/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsCSSRenderingBorders.h" #include "gfxUtils.h" #include "mozilla/ArrayUtils.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/Helpers.h" #include "mozilla/gfx/PathHelpers.h" #include "BorderConsts.h" #include "DashedCornerFinder.h" #include "DottedCornerFinder.h" #include "ImageRegion.h" #include "nsLayoutUtils.h" #include "nsStyleConsts.h" #include "nsContentUtils.h" #include "nsCSSColorUtils.h" #include "nsCSSRendering.h" #include "nsCSSRenderingGradients.h" #include "nsDisplayList.h" #include "nsExpirationTracker.h" #include "nsIScriptError.h" #include "nsClassHashtable.h" #include "nsPresContext.h" #include "nsStyleStruct.h" #include "gfx2DGlue.h" #include "gfxGradientCache.h" #include "mozilla/image/WebRenderImageProvider.h" #include "mozilla/layers/StackingContextHelper.h" #include "mozilla/layers/RenderRootStateManager.h" #include "mozilla/layers/WebRenderLayerManager.h" #include "mozilla/ProfilerLabels.h" #include "mozilla/Range.h" #include using namespace mozilla; using namespace mozilla::gfx; using namespace mozilla::image; #define MAX_COMPOSITE_BORDER_WIDTH LayoutDeviceIntCoord(10000) /** * nsCSSRendering::PaintBorder * nsCSSRendering::PaintOutline * -> DrawBorders * * DrawBorders * -> Ability to use specialized approach? * |- Draw using specialized function * |- separate corners? * |- dashed side mask * | * -> can border be drawn in 1 pass? (e.g., solid border same color all * around) * |- DrawBorderSides with all 4 sides * -> more than 1 pass? * |- for each corner * |- clip to DoCornerClipSubPath * |- for each side adjacent to corner * |- clip to GetSideClipSubPath * |- DrawBorderSides with one side * |- for each side * |- GetSideClipWithoutCornersRect * |- DrawDashedOrDottedSide || DrawBorderSides with one side */ static void ComputeBorderCornerDimensions(const Float* aBorderWidths, const RectCornerRadii& aRadii, RectCornerRadii* aDimsResult); // given a side index, get the previous and next side index #define NEXT_SIDE(_s) mozilla::Side(((_s) + 1) & 3) #define PREV_SIDE(_s) mozilla::Side(((_s) + 3) & 3) // given a corner index, get the previous and next corner index #define NEXT_CORNER(_s) Corner(((_s) + 1) & 3) #define PREV_CORNER(_s) Corner(((_s) + 3) & 3) // from the given base color and the background color, turn // color into a color for the given border pattern style static sRGBColor MakeBorderColor(nscolor aColor, BorderColorStyle aBorderColorStyle); // Given a line index (an index starting from the outside of the // border going inwards) and an array of line styles, calculate the // color that that stripe of the border should be rendered in. static sRGBColor ComputeColorForLine(uint32_t aLineIndex, const BorderColorStyle* aBorderColorStyle, uint32_t aBorderColorStyleCount, nscolor aBorderColor); // little helper function to check if the array of 4 floats given are // equal to the given value static bool CheckFourFloatsEqual(const Float* vals, Float k) { return (vals[0] == k && vals[1] == k && vals[2] == k && vals[3] == k); } static bool IsZeroSize(const Size& sz) { return sz.width == 0.0 || sz.height == 0.0; } /* static */ bool nsCSSBorderRenderer::AllCornersZeroSize(const RectCornerRadii& corners) { return IsZeroSize(corners[eCornerTopLeft]) && IsZeroSize(corners[eCornerTopRight]) && IsZeroSize(corners[eCornerBottomRight]) && IsZeroSize(corners[eCornerBottomLeft]); } static mozilla::Side GetHorizontalSide(Corner aCorner) { return (aCorner == C_TL || aCorner == C_TR) ? eSideTop : eSideBottom; } static mozilla::Side GetVerticalSide(Corner aCorner) { return (aCorner == C_TL || aCorner == C_BL) ? eSideLeft : eSideRight; } static Corner GetCWCorner(mozilla::Side aSide) { return Corner(NEXT_SIDE(aSide)); } static Corner GetCCWCorner(mozilla::Side aSide) { return Corner(aSide); } static bool IsSingleSide(mozilla::SideBits aSides) { return aSides == SideBits::eTop || aSides == SideBits::eRight || aSides == SideBits::eBottom || aSides == SideBits::eLeft; } static bool IsHorizontalSide(mozilla::Side aSide) { return aSide == eSideTop || aSide == eSideBottom; } typedef enum { // Normal solid square corner. Will be rectangular, the size of the // adjacent sides. If the corner has a border radius, the corner // will always be solid, since we don't do dotted/dashed etc. CORNER_NORMAL, // Paint the corner in whatever style is not dotted/dashed of the // adjacent corners. CORNER_SOLID, // Paint the corner as a dot, the size of the bigger of the adjacent // sides. CORNER_DOT } CornerStyle; nsCSSBorderRenderer::nsCSSBorderRenderer( nsPresContext* aPresContext, DrawTarget* aDrawTarget, const Rect& aDirtyRect, Rect& aOuterRect, const StyleBorderStyle* aBorderStyles, const Float* aBorderWidths, RectCornerRadii& aBorderRadii, const nscolor* aBorderColors, bool aBackfaceIsVisible, const Maybe& aClipRect) : mPresContext(aPresContext), mDrawTarget(aDrawTarget), mDirtyRect(aDirtyRect), mOuterRect(aOuterRect), mBorderRadii(aBorderRadii), mBackfaceIsVisible(aBackfaceIsVisible), mLocalClip(aClipRect) { PodCopy(mBorderStyles, aBorderStyles, 4); PodCopy(mBorderWidths, aBorderWidths, 4); PodCopy(mBorderColors, aBorderColors, 4); mInnerRect = mOuterRect; mInnerRect.Deflate(Margin( mBorderStyles[0] != StyleBorderStyle::None ? mBorderWidths[0] : 0, mBorderStyles[1] != StyleBorderStyle::None ? mBorderWidths[1] : 0, mBorderStyles[2] != StyleBorderStyle::None ? mBorderWidths[2] : 0, mBorderStyles[3] != StyleBorderStyle::None ? mBorderWidths[3] : 0)); ComputeBorderCornerDimensions(mBorderWidths, mBorderRadii, &mBorderCornerDimensions); mOneUnitBorder = CheckFourFloatsEqual(mBorderWidths, 1.0); mNoBorderRadius = AllCornersZeroSize(mBorderRadii); mAllBordersSameStyle = AreBorderSideFinalStylesSame(SideBits::eAll); mAllBordersSameWidth = AllBordersSameWidth(); mAvoidStroke = false; } /* static */ void nsCSSBorderRenderer::ComputeInnerRadii(const RectCornerRadii& aRadii, const Float* aBorderSizes, RectCornerRadii* aInnerRadiiRet) { RectCornerRadii& iRadii = *aInnerRadiiRet; iRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width - aBorderSizes[eSideLeft]); iRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height - aBorderSizes[eSideTop]); iRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width - aBorderSizes[eSideRight]); iRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height - aBorderSizes[eSideTop]); iRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width - aBorderSizes[eSideRight]); iRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height - aBorderSizes[eSideBottom]); iRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width - aBorderSizes[eSideLeft]); iRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height - aBorderSizes[eSideBottom]); } /* static */ void nsCSSBorderRenderer::ComputeOuterRadii(const RectCornerRadii& aRadii, const Float* aBorderSizes, RectCornerRadii* aOuterRadiiRet) { RectCornerRadii& oRadii = *aOuterRadiiRet; // default all corners to sharp corners oRadii = RectCornerRadii(0.f); // round the edges that have radii > 0.0 to start with if (aRadii[C_TL].width > 0.f && aRadii[C_TL].height > 0.f) { oRadii[C_TL].width = std::max(0.f, aRadii[C_TL].width + aBorderSizes[eSideLeft]); oRadii[C_TL].height = std::max(0.f, aRadii[C_TL].height + aBorderSizes[eSideTop]); } if (aRadii[C_TR].width > 0.f && aRadii[C_TR].height > 0.f) { oRadii[C_TR].width = std::max(0.f, aRadii[C_TR].width + aBorderSizes[eSideRight]); oRadii[C_TR].height = std::max(0.f, aRadii[C_TR].height + aBorderSizes[eSideTop]); } if (aRadii[C_BR].width > 0.f && aRadii[C_BR].height > 0.f) { oRadii[C_BR].width = std::max(0.f, aRadii[C_BR].width + aBorderSizes[eSideRight]); oRadii[C_BR].height = std::max(0.f, aRadii[C_BR].height + aBorderSizes[eSideBottom]); } if (aRadii[C_BL].width > 0.f && aRadii[C_BL].height > 0.f) { oRadii[C_BL].width = std::max(0.f, aRadii[C_BL].width + aBorderSizes[eSideLeft]); oRadii[C_BL].height = std::max(0.f, aRadii[C_BL].height + aBorderSizes[eSideBottom]); } } /*static*/ void ComputeBorderCornerDimensions(const Float* aBorderWidths, const RectCornerRadii& aRadii, RectCornerRadii* aDimsRet) { Float leftWidth = aBorderWidths[eSideLeft]; Float topWidth = aBorderWidths[eSideTop]; Float rightWidth = aBorderWidths[eSideRight]; Float bottomWidth = aBorderWidths[eSideBottom]; if (nsCSSBorderRenderer::AllCornersZeroSize(aRadii)) { // These will always be in pixel units from CSS (*aDimsRet)[C_TL] = Size(leftWidth, topWidth); (*aDimsRet)[C_TR] = Size(rightWidth, topWidth); (*aDimsRet)[C_BR] = Size(rightWidth, bottomWidth); (*aDimsRet)[C_BL] = Size(leftWidth, bottomWidth); } else { // Always round up to whole pixels for the corners; it's safe to // make the corners bigger than necessary, and this way we ensure // that we avoid seams. (*aDimsRet)[C_TL] = Size(ceil(std::max(leftWidth, aRadii[C_TL].width)), ceil(std::max(topWidth, aRadii[C_TL].height))); (*aDimsRet)[C_TR] = Size(ceil(std::max(rightWidth, aRadii[C_TR].width)), ceil(std::max(topWidth, aRadii[C_TR].height))); (*aDimsRet)[C_BR] = Size(ceil(std::max(rightWidth, aRadii[C_BR].width)), ceil(std::max(bottomWidth, aRadii[C_BR].height))); (*aDimsRet)[C_BL] = Size(ceil(std::max(leftWidth, aRadii[C_BL].width)), ceil(std::max(bottomWidth, aRadii[C_BL].height))); } } bool nsCSSBorderRenderer::AreBorderSideFinalStylesSame( mozilla::SideBits aSides) { NS_ASSERTION(aSides != SideBits::eNone && (aSides & ~SideBits::eAll) == SideBits::eNone, "AreBorderSidesSame: invalid whichSides!"); /* First check if the specified styles and colors are the same for all sides */ int firstStyle = 0; for (const auto i : mozilla::AllPhysicalSides()) { if (firstStyle == i) { if ((static_cast(1 << i) & aSides) == SideBits::eNone) { firstStyle++; } continue; } if ((static_cast(1 << i) & aSides) == SideBits::eNone) { continue; } if (mBorderStyles[firstStyle] != mBorderStyles[i] || mBorderColors[firstStyle] != mBorderColors[i]) { return false; } } /* Then if it's one of the two-tone styles and we're not * just comparing the TL or BR sides */ switch (mBorderStyles[firstStyle]) { case StyleBorderStyle::Groove: case StyleBorderStyle::Ridge: case StyleBorderStyle::Inset: case StyleBorderStyle::Outset: return ((aSides & ~(SideBits::eTop | SideBits::eLeft)) == SideBits::eNone || (aSides & ~(SideBits::eBottom | SideBits::eRight)) == SideBits::eNone); default: return true; } } bool nsCSSBorderRenderer::IsSolidCornerStyle(StyleBorderStyle aStyle, Corner aCorner) { switch (aStyle) { case StyleBorderStyle::Solid: return true; case StyleBorderStyle::Inset: case StyleBorderStyle::Outset: return (aCorner == eCornerTopLeft || aCorner == eCornerBottomRight); case StyleBorderStyle::Groove: case StyleBorderStyle::Ridge: return mOneUnitBorder && (aCorner == eCornerTopLeft || aCorner == eCornerBottomRight); case StyleBorderStyle::Double: return mOneUnitBorder; default: return false; } } bool nsCSSBorderRenderer::IsCornerMergeable(Corner aCorner) { // Corner between dotted borders with same width and small radii is // merged into single dot. // // widthH / 2.0 // |<---------->| // | | // |radius.width| // |<--->| | // | | | // | _+------+------------+----- // | / ###|### | // |/ #######|####### | // + #########|######### | // | ##########|########## | // | ###########|########### | // | ###########|########### | // |############|############| // +------------+############| // |#########################| // | ####################### | // | ####################### | // | ##################### | // | ################### | // | ############### | // | ####### | // +-------------------------+---- // | | // | | mozilla::Side sideH(GetHorizontalSide(aCorner)); mozilla::Side sideV(GetVerticalSide(aCorner)); StyleBorderStyle styleH = mBorderStyles[sideH]; StyleBorderStyle styleV = mBorderStyles[sideV]; if (styleH != styleV || styleH != StyleBorderStyle::Dotted) { return false; } Float widthH = mBorderWidths[sideH]; Float widthV = mBorderWidths[sideV]; if (widthH != widthV) { return false; } Size radius = mBorderRadii[aCorner]; return IsZeroSize(radius) || (radius.width < widthH / 2.0f && radius.height < widthH / 2.0f); } BorderColorStyle nsCSSBorderRenderer::BorderColorStyleForSolidCorner( StyleBorderStyle aStyle, Corner aCorner) { // note that this function assumes that the corner is already solid, // as per the earlier function switch (aStyle) { case StyleBorderStyle::Solid: case StyleBorderStyle::Double: return BorderColorStyleSolid; case StyleBorderStyle::Inset: case StyleBorderStyle::Groove: if (aCorner == eCornerTopLeft) { return BorderColorStyleDark; } else if (aCorner == eCornerBottomRight) { return BorderColorStyleLight; } break; case StyleBorderStyle::Outset: case StyleBorderStyle::Ridge: if (aCorner == eCornerTopLeft) { return BorderColorStyleLight; } else if (aCorner == eCornerBottomRight) { return BorderColorStyleDark; } break; default: return BorderColorStyleNone; } return BorderColorStyleNone; } Rect nsCSSBorderRenderer::GetCornerRect(Corner aCorner) { Point offset(0.f, 0.f); if (aCorner == C_TR || aCorner == C_BR) offset.x = mOuterRect.Width() - mBorderCornerDimensions[aCorner].width; if (aCorner == C_BR || aCorner == C_BL) offset.y = mOuterRect.Height() - mBorderCornerDimensions[aCorner].height; return Rect(mOuterRect.TopLeft() + offset, mBorderCornerDimensions[aCorner]); } Rect nsCSSBorderRenderer::GetSideClipWithoutCornersRect(mozilla::Side aSide) { Point offset(0.f, 0.f); // The offset from the outside rect to the start of this side's // box. For the top and bottom sides, the height of the box // must be the border height; the x start must take into account // the corner size (which may be bigger than the right or left // side's width). The same applies to the right and left sides. if (aSide == eSideTop) { offset.x = mBorderCornerDimensions[C_TL].width; } else if (aSide == eSideRight) { offset.x = mOuterRect.Width() - mBorderWidths[eSideRight]; offset.y = mBorderCornerDimensions[C_TR].height; } else if (aSide == eSideBottom) { offset.x = mBorderCornerDimensions[C_BL].width; offset.y = mOuterRect.Height() - mBorderWidths[eSideBottom]; } else if (aSide == eSideLeft) { offset.y = mBorderCornerDimensions[C_TL].height; } // The sum of the width & height of the corners adjacent to the // side. This relies on the relationship between side indexing and // corner indexing; that is, 0 == SIDE_TOP and 0 == CORNER_TOP_LEFT, // with both proceeding clockwise. Size sideCornerSum = mBorderCornerDimensions[GetCCWCorner(aSide)] + mBorderCornerDimensions[GetCWCorner(aSide)]; Rect rect(mOuterRect.TopLeft() + offset, mOuterRect.Size() - sideCornerSum); if (IsHorizontalSide(aSide)) rect.height = mBorderWidths[aSide]; else rect.width = mBorderWidths[aSide]; return rect; } // The side border type and the adjacent border types are // examined and one of the different types of clipping (listed // below) is selected. typedef enum { // clip to the trapezoid formed by the corners of the // inner and outer rectangles for the given side // // +--------------- // |\%%%%%%%%%%%%%% // | \%%%%%%%%%%%% // | \%%%%%%%%%%% // | \%%%%%%%%% // | +-------- // | | // | | SIDE_CLIP_TRAPEZOID, // clip to the trapezoid formed by the outer rectangle // corners and the center of the region, making sure // that diagonal lines all go directly from the outside // corner to the inside corner, but that they then continue on // to the middle. // // This is needed for correctly clipping rounded borders, // which might extend past the SIDE_CLIP_TRAPEZOID trap. // // +-------__--+--- // \%%%%_-%%%%%%%% // \+-%%%%%%%%%% // / \%%%%%%%%%% // / \%%%%%%%%% // | +%%_-+--- // | +%%%%%% // | / \%%%%% // + + \%%% // | | +- SIDE_CLIP_TRAPEZOID_FULL, // clip to the rectangle formed by the given side including corner. // This is used by the non-dotted side next to dotted side. // // +--------------- // |%%%%%%%%%%%%%%% // |%%%%%%%%%%%%%%% // |%%%%%%%%%%%%%%% // |%%%%%%%%%%%%%%% // +------+-------- // | | // | | SIDE_CLIP_RECTANGLE_CORNER, // clip to the rectangle formed by the given side excluding corner. // This is used by the dotted side next to non-dotted side. // // +------+-------- // | |%%%%%%%% // | |%%%%%%%% // | |%%%%%%%% // | |%%%%%%%% // | +-------- // | | // | | SIDE_CLIP_RECTANGLE_NO_CORNER, } SideClipType; // Given three points, p0, p1, and midPoint, move p1 further in to the // rectangle (of which aMidPoint is the center) so that it reaches the // closer of the horizontal or vertical lines intersecting the midpoint, // while maintaing the slope of the line. If p0 and p1 are the same, // just move p1 to midPoint (since there's no slope to maintain). // FIXME: Extending only to the midpoint isn't actually sufficient for // boxes with asymmetric radii. static void MaybeMoveToMidPoint(Point& aP0, Point& aP1, const Point& aMidPoint) { Point ps = aP1 - aP0; if (ps.x == 0.0) { if (ps.y == 0.0) { aP1 = aMidPoint; } else { aP1.y = aMidPoint.y; } } else { if (ps.y == 0.0) { aP1.x = aMidPoint.x; } else { Float k = std::min((aMidPoint.x - aP0.x) / ps.x, (aMidPoint.y - aP0.y) / ps.y); aP1 = aP0 + ps * k; } } } already_AddRefed nsCSSBorderRenderer::GetSideClipSubPath( mozilla::Side aSide) { // the clip proceeds clockwise from the top left corner; // so "start" in each case is the start of the region from that side. // // the final path will be formed like: // s0 ------- e0 // | / // s1 ----- e1 // // that is, the second point will always be on the inside Point start[2]; Point end[2]; #define IS_DOTTED(_s) ((_s) == StyleBorderStyle::Dotted) bool isDotted = IS_DOTTED(mBorderStyles[aSide]); bool startIsDotted = IS_DOTTED(mBorderStyles[PREV_SIDE(aSide)]); bool endIsDotted = IS_DOTTED(mBorderStyles[NEXT_SIDE(aSide)]); #undef IS_DOTTED SideClipType startType = SIDE_CLIP_TRAPEZOID; SideClipType endType = SIDE_CLIP_TRAPEZOID; if (!IsZeroSize(mBorderRadii[GetCCWCorner(aSide)])) { startType = SIDE_CLIP_TRAPEZOID_FULL; } else if (startIsDotted && !isDotted) { startType = SIDE_CLIP_RECTANGLE_CORNER; } else if (!startIsDotted && isDotted) { startType = SIDE_CLIP_RECTANGLE_NO_CORNER; } if (!IsZeroSize(mBorderRadii[GetCWCorner(aSide)])) { endType = SIDE_CLIP_TRAPEZOID_FULL; } else if (endIsDotted && !isDotted) { endType = SIDE_CLIP_RECTANGLE_CORNER; } else if (!endIsDotted && isDotted) { endType = SIDE_CLIP_RECTANGLE_NO_CORNER; } Point midPoint = mInnerRect.Center(); start[0] = mOuterRect.CCWCorner(aSide); start[1] = mInnerRect.CCWCorner(aSide); end[0] = mOuterRect.CWCorner(aSide); end[1] = mInnerRect.CWCorner(aSide); if (startType == SIDE_CLIP_TRAPEZOID_FULL) { MaybeMoveToMidPoint(start[0], start[1], midPoint); } else if (startType == SIDE_CLIP_RECTANGLE_CORNER) { if (IsHorizontalSide(aSide)) { start[1] = Point(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y); } else { start[1] = Point(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y); } } else if (startType == SIDE_CLIP_RECTANGLE_NO_CORNER) { if (IsHorizontalSide(aSide)) { start[0] = Point(mInnerRect.CCWCorner(aSide).x, mOuterRect.CCWCorner(aSide).y); } else { start[0] = Point(mOuterRect.CCWCorner(aSide).x, mInnerRect.CCWCorner(aSide).y); } } if (endType == SIDE_CLIP_TRAPEZOID_FULL) { MaybeMoveToMidPoint(end[0], end[1], midPoint); } else if (endType == SIDE_CLIP_RECTANGLE_CORNER) { if (IsHorizontalSide(aSide)) { end[1] = Point(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y); } else { end[1] = Point(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y); } } else if (endType == SIDE_CLIP_RECTANGLE_NO_CORNER) { if (IsHorizontalSide(aSide)) { end[0] = Point(mInnerRect.CWCorner(aSide).x, mOuterRect.CWCorner(aSide).y); } else { end[0] = Point(mOuterRect.CWCorner(aSide).x, mInnerRect.CWCorner(aSide).y); } } RefPtr builder = mDrawTarget->CreatePathBuilder(); builder->MoveTo(start[0]); builder->LineTo(end[0]); builder->LineTo(end[1]); builder->LineTo(start[1]); builder->Close(); return builder->Finish(); } Point nsCSSBorderRenderer::GetStraightBorderPoint(mozilla::Side aSide, Corner aCorner, bool* aIsUnfilled, Float aDotOffset) { // Calculate the end point of the side for dashed/dotted border, that is also // the end point of the corner curve. The point is specified by aSide and // aCorner. (e.g. eSideTop and C_TL means the left end of border-top) // // // aCorner aSide // +-------------------- // | // | // | +---------- // | the end point // | // | +---------- // | | // | | // | | // // The position of the point depends on the border-style, border-width, and // border-radius of the side, corner, and the adjacent side beyond the corner, // to make those sides (and corner) interact well. // // If the style of aSide is dotted and the dot at the point should be // unfilled, true is stored to *aIsUnfilled, otherwise false is stored. const Float signsList[4][2] = { {+1.0f, +1.0f}, {-1.0f, +1.0f}, {-1.0f, -1.0f}, {+1.0f, -1.0f}}; const Float(&signs)[2] = signsList[aCorner]; *aIsUnfilled = false; Point P = mOuterRect.AtCorner(aCorner); StyleBorderStyle style = mBorderStyles[aSide]; Float borderWidth = mBorderWidths[aSide]; Size dim = mBorderCornerDimensions[aCorner]; bool isHorizontal = IsHorizontalSide(aSide); // // aCorner aSide // +-------------- // | // | +---------- // | | // otherSide | | // | | mozilla::Side otherSide = ((uint8_t)aSide == (uint8_t)aCorner) ? PREV_SIDE(aSide) : NEXT_SIDE(aSide); StyleBorderStyle otherStyle = mBorderStyles[otherSide]; Float otherBorderWidth = mBorderWidths[otherSide]; Size radius = mBorderRadii[aCorner]; if (IsZeroSize(radius)) { radius.width = 0.0f; radius.height = 0.0f; } if (style == StyleBorderStyle::Dotted) { // Offset the dot's location along the side toward the corner by a // multiple of its width. if (isHorizontal) { P.x -= signs[0] * aDotOffset * borderWidth; } else { P.y -= signs[1] * aDotOffset * borderWidth; } } if (style == StyleBorderStyle::Dotted && otherStyle == StyleBorderStyle::Dotted) { if (borderWidth == otherBorderWidth) { if (radius.width < borderWidth / 2.0f && radius.height < borderWidth / 2.0f) { // Two dots are merged into one and placed at the corner. // // borderWidth / 2.0 // |<---------->| // | | // |radius.width| // |<--->| | // | | | // | _+------+------------+----- // | / ###|### | // |/ #######|####### | // + #########|######### | // | ##########|########## | // | ###########|########### | // | ###########|########### | // |############|############| // +------------+############| // |########### P ###########| // | ####################### | // | ####################### | // | ##################### | // | ################### | // | ############### | // | ####### | // +-------------------------+---- // | | // | | P.x += signs[0] * borderWidth / 2.0f; P.y += signs[1] * borderWidth / 2.0f; } else { // Two dots are drawn separately. // // borderWidth * 1.5 // |<------------>| // | | // |radius.width | // |<----->| | // | | | // | _--+-+----+--- // | _- | ##|## // | / | ###|### // |/ |####|#### // | |####+#### // | |### P ### // + | ###|### // | | ##|## // +---------+----+--- // | ##### | // | ####### | // |#########| // +----+----+ // |#########| // | ####### | // | ##### | // | | // // There should be enough gap between 2 dots even if radius.width is // small but larger than borderWidth / 2.0. borderWidth * 1.5 is the // value that there's imaginally unfilled dot at the corner. The // unfilled dot may overflow from the outer curve, but filled dots // doesn't, so this could be acceptable solution at least for now. // We may have to find better model/value. // // imaginally unfilled dot at the corner // | // v +----+--- // ***** | ##|## // ******* | ###|### // *********|####|#### // *********|####+#### // *********|### P ### // ******* | ###|### // ***** | ##|## // +---------+----+--- // | ##### | // | ####### | // |#########| // +----+----+ // |#########| // | ####### | // | ##### | // | | Float minimum = borderWidth * 1.5f; if (isHorizontal) { P.x += signs[0] * std::max(radius.width, minimum); P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; P.y += signs[1] * std::max(radius.height, minimum); } } return P; } if (borderWidth < otherBorderWidth) { // This side is smaller than other side, other side draws the corner. // // otherBorderWidth + borderWidth / 2.0 // |<---------->| // | | // +---------+--+-------- // | ##### | *|* ### // | ####### |**|**##### // |#########|**+**##+## // |####+####|* P *##### // |#########| *** ### // | ####### +----------- // | ##### | ^ // | | | // | | first dot is not filled // | | // // radius.width // |<----------------->| // | | // | ___---+------------- // | __-- #|# ### // | _- ##|## ##### // | / ##+## ##+## // | / # P # ##### // | | #|# ### // | | __--+------------- // || _- ^ // || / | // | / first dot is filled // | | // | | // | ##### | // | ####### | // |#########| // +----+----+ // |#########| // | ####### | // | ##### | Float minimum = otherBorderWidth + borderWidth / 2.0f; if (isHorizontal) { if (radius.width < minimum) { *aIsUnfilled = true; P.x += signs[0] * minimum; } else { P.x += signs[0] * radius.width; } P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; if (radius.height < minimum) { *aIsUnfilled = true; P.y += signs[1] * minimum; } else { P.y += signs[1] * radius.height; } } return P; } // This side is larger than other side, this side draws the corner. // // borderWidth / 2.0 // |<-->| // | | // +----+--------------------- // | ##|## ##### // | ###|### ####### // |####|#### ######### // |####+#### ####+#### // |### P ### ######### // | ####### ####### // | ##### ##### // +-----+--------------------- // | *** | // |*****| // |**+**| <-- first dot in other side is not filled // |*****| // | *** | // | ### | // |#####| // |##+##| // |#####| // | ### | // | | if (isHorizontal) { P.x += signs[0] * std::max(radius.width, borderWidth / 2.0f); P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; P.y += signs[1] * std::max(radius.height, borderWidth / 2.0f); } return P; } if (style == StyleBorderStyle::Dotted) { // If only this side is dotted, other side draws the corner. // // otherBorderWidth + borderWidth / 2.0 // |<------->| // | | // +------+--+-------- // |## ##| *|* ### // |## ##|**|**##### // |## ##|**+**##+## // |## ##|* P *##### // |## ##| *** ### // |## ##+----------- // |## ##| ^ // |## ##| | // |## ##| first dot is not filled // |## ##| // // radius.width // |<----------------->| // | | // | ___---+------------- // | __-- #|# ### // | _- ##|## ##### // | / ##+## ##+## // | / # P # ##### // | | #|# ### // | | __--+------------- // || _- ^ // || / | // | / first dot is filled // | | // | | // | | // | | // | | // +------+ // |## ##| // |## ##| // |## ##| Float minimum = otherBorderWidth + borderWidth / 2.0f; if (isHorizontal) { if (radius.width < minimum) { *aIsUnfilled = true; P.x += signs[0] * minimum; } else { P.x += signs[0] * radius.width; } P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; if (radius.height < minimum) { *aIsUnfilled = true; P.y += signs[1] * minimum; } else { P.y += signs[1] * radius.height; } } return P; } if (otherStyle == StyleBorderStyle::Dotted && IsZeroSize(radius)) { // If other side is dotted and radius=0, draw side to the end of corner. // // +------------------------------- // |########## ########## // P +########## ########## // |########## ########## // +-----+------------------------- // | *** | // |*****| // |**+**| <-- first dot in other side is not filled // |*****| // | *** | // | ### | // |#####| // |##+##| // |#####| // | ### | // | | if (isHorizontal) { P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; } return P; } // Other cases. // // dim.width // |<----------------->| // | | // | ___---+------------------ // | __-- |####### ### // | _- P +####### ### // | / |####### ### // | / __---+------------------ // | | __-- // | | / // || / // || | // | | // | | // | | // | | // +-+-+ // |###| // |###| // |###| // |###| // |###| // | | // | | if (isHorizontal) { P.x += signs[0] * dim.width; P.y += signs[1] * borderWidth / 2.0f; } else { P.x += signs[0] * borderWidth / 2.0f; P.y += signs[1] * dim.height; } return P; } void nsCSSBorderRenderer::GetOuterAndInnerBezier(Bezier* aOuterBezier, Bezier* aInnerBezier, Corner aCorner) { // Return bezier control points for outer and inner curve for given corner. // // ___---+ outer curve // __-- | // _- | // / | // / | // | | // | __--+ inner curve // | _- // | / // | / // | | // | | // | | // | | // | | // +---------+ mozilla::Side sideH(GetHorizontalSide(aCorner)); mozilla::Side sideV(GetVerticalSide(aCorner)); Size outerCornerSize(ceil(mBorderRadii[aCorner].width), ceil(mBorderRadii[aCorner].height)); Size innerCornerSize( ceil(std::max(0.0f, mBorderRadii[aCorner].width - mBorderWidths[sideV])), ceil( std::max(0.0f, mBorderRadii[aCorner].height - mBorderWidths[sideH]))); GetBezierPointsForCorner(aOuterBezier, aCorner, mOuterRect.AtCorner(aCorner), outerCornerSize); GetBezierPointsForCorner(aInnerBezier, aCorner, mInnerRect.AtCorner(aCorner), innerCornerSize); } void nsCSSBorderRenderer::FillSolidBorder(const Rect& aOuterRect, const Rect& aInnerRect, const RectCornerRadii& aBorderRadii, const Float* aBorderSizes, SideBits aSides, const ColorPattern& aColor) { // Note that this function is allowed to draw more than just the // requested sides. // If we have a border radius, do full rounded rectangles // and fill, regardless of what sides we're asked to draw. if (!AllCornersZeroSize(aBorderRadii)) { RefPtr builder = mDrawTarget->CreatePathBuilder(); RectCornerRadii innerRadii; ComputeInnerRadii(aBorderRadii, aBorderSizes, &innerRadii); // do the outer border AppendRoundedRectToPath(builder, aOuterRect, aBorderRadii, true); // then