(lhs), shiftCount); define(lir, ins); return; } # ifdef DEBUG js::wasm::ReportSimdAnalysis("shift -> variable shift"); # endif LAllocation lhsDestAlloc = useRegisterAtStart(lhs); LAllocation rhsAlloc = useRegisterAtStart(rhs); auto* lir = new (alloc()) LWasmVariableShiftSimd128(lhsDestAlloc, rhsAlloc, LDefinition::BogusTemp()); define(lir, ins); #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { #ifdef ENABLE_WASM_SIMD MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128); MOZ_ASSERT(ins->rhs()->type() == MIRType::Simd128); MOZ_ASSERT(ins->type() == MIRType::Simd128); SimdShuffle s = ins->shuffle(); switch (s.opd) { case SimdShuffle::Operand::LEFT: case SimdShuffle::Operand::RIGHT: { LAllocation src; switch (*s.permuteOp) { case SimdPermuteOp::MOVE: case SimdPermuteOp::BROADCAST_8x16: case SimdPermuteOp::BROADCAST_16x8: case SimdPermuteOp::PERMUTE_8x16: case SimdPermuteOp::PERMUTE_16x8: case SimdPermuteOp::PERMUTE_32x4: case SimdPermuteOp::ROTATE_RIGHT_8x16: case SimdPermuteOp::SHIFT_LEFT_8x16: case SimdPermuteOp::SHIFT_RIGHT_8x16: case SimdPermuteOp::REVERSE_16x8: case SimdPermuteOp::REVERSE_32x4: case SimdPermuteOp::REVERSE_64x2: break; default: MOZ_CRASH("Unexpected operator"); } if (s.opd == SimdShuffle::Operand::LEFT) { src = useRegisterAtStart(ins->lhs()); } else { src = useRegisterAtStart(ins->rhs()); } auto* lir = new (alloc()) LWasmPermuteSimd128(src, *s.permuteOp, s.control); define(lir, ins); break; } case SimdShuffle::Operand::BOTH: case SimdShuffle::Operand::BOTH_SWAPPED: { LDefinition temp = LDefinition::BogusTemp(); LAllocation lhs; LAllocation rhs; if (s.opd == SimdShuffle::Operand::BOTH) { lhs = useRegisterAtStart(ins->lhs()); rhs = useRegisterAtStart(ins->rhs()); } else { lhs = useRegisterAtStart(ins->rhs()); rhs = useRegisterAtStart(ins->lhs()); } auto* lir = new (alloc()) LWasmShuffleSimd128(lhs, rhs, temp, *s.shuffleOp, s.control); define(lir, ins); break; } } #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { #ifdef ENABLE_WASM_SIMD MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128); MOZ_ASSERT(ins->type() == MIRType::Simd128); // Optimal code generation reuses the lhs register because the rhs scalar is // merged into a vector lhs. LAllocation lhs = useRegisterAtStart(ins->lhs()); if (ins->rhs()->type() == MIRType::Int64) { auto* lir = new (alloc()) LWasmReplaceInt64LaneSimd128(lhs, useInt64Register(ins->rhs())); defineReuseInput(lir, ins, 0); } else { auto* lir = new (alloc()) LWasmReplaceLaneSimd128(lhs, useRegister(ins->rhs())); defineReuseInput(lir, ins, 0); } #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { #ifdef ENABLE_WASM_SIMD MOZ_ASSERT(ins->type() == MIRType::Simd128); switch (ins->input()->type()) { case MIRType::Int64: { // 64-bit integer splats. // Load-and-(sign|zero)extend. auto* lir = new (alloc()) LWasmInt64ToSimd128(useInt64RegisterAtStart(ins->input())); define(lir, ins); break; } case MIRType::Float32: case MIRType::Double: { // Floating-point splats. auto* lir = new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input())); define(lir, ins); break; } default: { // 32-bit integer splats. auto* lir = new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input())); define(lir, ins); break; } } #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { #ifdef ENABLE_WASM_SIMD MOZ_ASSERT(ins->input()->type() == MIRType::Simd128); MOZ_ASSERT(ins->type() == MIRType::Simd128); LDefinition tempReg = LDefinition::BogusTemp(); switch (ins->simdOp()) { case wasm::SimdOp::I8x16Neg: case wasm::SimdOp::I16x8Neg: case wasm::SimdOp::I32x4Neg: case wasm::SimdOp::I64x2Neg: case wasm::SimdOp::F32x4Neg: case wasm::SimdOp::F64x2Neg: case wasm::SimdOp::F32x4Abs: case wasm::SimdOp::F64x2Abs: case wasm::SimdOp::V128Not: case wasm::SimdOp::F32x4Sqrt: case wasm::SimdOp::F64x2Sqrt: case wasm::SimdOp::I8x16Abs: case wasm::SimdOp::I16x8Abs: case wasm::SimdOp::I32x4Abs: case wasm::SimdOp::I64x2Abs: case wasm::SimdOp::I32x4TruncSatF32x4S: case wasm::SimdOp::F32x4ConvertI32x4U: case wasm::SimdOp::I32x4TruncSatF32x4U: case wasm::SimdOp::I16x8ExtendLowI8x16S: case wasm::SimdOp::I16x8ExtendHighI8x16S: case wasm::SimdOp::I16x8ExtendLowI8x16U: case wasm::SimdOp::I16x8ExtendHighI8x16U: case wasm::SimdOp::I32x4ExtendLowI16x8S: case wasm::SimdOp::I32x4ExtendHighI16x8S: case wasm::SimdOp::I32x4ExtendLowI16x8U: case wasm::SimdOp::I32x4ExtendHighI16x8U: case wasm::SimdOp::I64x2ExtendLowI32x4S: case wasm::SimdOp::I64x2ExtendHighI32x4S: case wasm::SimdOp::I64x2ExtendLowI32x4U: case wasm::SimdOp::I64x2ExtendHighI32x4U: case wasm::SimdOp::F32x4ConvertI32x4S: case wasm::SimdOp::F32x4Ceil: case wasm::SimdOp::F32x4Floor: case wasm::SimdOp::F32x4Trunc: case wasm::SimdOp::F32x4Nearest: case wasm::SimdOp::F64x2Ceil: case wasm::SimdOp::F64x2Floor: case wasm::SimdOp::F64x2Trunc: case wasm::SimdOp::F64x2Nearest: case wasm::SimdOp::F32x4DemoteF64x2Zero: case wasm::SimdOp::F64x2PromoteLowF32x4: case wasm::SimdOp::F64x2ConvertLowI32x4S: case wasm::SimdOp::F64x2ConvertLowI32x4U: case wasm::SimdOp::I16x8ExtaddPairwiseI8x16S: case wasm::SimdOp::I16x8ExtaddPairwiseI8x16U: case wasm::SimdOp::I32x4ExtaddPairwiseI16x8S: case wasm::SimdOp::I32x4ExtaddPairwiseI16x8U: case wasm::SimdOp::I8x16Popcnt: case wasm::SimdOp::I32x4RelaxedTruncSSatF32x4: case wasm::SimdOp::I32x4RelaxedTruncUSatF32x4: case wasm::SimdOp::I32x4RelaxedTruncSatF64x2SZero: case wasm::SimdOp::I32x4RelaxedTruncSatF64x2UZero: break; case wasm::SimdOp::I32x4TruncSatF64x2SZero: case wasm::SimdOp::I32x4TruncSatF64x2UZero: tempReg = tempSimd128(); break; default: MOZ_CRASH("Unary SimdOp not implemented"); } LUse input = useRegisterAtStart(ins->input()); LWasmUnarySimd128* lir = new (alloc()) LWasmUnarySimd128(input, tempReg); define(lir, ins); #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { #ifdef ENABLE_WASM_SIMD if (canEmitWasmReduceSimd128AtUses(ins)) { emitAtUses(ins); return; } // Reductions (any_true, all_true, bitmask, extract_lane) uniformly prefer // useRegisterAtStart: // // - In most cases, the input type differs from the output type, so there's no // conflict and it doesn't really matter. // // - For extract_lane(0) on F32x4 and F64x2, input == output results in zero // code being generated. // // - For extract_lane(k > 0) on F32x4 and F64x2, allowing the input register // to be targeted lowers register pressure if it's the last use of the // input. if (ins->type() == MIRType::Int64) { auto* lir = new (alloc()) LWasmReduceSimd128ToInt64(useRegisterAtStart(ins->input())); defineInt64(lir, ins); } else { LDefinition tempReg = LDefinition::BogusTemp(); switch (ins->simdOp()) { case wasm::SimdOp::I8x16Bitmask: case wasm::SimdOp::I16x8Bitmask: case wasm::SimdOp::I32x4Bitmask: case wasm::SimdOp::I64x2Bitmask: tempReg = tempSimd128(); break; default: break; } // Ideally we would reuse the input register for floating extract_lane if // the lane is zero, but constraints in the register allocator require the // input and output register types to be the same. auto* lir = new (alloc()) LWasmReduceSimd128(useRegisterAtStart(ins->input()), tempReg); define(lir, ins); } #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) { #ifdef ENABLE_WASM_SIMD // On 64-bit systems, the base pointer can be 32 bits or 64 bits. Either way, // it fits in a GPR so we can ignore the Register/Register64 distinction here. // Optimal allocation here reuses the value input for the output register // because codegen otherwise has to copy the input to the output; this is // because load-lane is implemented as load + replace-lane. Bug 1706106 may // change all of that, so leave it alone for now. LUse base = useRegisterAtStart(ins->base()); LUse inputUse = useRegisterAtStart(ins->value()); MOZ_ASSERT(!ins->hasMemoryBase()); LWasmLoadLaneSimd128* lir = new (alloc()) LWasmLoadLaneSimd128(base, inputUse, temp(), LAllocation()); define(lir, ins); #else MOZ_CRASH("No SIMD"); #endif } void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) { #ifdef ENABLE_WASM_SIMD // See comment above about the base pointer. LUse base = useRegisterAtStart(ins->base()); LUse input = useRegisterAtStart(ins->value()); MOZ_ASSERT(!ins->hasMemoryBase()); LWasmStoreLaneSimd128* lir = new (alloc()) LWasmStoreLaneSimd128(base, input, temp(), LAllocation()); add(lir, ins); #else MOZ_CRASH("No SIMD"); #endif }