do the inner border CCW AppendRoundedRectToPath(builder, aInnerRect, innerRadii, false); RefPtr path = builder->Finish(); mDrawTarget->Fill(path, aColor); return; } // If we're asked to draw all sides of an equal-sized border, // stroking is fastest. This is a fairly common path, but partial // sides is probably second in the list -- there are a bunch of // common border styles, such as inset and outset, that are // top-left/bottom-right split. if (aSides == SideBits::eAll && CheckFourFloatsEqual(aBorderSizes, aBorderSizes[0]) && !mAvoidStroke) { Float strokeWidth = aBorderSizes[0]; Rect r(aOuterRect); r.Deflate(strokeWidth / 2.f); mDrawTarget->StrokeRect(r, aColor, StrokeOptions(strokeWidth)); return; } // Otherwise, we have unequal sized borders or we're only // drawing some sides; create rectangles for each side // and fill them. Rect r[4]; // compute base rects for each side if (aSides & SideBits::eTop) { r[eSideTop] = Rect(aOuterRect.X(), aOuterRect.Y(), aOuterRect.Width(), aBorderSizes[eSideTop]); } if (aSides & SideBits::eBottom) { r[eSideBottom] = Rect(aOuterRect.X(), aOuterRect.YMost() - aBorderSizes[eSideBottom], aOuterRect.Width(), aBorderSizes[eSideBottom]); } if (aSides & SideBits::eLeft) { r[eSideLeft] = Rect(aOuterRect.X(), aOuterRect.Y(), aBorderSizes[eSideLeft], aOuterRect.Height()); } if (aSides & SideBits::eRight) { r[eSideRight] = Rect(aOuterRect.XMost() - aBorderSizes[eSideRight], aOuterRect.Y(), aBorderSizes[eSideRight], aOuterRect.Height()); } // If two sides meet at a corner that we're rendering, then // make sure that we adjust one of the sides to avoid overlap. // This is especially important in the case of colors with // an alpha channel. if ((aSides & (SideBits::eTop | SideBits::eLeft)) == (SideBits::eTop | SideBits::eLeft)) { // adjust the left's top down a bit r[eSideLeft].y += aBorderSizes[eSideTop]; r[eSideLeft].height -= aBorderSizes[eSideTop]; } if ((aSides & (SideBits::eTop | SideBits::eRight)) == (SideBits::eTop | SideBits::eRight)) { // adjust the top's left a bit r[eSideTop].width -= aBorderSizes[eSideRight]; } if ((aSides & (SideBits::eBottom | SideBits::eRight)) == (SideBits::eBottom | SideBits::eRight)) { // adjust the right's bottom a bit r[eSideRight].height -= aBorderSizes[eSideBottom]; } if ((aSides & (SideBits::eBottom | SideBits::eLeft)) == (SideBits::eBottom | SideBits::eLeft)) { // adjust the bottom's left a bit r[eSideBottom].x += aBorderSizes[eSideLeft]; r[eSideBottom].width -= aBorderSizes[eSideLeft]; } // Filling these one by one is faster than filling them all at once. for (uint32_t i = 0; i < 4; i++) { if (aSides & static_cast(1 << i)) { MaybeSnapToDevicePixels(r[i], *mDrawTarget, true); mDrawTarget->FillRect(r[i], aColor); } } } sRGBColor MakeBorderColor(nscolor aColor, BorderColorStyle aBorderColorStyle) { nscolor colors[2]; int k = 0; switch (aBorderColorStyle) { case BorderColorStyleNone: return sRGBColor(0.f, 0.f, 0.f, 0.f); // transparent black case BorderColorStyleLight: k = 1; [[fallthrough]]; case BorderColorStyleDark: NS_GetSpecial3DColors(colors, aColor); return sRGBColor::FromABGR(colors[k]); case BorderColorStyleSolid: default: return sRGBColor::FromABGR(aColor); } } sRGBColor ComputeColorForLine(uint32_t aLineIndex, const BorderColorStyle* aBorderColorStyle, uint32_t aBorderColorStyleCount, nscolor aBorderColor) { NS_ASSERTION(aLineIndex < aBorderColorStyleCount, "Invalid lineIndex given"); return MakeBorderColor(aBorderColor, aBorderColorStyle[aLineIndex]); } void nsCSSBorderRenderer::DrawBorderSides(mozilla::SideBits aSides) { if (aSides == SideBits::eNone || (aSides & ~SideBits::eAll) != SideBits::eNone) { NS_WARNING("DrawBorderSides: invalid sides!"); return; } StyleBorderStyle borderRenderStyle = StyleBorderStyle::None; nscolor borderRenderColor; uint32_t borderColorStyleCount = 0; BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3]; BorderColorStyle* borderColorStyle = nullptr; for (const auto i : mozilla::AllPhysicalSides()) { if ((aSides & static_cast(1 << i)) == SideBits::eNone) { continue; } borderRenderStyle = mBorderStyles[i]; borderRenderColor = mBorderColors[i]; break; } if (borderRenderStyle == StyleBorderStyle::None || borderRenderStyle == StyleBorderStyle::Hidden) { return; } if (borderRenderStyle == StyleBorderStyle::Dashed || borderRenderStyle == StyleBorderStyle::Dotted) { // Draw each corner separately, with the given side's color. if (aSides & SideBits::eTop) { DrawDashedOrDottedCorner(eSideTop, C_TL); } else if (aSides & SideBits::eLeft) { DrawDashedOrDottedCorner(eSideLeft, C_TL); } if (aSides & SideBits::eTop) { DrawDashedOrDottedCorner(eSideTop, C_TR); } else if (aSides & SideBits::eRight) { DrawDashedOrDottedCorner(eSideRight, C_TR); } if (aSides & SideBits::eBottom) { DrawDashedOrDottedCorner(eSideBottom, C_BL); } else if (aSides & SideBits::eLeft) { DrawDashedOrDottedCorner(eSideLeft, C_BL); } if (aSides & SideBits::eBottom) { DrawDashedOrDottedCorner(eSideBottom, C_BR); } else if (aSides & SideBits::eRight) { DrawDashedOrDottedCorner(eSideRight, C_BR); } return; } // The borderColorStyle array goes from the outer to the inner style. // // If the border width is 1, we need to change the borderRenderStyle // a bit to make sure that we get the right colors -- e.g. 'ridge' // with a 1px border needs to look like solid, not like 'outset'. if (mOneUnitBorder && (borderRenderStyle == StyleBorderStyle::Ridge || borderRenderStyle == StyleBorderStyle::Groove || borderRenderStyle == StyleBorderStyle::Double)) { borderRenderStyle = StyleBorderStyle::Solid; } switch (borderRenderStyle) { case StyleBorderStyle::Solid: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleCount = 1; break; case StyleBorderStyle::Groove: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleTopLeft[1] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleBottomRight[1] = BorderColorStyleDark; borderColorStyleCount = 2; break; case StyleBorderStyle::Ridge: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleTopLeft[1] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleBottomRight[1] = BorderColorStyleLight; borderColorStyleCount = 2; break; case StyleBorderStyle::Double: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleTopLeft[1] = BorderColorStyleNone; borderColorStyleTopLeft[2] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleBottomRight[1] = BorderColorStyleNone; borderColorStyleBottomRight[2] = BorderColorStyleSolid; borderColorStyleCount = 3; break; case StyleBorderStyle::Inset: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleCount = 1; break; case StyleBorderStyle::Outset: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleCount = 1; break; default: MOZ_ASSERT_UNREACHABLE("Unhandled border style!!"); break; } // The only way to get to here is by having a // borderColorStyleCount < 1 or > 3; this should never happen, // since -moz-border-colors doesn't get handled here. NS_ASSERTION(borderColorStyleCount > 0 && borderColorStyleCount < 4, "Non-border-colors case with borderColorStyleCount < 1 or > 3; " "what happened?"); // The caller should never give us anything with a mix // of TL/BR if the border style would require a // TL/BR split. if (aSides & (SideBits::eBottom | SideBits::eRight)) { borderColorStyle = borderColorStyleBottomRight; } else { borderColorStyle = borderColorStyleTopLeft; } // Distribute the border across the available space. Float borderWidths[3][4]; if (borderColorStyleCount == 1) { for (const auto i : mozilla::AllPhysicalSides()) { borderWidths[0][i] = mBorderWidths[i]; } } else if (borderColorStyleCount == 2) { // with 2 color styles, any extra pixel goes to the outside for (const auto i : mozilla::AllPhysicalSides()) { borderWidths[0][i] = int32_t(mBorderWidths[i]) / 2 + int32_t(mBorderWidths[i]) % 2; borderWidths[1][i] = int32_t(mBorderWidths[i]) / 2; } } else if (borderColorStyleCount == 3) { // with 3 color styles, any extra pixel (or lack of extra pixel) // goes to the middle for (const auto i : mozilla::AllPhysicalSides()) { if (mBorderWidths[i] == 1.0) { borderWidths[0][i] = 1.f; borderWidths[1][i] = borderWidths[2][i] = 0.f; } else { int32_t rest = int32_t(mBorderWidths[i]) % 3; borderWidths[0][i] = borderWidths[2][i] = borderWidths[1][i] = (int32_t(mBorderWidths[i]) - rest) / 3; if (rest == 1) { borderWidths[1][i] += 1.f; } else if (rest == 2) { borderWidths[0][i] += 1.f; borderWidths[2][i] += 1.f; } } } } // make a copy that we can modify RectCornerRadii radii = mBorderRadii; Rect soRect(mOuterRect); Rect siRect(mOuterRect); // If adjacent side is dotted and radius=0, draw side to the end of corner. // // +-------------------------------- // |################################ // | // |################################ // +-----+-------------------------- // | | // | | // | | // | | // | | // | ### | // |#####| // |#####| // |#####| // | ### | // | | bool noMarginTop = false; bool noMarginRight = false; bool noMarginBottom = false; bool noMarginLeft = false; // If there is at least one dotted side, every side is rendered separately. if (IsSingleSide(aSides)) { if (aSides == SideBits::eTop) { if (mBorderStyles[eSideRight] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_TR])) { noMarginRight = true; } if (mBorderStyles[eSideLeft] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_TL])) { noMarginLeft = true; } } else if (aSides == SideBits::eRight) { if (mBorderStyles[eSideTop] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_TR])) { noMarginTop = true; } if (mBorderStyles[eSideBottom] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_BR])) { noMarginBottom = true; } } else if (aSides == SideBits::eBottom) { if (mBorderStyles[eSideRight] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_BR])) { noMarginRight = true; } if (mBorderStyles[eSideLeft] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_BL])) { noMarginLeft = true; } } else { if (mBorderStyles[eSideTop] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_TL])) { noMarginTop = true; } if (mBorderStyles[eSideBottom] == StyleBorderStyle::Dotted && IsZeroSize(mBorderRadii[C_BL])) { noMarginBottom = true; } } } for (unsigned int i = 0; i < borderColorStyleCount; i++) { // walk siRect inwards at the start of the loop to get the // correct inner rect. // // If noMarginTop is false: // --------------------+ // /| // / | // L | // ----------------+ | // | | // | | // // If noMarginTop is true: // ----------------+<--+ // | | // | | // | | // | | // | | // | | siRect.Deflate(Margin(noMarginTop ? 0 : borderWidths[i][0], noMarginRight ? 0 : borderWidths[i][1], noMarginBottom ? 0 : borderWidths[i][2], noMarginLeft ? 0 : borderWidths[i][3])); if (borderColorStyle[i] != BorderColorStyleNone) { sRGBColor c = ComputeColorForLine( i, borderColorStyle, borderColorStyleCount, borderRenderColor); ColorPattern color(ToDeviceColor(c)); FillSolidBorder(soRect, siRect, radii, borderWidths[i], aSides, color); } ComputeInnerRadii(radii, borderWidths[i], &radii); // And now soRect is the same as siRect, for the next line in. soRect = siRect; } } void nsCSSBorderRenderer::SetupDashedOptions(StrokeOptions* aStrokeOptions, Float aDash[2], mozilla::Side aSide, Float aBorderLength, bool isCorner) { MOZ_ASSERT(mBorderStyles[aSide] == StyleBorderStyle::Dashed || mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dashed or dotted."); StyleBorderStyle style = mBorderStyles[aSide]; Float borderWidth = mBorderWidths[aSide]; // Dashed line starts and ends with half segment in most case. // // __--+---+---+---+---+---+---+---+---+--__ // |###| | |###|###| | |###| // |###| | |###|###| | |###| // |###| | |###|###| | |###| // __--+---+---+---+---+---+---+---+---+--__ // // If radius=0 and other side is either dotted or 0-width, it starts or ends // with full segment. // // +---+---+---+---+---+---+---+---+---+---+ // |###|###| | |###|###| | |###|###| // |###|###| | |###|###| | |###|###| // |###|###| | |###|###| | |###|###| // +---++--+---+---+---+---+---+---+--++---+ // | | | | // | | | | // | | | | // | | | | // | ## | | ## | // |####| |####| // |####| |####| // | ## | | ## | // | | | | bool fullStart = false, fullEnd = false; Float halfDash; if (style == StyleBorderStyle::Dashed) { // If either end of the side is not connecting onto a corner then we want a // full dash at that end. // // Note that in the case that a corner is empty, either the adjacent side // has zero width, or else DrawBorders() set the corner to be empty // (it does that if the adjacent side has zero length and the border widths // of this and the adjacent sides are thin enough that the corner will be // insignificantly small). if (mBorderRadii[GetCCWCorner(aSide)].IsEmpty() && (mBorderCornerDimensions[GetCCWCorner(aSide)].IsEmpty() || mBorderStyles[PREV_SIDE(aSide)] == StyleBorderStyle::Dotted || // XXX why this <=1 check? borderWidth <= 1.0f)) { fullStart = true; } if (mBorderRadii[GetCWCorner(aSide)].IsEmpty() && (mBorderCornerDimensions[GetCWCorner(aSide)].IsEmpty() || mBorderStyles[NEXT_SIDE(aSide)] == StyleBorderStyle::Dotted)) { fullEnd = true; } halfDash = borderWidth * DOT_LENGTH * DASH_LENGTH / 2.0f; } else { halfDash = borderWidth * DOT_LENGTH / 2.0f; } if (style == StyleBorderStyle::Dashed && aBorderLength > 0.0f) { // The number of half segments, with maximum dash length. int32_t count = floor(aBorderLength / halfDash); Float minHalfDash = borderWidth * DOT_LENGTH / 2.0f; if (fullStart && fullEnd) { // count should be 4n + 2 // // 1 + 4 + 4 + 1 // // | | | | | // +---+---+---+---+---+---+---+---+---+---+ // |###|###| | |###|###| | |###|###| // |###|###| | |###|###| | |###|###| // |###|###| | |###|###| | |###|###| // +---+---+---+---+---+---+---+---+---+---+ // If border is too short, draw solid line. if (aBorderLength < 6.0f * minHalfDash) { return; } if (count % 4 == 0) { count += 2; } else if (count % 4 == 1) { count += 1; } else if (count % 4 == 3) { count += 3; } } else if (fullStart || fullEnd) { // count should be 4n + 1 // // 1 + 4 + 4 // // | | | | // +---+---+---+---+---+---+---+---+---+ // |###|###| | |###|###| | |###| // |###|###| | |###|###| | |###| // |###|###| | |###|###| | |###| // +---+---+---+---+---+---+---+---+---+ // // 4 + 4 + 1 // // | | | | // +---+---+---+---+---+---+---+---+---+ // |###| | |###|###| | |###|###| // |###| | |###|###| | |###|###| // |###| | |###|###| | |###|###| // +---+---+---+---+---+---+---+---+---+ // If border is too short, draw solid line. if (aBorderLength < 5.0f * minHalfDash) { return; } if (count % 4 == 0) { count += 1; } else if (count % 4 == 2) { count += 3; } else if (count % 4 == 3) { count += 2; } } else { // count should be 4n // // 4 + 4 // // | | | // +---+---+---+---+---+---+---+---+ // |###| | |###|###| | |###| // |###| | |###|###| | |###| // |###| | |###|###| | |###| // +---+---+---+---+---+---+---+---+ // If border is too short, draw solid line. if (aBorderLength < 4.0f * minHalfDash) { return; } if (count % 4 == 1) { count += 3; } else if (count % 4 == 2) { count += 2; } else if (count % 4 == 3) { count += 1; } } halfDash = aBorderLength / count; } Float fullDash = halfDash * 2.0f; aDash[0] = fullDash; aDash[1] = fullDash; if (style == StyleBorderStyle::Dashed && fullDash > 1.0f) { if (!fullStart) { // Draw half segments on both ends. aStrokeOptions->mDashOffset = halfDash; } } else if (style != StyleBorderStyle::Dotted && isCorner) { // If side ends with filled full segment, corner should start with unfilled // full segment. Not needed for dotted corners, as they overlap one dot with // the side's end. // // corner side // ------------>|<--------------------------- // | // __+---+---+---+---+---+---+---+---+ // _+- | |###|###| | |###|###| | // /##| | |###|###| | |###|###| | // +####| | |###|###| | |###|###| | // /#\####| _+--+---+---+---+---+---+---+---+ // |####\##+- // |#####+- // +--###/ // | --+ aStrokeOptions->mDashOffset = fullDash; } aStrokeOptions->mDashPattern = aDash; aStrokeOptions->mDashLength = 2; PrintAsFormatString("dash: %f %f\n", aDash[0], aDash[1]); } static Float GetBorderLength(mozilla::Side aSide, const Point& aStart, const Point& aEnd) { if (aSide == eSideTop) { return aEnd.x - aStart.x; } if (aSide == eSideRight) { return aEnd.y - aStart.y; } if (aSide == eSideBottom) { return aStart.x - aEnd.x; } return aStart.y - aEnd.y; } void nsCSSBorderRenderer::DrawDashedOrDottedSide(mozilla::Side aSide) { // Draw dashed/dotted side with following approach. // // dashed side // Draw dashed line along the side, with appropriate dash length and gap // to make the side symmetric as far as possible. Dash length equals to // the gap, and the ratio of the dash length to border-width is the maximum // value in in [1, 3] range. // In most case, line ends with half segment, to joint with corner easily. // If adjacent side is dotted or 0px and border-radius for the corner // between them is 0, the line ends with full segment. // (see comment for GetStraightBorderPoint for more detail) // // dotted side // If border-width <= 2.0, draw 1:1 dashed line. // Otherwise, draw circles along the side, with appropriate gap that makes // the side symmetric as far as possible. The ratio of the gap to // border-width is the maximum value in [0.5, 1] range in most case. // if the side is too short and there's only 2 dots, it can be more smaller. // If there's no space to place 2 dots at the side, draw single dot at the // middle of the side. // In most case, line ends with filled dot, to joint with corner easily, // If adjacent side is dotted with larger border-width, or other style, // the line ends with unfilled dot. // (see comment for GetStraightBorderPoint for more detail) NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dashed || mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dashed or dotted."); Float borderWidth = mBorderWidths[aSide]; if (borderWidth == 0.0f) { return; } if (mBorderStyles[aSide] == StyleBorderStyle::Dotted && borderWidth > 2.0f) { DrawDottedSideSlow(aSide); return; } nscolor borderColor = mBorderColors[aSide]; bool ignored; // Get the start and end points of the side, ensuring that any dot origins get // pushed outward to account for stroking. Point start = GetStraightBorderPoint(aSide, GetCCWCorner(aSide), &ignored, 0.5f); Point end = GetStraightBorderPoint(aSide, GetCWCorner(aSide), &ignored, 0.5f); if (borderWidth < 2.0f) { // Round start to draw dot on each pixel. if (IsHorizontalSide(aSide)) { start.x = round(start.x); } else { start.y = round(start.y); } } Float borderLength = GetBorderLength(aSide, start, end); if (borderLength < 0.0f) { return; } StrokeOptions strokeOptions(borderWidth); Float dash[2]; SetupDashedOptions(&strokeOptions, dash, aSide, borderLength, false); // For dotted sides that can merge with their prior dotted sides, advance the // dash offset to measure the distance around the combined path. This prevents // two dots from bunching together at a corner. mozilla::Side mergeSide = aSide; while (IsCornerMergeable(GetCCWCorner(mergeSide))) { mergeSide = PREV_SIDE(mergeSide); // If we looped all the way around, measure starting at the top side, since // we need to pick a fixed location to start measuring distance from still. if (mergeSide == aSide) { mergeSide = eSideTop; break; } } while (mergeSide != aSide) { // Measure the length of the merged side starting from a possibly // unmergeable corner up to the merged corner. A merged corner effectively // has no border radius, so we can just use the cheaper AtCorner to find the // end point. Float mergeLength = GetBorderLength(mergeSide, GetStraightBorderPoint( mergeSide, GetCCWCorner(mergeSide), &ignored, 0.5f), mOuterRect.AtCorner(GetCWCorner(mergeSide))); // Add in the merged side length. Also offset the dash progress by an extra // dot's width to avoid drawing a dot that would overdraw where the merged // side would have ended in a gap, i.e. O_O_ // O strokeOptions.mDashOffset += mergeLength + borderWidth; mergeSide = NEXT_SIDE(mergeSide); } DrawOptions drawOptions; if (mBorderStyles[aSide] == StyleBorderStyle::Dotted) { drawOptions.mAntialiasMode = AntialiasMode::NONE; } mDrawTarget->StrokeLine(start, end, ColorPattern(ToDeviceColor(borderColor)), strokeOptions, drawOptions); } void nsCSSBorderRenderer::DrawDottedSideSlow(mozilla::Side aSide) { // Draw each circles separately for dotted with borderWidth > 2.0. // Dashed line with CapStyle::ROUND doesn't render perfect circles. NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dotted."); Float borderWidth = mBorderWidths[aSide]; if (borderWidth == 0.0f) { return; } nscolor borderColor = mBorderColors[aSide]; bool isStartUnfilled, isEndUnfilled; Point start = GetStraightBorderPoint(aSide, GetCCWCorner(aSide), &isStartUnfilled); Point end = GetStraightBorderPoint(aSide, GetCWCorner(aSide), &isEndUnfilled); enum { // Corner is not mergeable. NO_MERGE, // Corner between different colors. // Two dots are merged into one, and both side draw half dot. MERGE_HALF, // Corner between same colors, CCW corner of the side. // Two dots are merged into one, and this side draw entire dot. // // MERGE_ALL MERGE_NONE // | | // v v // +-----------------------+----+ // | ## ## ## | ## | // |#### #### #### |####| // |#### #### #### |####| // | ## ## ## | ## | // +----+------------------+ | // | | | | // | | | | // | | | | // | ## | | ## | // |####| |####| MERGE_ALL, // Corner between same colors, CW corner of the side. // Two dots are merged into one, and this side doesn't draw dot. MERGE_NONE } mergeStart = NO_MERGE, mergeEnd = NO_MERGE; if (IsCornerMergeable(GetCCWCorner(aSide))) { if (borderColor == mBorderColors[PREV_SIDE(aSide)]) { mergeStart = MERGE_ALL; } else { mergeStart = MERGE_HALF; } } if (IsCornerMergeable(GetCWCorner(aSide))) { if (borderColor == mBorderColors[NEXT_SIDE(aSide)]) { mergeEnd = MERGE_NONE; } else { mergeEnd = MERGE_HALF; } } Float borderLength = GetBorderLength(aSide, start, end); if (borderLength < 0.0f) { if (isStartUnfilled || isEndUnfilled) { return; } borderLength = 0.0f; start = end = (start + end) / 2.0f; } Float dotWidth = borderWidth * DOT_LENGTH; Float radius = borderWidth / 2.0f; if (borderLength < dotWidth) { // If dots on start and end may overlap, draw a dot at the middle of them. // // ___---+-------+---___ // __-- | ##### | --__ // #|#######|# // ##|#######|## // ###|#######|### // ###+###+###+### // start ## end # // ##|#######|## // #|#######|# // | ##### | // __--+-------+--__ // _- -_ // // If that circle overflows from outer rect, do not draw it. // // +-------+ // | ##### | // #|#######|# // ##|#######|## // ###|#######|### // ###|###+###|### // ###|#######|### // ##|#######|## // #|#######|# // | ##### | // +--+-+--+ // | | | | // | | | | if (!mOuterRect.Contains(Rect(start.x - radius, start.y - radius, borderWidth, borderWidth))) { return; } if (isStartUnfilled || isEndUnfilled) { return; } Point P = (start + end) / 2; RefPtr builder = mDrawTarget->CreatePathBuilder(); builder->MoveTo(Point(P.x + radius, P.y)); builder->Arc(P, radius, 0.0f, Float(2.0 * M_PI)); RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); return; } if (mergeStart == MERGE_HALF || mergeEnd == MERGE_HALF) { // MERGE_HALF // Eo // -------+----+ // ##### / // ######/ // ######/ // ####+ // ##/ end // / // / // --+ // Ei // // other (NO_MERGE, MERGE_ALL, MERGE_NONE) // Eo // ------------+ // ##### | // ####### | // #########| // ####+####| // ## end ##| // ####### | // ##### | // ------------+ // Ei Point I(0.0f, 0.0f), J(0.0f, 0.0f); if (aSide == eSideTop) { I.x = 1.0f; J.y = 1.0f; } else if (aSide == eSideRight) { I.y = 1.0f; J.x = -1.0f; } else if (aSide == eSideBottom) { I.x = -1.0f; J.y = -1.0f; } else if (aSide == eSideLeft) { I.y = -1.0f; J.x = 1.0f; } Point So, Si, Eo, Ei; So = (start + (-I + -J) * borderWidth / 2.0f); Si = (mergeStart == MERGE_HALF) ? (start + (I + J) * borderWidth / 2.0f) : (start + (-I + J) * borderWidth / 2.0f); Eo = (end + (I - J) * borderWidth / 2.0f); Ei = (mergeEnd == MERGE_HALF) ? (end + (-I + J) * borderWidth / 2.0f) : (end + (I + J) * borderWidth / 2.0f); RefPtr builder = mDrawTarget->CreatePathBuilder(); builder->MoveTo(So); builder->LineTo(Eo); builder->LineTo(Ei); builder->LineTo(Si); builder->Close(); RefPtr path = builder->Finish(); mDrawTarget->PushClip(path); } size_t count = round(borderLength / dotWidth); if (isStartUnfilled == isEndUnfilled) { // Split into 2n segments. if (count % 2) { count++; } } else { // Split into 2n+1 segments. if (count % 2 == 0) { count++; } } // A: radius == borderWidth / 2.0 // B: borderLength / count == borderWidth * (1 - overlap) // // A B B B B A // |<-->|<------>|<------>|<------>|<------>|<-->| // | | | | | | | // +----+--------+--------+--------+--------+----+ // | ##|## **|** ##|## **|** ##|## | // | ###|### ***|*** ###|### ***|*** ###|### | // |####|####****|****####|####****|****####|####| // |####+####****+****####+####****+****####+####| // |# start #****|****####|####****|****## end ##| // | ###|### ***|*** ###|### ***|*** ###|### | // | ##|## **|** ##|## **|** ##|## | // +----+----+---+--------+--------+---+----+----+ // | | | | // | | | | // If isStartUnfilled is true, draw dots on 2j+1 points, if not, draw dots on // 2j points. size_t from = isStartUnfilled ? 1 : 0; // If mergeEnd == MERGE_NONE, last dot is drawn by next side. size_t to = count; if (mergeEnd == MERGE_NONE) { if (to > 2) { to -= 2; } else { to = 0; } } Point fromP = (start * (count - from) + end * from) / count; Point toP = (start * (count - to) + end * to) / count; // Extend dirty rect to avoid clipping pixel for anti-aliasing. const Float AA_MARGIN = 2.0f; // The following algorithm assumes the border's rect and the dirty rect // intersect. MOZ_ASSERT(mDirtyRect.Intersects(mOuterRect)); if (aSide == eSideTop) { // Tweak |from| and |to| to fit into |mDirtyRect + radius margin|, // to render only paths that may overlap mDirtyRect. // // mDirtyRect + radius margin // +--+---------------------+--+ // | | // | mDirtyRect | // + +---------------------+ + // from ===> |from to | <=== to // +-----+-----+-----+-----+-----+-----+-----+-----+ // ### |### ### ###| ### // ##### ##### ##### ##### ##### // ##### ##### ##### ##### ##### // ##### ##### ##### ##### ##### // ### |### ### ###| ### // | | | | // + +---------------------+ + // | | // | | // +--+---------------------+--+ Float left = mDirtyRect.x - radius - AA_MARGIN; if (fromP.x < left) { size_t tmp = ceil(count * (left - start.x) / (end.x - start.x)); if (tmp > from) { // We increment by 2, so odd/even should match between before/after. if ((tmp & 1) != (from & 1)) { from = tmp - 1; } else { from = tmp; } } } Float right = mDirtyRect.x + mDirtyRect.width + radius + AA_MARGIN; if (toP.x > right) { size_t tmp = floor(count * (right - start.x) / (end.x - start.x)); if (tmp < to) { if ((tmp & 1) != (to & 1)) { to = tmp + 1; } else { to = tmp; } } } } else if (aSide == eSideRight) { Float top = mDirtyRect.y - radius - AA_MARGIN; if (fromP.y < top) { size_t tmp = ceil(count * (top - start.y) / (end.y - start.y)); if (tmp > from) { if ((tmp & 1) != (from & 1)) { from = tmp - 1; } else { from = tmp; } } } Float bottom = mDirtyRect.y + mDirtyRect.height + radius + AA_MARGIN; if (toP.y > bottom) { size_t tmp = floor(count * (bottom - start.y) / (end.y - start.y)); if (tmp < to) { if ((tmp & 1) != (to & 1)) { to = tmp + 1; } else { to = tmp; } } } } else if (aSide == eSideBottom) { Float right = mDirtyRect.x + mDirtyRect.width + radius + AA_MARGIN; if (fromP.x > right) { size_t tmp = ceil(count * (right - start.x) / (end.x - start.x)); if (tmp > from) { if ((tmp & 1) != (from & 1)) { from = tmp - 1; } else { from = tmp; } } } Float left = mDirtyRect.x - radius - AA_MARGIN; if (toP.x < left) { size_t tmp = floor(count * (left - start.x) / (end.x - start.x)); if (tmp < to) { if ((tmp & 1) != (to & 1)) { to = tmp + 1; } else { to = tmp; } } } } else if (aSide == eSideLeft) { Float bottom = mDirtyRect.y + mDirtyRect.height + radius + AA_MARGIN; if (fromP.y > bottom) { size_t tmp = ceil(count * (bottom - start.y) / (end.y - start.y)); if (tmp > from) { if ((tmp & 1) != (from & 1)) { from = tmp - 1; } else { from = tmp; } } } Float top = mDirtyRect.y - radius - AA_MARGIN; if (toP.y < top) { size_t tmp = floor(count * (top - start.y) / (end.y - start.y)); if (tmp < to) { if ((tmp & 1) != (to & 1)) { to = tmp + 1; } else { to = tmp; } } } } RefPtr builder = mDrawTarget->CreatePathBuilder(); size_t segmentCount = 0; for (size_t i = from; i <= to; i += 2) { if (segmentCount > BORDER_SEGMENT_COUNT_MAX) { RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); builder = mDrawTarget->CreatePathBuilder(); segmentCount = 0; } Point P = (start * (count - i) + end * i) / count; builder->MoveTo(Point(P.x + radius, P.y)); builder->Arc(P, radius, 0.0f, Float(2.0 * M_PI)); segmentCount++; } RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); if (mergeStart == MERGE_HALF || mergeEnd == MERGE_HALF) { mDrawTarget->PopClip(); } } void nsCSSBorderRenderer::DrawDashedOrDottedCorner(mozilla::Side aSide, Corner aCorner) { // Draw dashed/dotted corner with following approach. // // dashed corner // If both side has same border-width and border-width <= 2.0, draw dashed // line along the corner, with appropriate dash length and gap to make the // corner symmetric as far as possible. Dash length equals to the gap, and // the ratio of the dash length to border-width is the maximum value in in // [1, 3] range. // Otherwise, draw dashed segments along the corner, keeping same dash // length ratio to border-width at that point. // (see DashedCornerFinder.h for more detail) // Line ends with half segments, to joint with both side easily. // // dotted corner // If both side has same border-width and border-width <= 2.0, draw 1:1 // dashed line along the corner. // Otherwise Draw circles along the corner, with appropriate gap that makes // the corner symmetric as far as possible. The size of the circle may // change along the corner, that is tangent to the outer curver and the // inner curve. The ratio of the gap to circle diameter is the maximum // value in [0.5, 1] range. // (see DottedCornerFinder.h for more detail) // Corner ends with filled dots but those dots are drawn by // DrawDashedOrDottedSide. So this may draw no circles if there's no space // between 2 dots at both ends. NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dashed || mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dashed or dotted."); if (IsCornerMergeable(aCorner)) { // DrawDashedOrDottedSide will draw corner. return; } mozilla::Side sideH(GetHorizontalSide(aCorner)); mozilla::Side sideV(GetVerticalSide(aCorner)); Float borderWidthH = mBorderWidths[sideH]; Float borderWidthV = mBorderWidths[sideV]; if (borderWidthH == 0.0f && borderWidthV == 0.0f) { return; } StyleBorderStyle styleH = mBorderStyles[sideH]; StyleBorderStyle styleV = mBorderStyles[sideV]; // Corner between dotted and others with radius=0 is drawn by side. if (IsZeroSize(mBorderRadii[aCorner]) && (styleV == StyleBorderStyle::Dotted || styleH == StyleBorderStyle::Dotted)) { return; } Float maxRadius = std::max(mBorderRadii[aCorner].width, mBorderRadii[aCorner].height); if (maxRadius > BORDER_DOTTED_CORNER_MAX_RADIUS) { DrawFallbackSolidCorner(aSide, aCorner); return; } if (borderWidthH != borderWidthV || borderWidthH > 2.0f) { StyleBorderStyle style = mBorderStyles[aSide]; if (style == StyleBorderStyle::Dotted) { DrawDottedCornerSlow(aSide, aCorner); } else { DrawDashedCornerSlow(aSide, aCorner); } return; } nscolor borderColor = mBorderColors[aSide]; Point points[4]; bool ignored; // Get the start and end points of the corner arc, ensuring that any dot // origins get pushed backwards towards the edges of the corner rect to // account for stroking. points[0] = GetStraightBorderPoint(sideH, aCorner, &ignored, -0.5f); points[3] = GetStraightBorderPoint(sideV, aCorner, &ignored, -0.5f); // Round points to draw dot on each pixel. if (borderWidthH < 2.0f) { points[0].x = round(points[0].x); } if (borderWidthV < 2.0f) { points[3].y = round(points[3].y); } points[1] = points[0]; points[1].x += kKappaFactor * (points[3].x - points[0].x); points[2] = points[3]; points[2].y += kKappaFactor * (points[0].y - points[3].y); Float len = GetQuarterEllipticArcLength(fabs(points[0].x - points[3].x), fabs(points[0].y - points[3].y)); Float dash[2]; StrokeOptions strokeOptions(borderWidthH); SetupDashedOptions(&strokeOptions, dash, aSide, len, true); RefPtr builder = mDrawTarget->CreatePathBuilder(); builder->MoveTo(points[0]); builder->BezierTo(points[1], points[2], points[3]); RefPtr path = builder->Finish(); mDrawTarget->Stroke(path, ColorPattern(ToDeviceColor(borderColor)), strokeOptions); } void nsCSSBorderRenderer::DrawDottedCornerSlow(mozilla::Side aSide, Corner aCorner) { NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dotted."); mozilla::Side sideH(GetHorizontalSide(aCorner)); mozilla::Side sideV(GetVerticalSide(aCorner)); Float R0 = mBorderWidths[sideH] / 2.0f; Float Rn = mBorderWidths[sideV] / 2.0f; if (R0 == 0.0f && Rn == 0.0f) { return; } nscolor borderColor = mBorderColors[aSide]; Bezier outerBezier; Bezier innerBezier; GetOuterAndInnerBezier(&outerBezier, &innerBezier, aCorner); bool ignored; Point C0 = GetStraightBorderPoint(sideH, aCorner, &ignored); Point Cn = GetStraightBorderPoint(sideV, aCorner, &ignored); DottedCornerFinder finder(outerBezier, innerBezier, aCorner, mBorderRadii[aCorner].width, mBorderRadii[aCorner].height, C0, R0, Cn, Rn, mBorderCornerDimensions[aCorner]); RefPtr builder = mDrawTarget->CreatePathBuilder(); size_t segmentCount = 0; const Float AA_MARGIN = 2.0f; Rect marginedDirtyRect = mDirtyRect; marginedDirtyRect.Inflate(std::max(R0, Rn) + AA_MARGIN); bool entered = false; while (finder.HasMore()) { if (segmentCount > BORDER_SEGMENT_COUNT_MAX) { RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); builder = mDrawTarget->CreatePathBuilder(); segmentCount = 0; } DottedCornerFinder::Result result = finder.Next(); if (marginedDirtyRect.Contains(result.C) && result.r > 0) { entered = true; builder->MoveTo(Point(result.C.x + result.r, result.C.y)); builder->Arc(result.C, result.r, 0, Float(2.0 * M_PI)); segmentCount++; } else if (entered) { break; } } RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); } static inline bool DashedPathOverlapsRect(Rect& pathRect, const Rect& marginedDirtyRect, DashedCornerFinder::Result& result) { // Calculate a rect that contains all control points of the |result| path, // and check if it intersects with |marginedDirtyRect|. pathRect.SetRect(result.outerSectionBezier.mPoints[0].x, result.outerSectionBezier.mPoints[0].y, 0, 0); pathRect.ExpandToEnclose(result.outerSectionBezier.mPoints[1]); pathRect.ExpandToEnclose(result.outerSectionBezier.mPoints[2]); pathRect.ExpandToEnclose(result.outerSectionBezier.mPoints[3]); pathRect.ExpandToEnclose(result.innerSectionBezier.mPoints[0]); pathRect.ExpandToEnclose(result.innerSectionBezier.mPoints[1]); pathRect.ExpandToEnclose(result.innerSectionBezier.mPoints[2]); pathRect.ExpandToEnclose(result.innerSectionBezier.mPoints[3]); return pathRect.Intersects(marginedDirtyRect); } void nsCSSBorderRenderer::DrawDashedCornerSlow(mozilla::Side aSide, Corner aCorner) { NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dashed, "Style should be dashed."); mozilla::Side sideH(GetHorizontalSide(aCorner)); mozilla::Side sideV(GetVerticalSide(aCorner)); Float borderWidthH = mBorderWidths[sideH]; Float borderWidthV = mBorderWidths[sideV]; if (borderWidthH == 0.0f && borderWidthV == 0.0f) { return; } nscolor borderColor = mBorderColors[aSide]; Bezier outerBezier; Bezier innerBezier; GetOuterAndInnerBezier(&outerBezier, &innerBezier, aCorner); DashedCornerFinder finder(outerBezier, innerBezier, borderWidthH, borderWidthV, mBorderCornerDimensions[aCorner]); RefPtr builder = mDrawTarget->CreatePathBuilder(); size_t segmentCount = 0; const Float AA_MARGIN = 2.0f; Rect marginedDirtyRect = mDirtyRect; marginedDirtyRect.Inflate(AA_MARGIN); Rect pathRect; bool entered = false; while (finder.HasMore()) { if (segmentCount > BORDER_SEGMENT_COUNT_MAX) { RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); builder = mDrawTarget->CreatePathBuilder(); segmentCount = 0; } DashedCornerFinder::Result result = finder.Next(); if (DashedPathOverlapsRect(pathRect, marginedDirtyRect, result)) { entered = true; builder->MoveTo(result.outerSectionBezier.mPoints[0]); builder->BezierTo(result.outerSectionBezier.mPoints[1], result.outerSectionBezier.mPoints[2], result.outerSectionBezier.mPoints[3]); builder->LineTo(result.innerSectionBezier.mPoints[3]); builder->BezierTo(result.innerSectionBezier.mPoints[2], result.innerSectionBezier.mPoints[1], result.innerSectionBezier.mPoints[0]); builder->LineTo(result.outerSectionBezier.mPoints[0]); segmentCount++; } else if (entered) { break; } } if (outerBezier.mPoints[0].x != innerBezier.mPoints[0].x) { // Fill gap before the first section. // // outnerPoint[0] // | // v // _+-----------+-- // / \##########| // / \#########| // + \########| // |\ \######| // | \ \#####| // | \ \####| // | \ \##| // | \ \#| // | \ \| // | \ _-+-- // +--------------+ ^ // | | | // | | innerPoint[0] // | | builder->MoveTo(outerBezier.mPoints[0]); builder->LineTo(innerBezier.mPoints[0]); builder->LineTo(Point(innerBezier.mPoints[0].x, outerBezier.mPoints[0].y)); builder->LineTo(outerBezier.mPoints[0]); } if (outerBezier.mPoints[3].y != innerBezier.mPoints[3].y) { // Fill gap after the last section. // // outnerPoint[3] // | // | // | _+-----------+-- // | / \ | // v/ \ | // + \ | // |\ \ | // |##\ \ | // |####\ \ | // |######\ \ | // |########\ \ | // |##########\ \| // |############\ _-+-- // +--------------+<-- innerPoint[3] // | | // | | // | | builder->MoveTo(outerBezier.mPoints[3]); builder->LineTo(innerBezier.mPoints[3]); builder->LineTo(Point(outerBezier.mPoints[3].x, innerBezier.mPoints[3].y)); builder->LineTo(outerBezier.mPoints[3]); } RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); } void nsCSSBorderRenderer::DrawFallbackSolidCorner(mozilla::Side aSide, Corner aCorner) { // Render too large dashed or dotted corner with solid style, to avoid hangup // inside DashedCornerFinder and DottedCornerFinder. NS_ASSERTION(mBorderStyles[aSide] == StyleBorderStyle::Dashed || mBorderStyles[aSide] == StyleBorderStyle::Dotted, "Style should be dashed or dotted."); nscolor borderColor = mBorderColors[aSide]; Bezier outerBezier; Bezier innerBezier; GetOuterAndInnerBezier(&outerBezier, &innerBezier, aCorner); RefPtr builder = mDrawTarget->CreatePathBuilder(); builder->MoveTo(outerBezier.mPoints[0]); builder->BezierTo(outerBezier.mPoints[1], outerBezier.mPoints[2], outerBezier.mPoints[3]); builder->LineTo(innerBezier.mPoints[3]); builder->BezierTo(innerBezier.mPoints[2], innerBezier.mPoints[1], innerBezier.mPoints[0]); builder->LineTo(outerBezier.mPoints[0]); RefPtr path = builder->Finish(); mDrawTarget->Fill(path, ColorPattern(ToDeviceColor(borderColor))); if (!mPresContext->HasWarnedAboutTooLargeDashedOrDottedRadius()) { mPresContext->SetHasWarnedAboutTooLargeDashedOrDottedRadius(); nsContentUtils::ReportToConsole( nsIScriptError::warningFlag, "CSS"_ns, mPresContext->Document(), nsContentUtils::eCSS_PROPERTIES, mBorderStyles[aSide] == StyleBorderStyle::Dashed ? "TooLargeDashedRadius" : "TooLargeDottedRadius"); } } bool nsCSSBorderRenderer::AllBordersSameWidth() { if (mBorderWidths[0] == mBorderWidths[1] && mBorderWidths[0] == mBorderWidths[2] && mBorderWidths[0] == mBorderWidths[3]) { return true; } return false; } bool nsCSSBorderRenderer::AllBordersSolid() { for (const auto i : mozilla::AllPhysicalSides()) { if (mBorderStyles[i] == StyleBorderStyle::Solid || mBorderStyles[i] == StyleBorderStyle::None || mBorderStyles[i] == StyleBorderStyle::Hidden) { continue; } return false; } return true; } static bool IsVisible(StyleBorderStyle aStyle) { if (aStyle != StyleBorderStyle::None && aStyle != StyleBorderStyle::Hidden) { return true; } return false; } struct twoFloats { Float a, b; twoFloats operator*(const Size& aSize) const { return {a * aSize.width, b * aSize.height}; } twoFloats operator*(Float aScale) const { return {a * aScale, b * aScale}; } twoFloats operator+(const Point& aPoint) const { return {a + aPoint.x, b + aPoint.y}; } operator Point() const { return Point(a, b); } }; void nsCSSBorderRenderer::DrawSingleWidthSolidBorder() { // Easy enough to deal with. Rect rect = mOuterRect; rect.Deflate(0.5); const twoFloats cornerAdjusts[4] = { {+0.5, 0}, {0, +0.5}, {-0.5, 0}, {0, -0.5}}; for (const auto side : mozilla::AllPhysicalSides()) { Point firstCorner = rect.CCWCorner(side) + cornerAdjusts[side]; Point secondCorner = rect.CWCorner(side) + cornerAdjusts[side]; ColorPattern color(ToDeviceColor(mBorderColors[side])); mDrawTarget->StrokeLine(firstCorner, secondCorner, color); } } // Intersect a ray from the inner corner to the outer corner // with the border radius, yielding the intersection point. static Point IntersectBorderRadius(const Point& aCenter, const Size& aRadius, const Point& aInnerCorner, const Point& aCornerDirection) { Point toCorner = aCornerDirection; // transform to-corner ray to unit-circle space toCorner.x /= aRadius.width; toCorner.y /= aRadius.height; // normalize to-corner ray Float cornerDist = toCorner.Length(); if (cornerDist < 1.0e-6f) { return aInnerCorner; } toCorner = toCorner / cornerDist; // ray from inner corner to border radius center Point toCenter = aCenter - aInnerCorner; // transform to-center ray to unit-circle space toCenter.x /= aRadius.width; toCenter.y /= aRadius.height; // compute offset of intersection with border radius unit circle Float offset = toCenter.DotProduct(toCorner); // compute discriminant to check for intersections Float discrim = 1.0f - toCenter.DotProduct(toCenter) + offset * offset; // choose farthest intersection offset += sqrtf(std::max(discrim, 0.0f)); // transform to-corner ray back out of unit-circle space toCorner.x *= aRadius.width; toCorner.y *= aRadius.height; return aInnerCorner + toCorner * offset; } // Calculate the split point and split angle for a border radius with // differing sides. static inline void SplitBorderRadius(const Point& aCenter, const Size& aRadius, const Point& aOuterCorner, const Point& aInnerCorner, const twoFloats& aCornerMults, Float aStartAngle, Point& aSplit, Float& aSplitAngle) { Point cornerDir = aOuterCorner - aInnerCorner; if (cornerDir.x == cornerDir.y && aRadius.IsSquare()) { // optimize 45-degree intersection with circle since we can assume // the circle center lies along the intersection edge aSplit = aCenter - aCornerMults * (aRadius * Float(1.0f / M_SQRT2)); aSplitAngle = aStartAngle + 0.5f * M_PI / 2.0f; } else { aSplit = IntersectBorderRadius(aCenter, aRadius, aInnerCorner, cornerDir); aSplitAngle = atan2f((aSplit.y - aCenter.y) / aRadius.height, (aSplit.x - aCenter.x) / aRadius.width); } } // Compute the size of the skirt needed, given the color alphas // of each corner side and the slope between them. static void ComputeCornerSkirtSize(Float aAlpha1, Float aAlpha2, Float aSlopeY, Float aSlopeX, Float& aSizeResult, Float& aSlopeResult) { // If either side is (almost) invisible or there is no diagonal edge, // then don't try to render a skirt. if (aAlpha1 < 0.01f || aAlpha2 < 0.01f) { return; } aSlopeX = fabs(aSlopeX); aSlopeY = fabs(aSlopeY); if (aSlopeX < 1.0e-6f || aSlopeY < 1.0e-6f) { return; } // If first and second color don't match, we need to split the corner in // half. The diagonal edges created may not have full pixel coverage given // anti-aliasing, so we need to compute a small subpixel skirt edge. This // assumes each half has half coverage to start with, and that coverage // increases as the skirt is pushed over, with the end result that we want // to roughly preserve the alpha value along this edge. // Given slope m, alphas a and A, use quadratic formula to solve for S in: // a*(1 - 0.5*(1-S)*(1-mS))*(1 - 0.5*A) + 0.5*A = A // yielding: // S = ((1+m) - sqrt((1+m)*(1+m) + 4*m*(1 - A/(a*(1-0.5*A))))) / (2*m) // and substitute k = (1+m)/(2*m): // S = k - sqrt(k*k + (1 - A/(a*(1-0.5*A)))/m) Float slope = aSlopeY / aSlopeX; Float slopeScale = (1.0f + slope) / (2.0f * slope); Float discrim = slopeScale * slopeScale + (1 - aAlpha2 / (aAlpha1 * (1.0f - 0.49f * aAlpha2))) / slope; if (discrim >= 0) { aSizeResult = slopeScale - sqrtf(discrim); aSlopeResult = slope; } } // Draws a border radius with possibly different sides. // A skirt is drawn underneath the corner intersection to hide possible // seams when anti-aliased drawing is used. static void DrawBorderRadius( DrawTarget* aDrawTarget, Corner c, const Point& aOuterCorner, const Point& aInnerCorner, const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext, const Size& aCornerDims, const Size& aOuterRadius, const Size& aInnerRadius, const DeviceColor& aFirstColor, const DeviceColor& aSecondColor, Float aSkirtSize, Float aSkirtSlope) { // Connect edge to outer arc start point Point outerCornerStart = aOuterCorner + aCornerMultPrev * aCornerDims; // Connect edge to outer arc end point Point outerCornerEnd = aOuterCorner + aCornerMultNext * aCornerDims; // Connect edge to inner arc start point Point innerCornerStart = outerCornerStart + aCornerMultNext * (aCornerDims - aInnerRadius); // Connect edge to inner arc end point Point innerCornerEnd = outerCornerEnd + aCornerMultPrev * (aCornerDims - aInnerRadius); // Outer arc start point Point outerArcStart = aOuterCorner + aCornerMultPrev * aOuterRadius; // Outer arc end point Point outerArcEnd = aOuterCorner + aCornerMultNext * aOuterRadius; // Inner arc start point Point innerArcStart = aInnerCorner + aCornerMultPrev * aInnerRadius; // Inner arc end point Point innerArcEnd = aInnerCorner + aCornerMultNext * aInnerRadius; // Outer radius center Point outerCenter = aOuterCorner + (aCornerMultPrev + aCornerMultNext) * aOuterRadius; // Inner radius center Point innerCenter = aInnerCorner + (aCornerMultPrev + aCornerMultNext) * aInnerRadius; RefPtr builder; RefPtr path; if (aFirstColor.a > 0) { builder = aDrawTarget->CreatePathBuilder(); builder->MoveTo(outerCornerStart); } if (aFirstColor != aSecondColor) { // Start and end angles of corner quadrant constexpr float PIf = M_PI; Float startAngle = (static_cast(c) * PIf) / 2.0f - PIf; Float endAngle = startAngle + PIf / 2.0f; Float outerSplitAngle, innerSplitAngle; Point outerSplit, innerSplit; // Outer half-way point SplitBorderRadius(outerCenter, aOuterRadius, aOuterCorner, aInnerCorner, aCornerMultPrev + aCornerMultNext, startAngle, outerSplit, outerSplitAngle); // Inner half-way point if (aInnerRadius.IsEmpty()) { innerSplit = aInnerCorner; innerSplitAngle = endAngle; } else { SplitBorderRadius(innerCenter, aInnerRadius, aOuterCorner, aInnerCorner, aCornerMultPrev + aCornerMultNext, startAngle, innerSplit, innerSplitAngle); } // Draw first half with first color if (aFirstColor.a > 0) { AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius, outerArcStart, outerSplit, startAngle, outerSplitAngle); // Draw skirt as part of first half if (aSkirtSize > 0) { builder->LineTo(outerSplit + aCornerMultNext * aSkirtSize); builder->LineTo(innerSplit - aCornerMultPrev * (aSkirtSize * aSkirtSlope)); } AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius, innerSplit, innerArcStart, innerSplitAngle, startAngle); if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) { builder->LineTo(innerCornerStart); } builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aFirstColor)); } // Draw second half with second color if (aSecondColor.a > 0) { builder = aDrawTarget->CreatePathBuilder(); builder->MoveTo(outerCornerEnd); if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) { builder->LineTo(innerCornerEnd); } AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius, innerArcEnd, innerSplit, endAngle, innerSplitAngle); AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius, outerSplit, outerArcEnd, outerSplitAngle, endAngle); builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aSecondColor)); } } else if (aFirstColor.a > 0) { // Draw corner with single color AcuteArcToBezier(builder.get(), outerCenter, aOuterRadius, outerArcStart, outerArcEnd); builder->LineTo(outerCornerEnd); if ((innerArcEnd - innerCornerEnd).DotProduct(aCornerMultNext) < 0) { builder->LineTo(innerCornerEnd); } AcuteArcToBezier(builder.get(), innerCenter, aInnerRadius, innerArcEnd, innerArcStart, -kKappaFactor); if ((innerCornerStart - innerArcStart).DotProduct(aCornerMultPrev) > 0) { builder->LineTo(innerCornerStart); } builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aFirstColor)); } } // Draw a corner with possibly different sides. // A skirt is drawn underneath the corner intersection to hide possible // seams when anti-aliased drawing is used. static void DrawCorner(DrawTarget* aDrawTarget, const Point& aOuterCorner, const Point& aInnerCorner, const twoFloats& aCornerMultPrev, const twoFloats& aCornerMultNext, const Size& aCornerDims, const DeviceColor& aFirstColor, const DeviceColor& aSecondColor, Float aSkirtSize, Float aSkirtSlope) { // Corner box start point Point cornerStart = aOuterCorner + aCornerMultPrev * aCornerDims; // Corner box end point Point cornerEnd = aOuterCorner + aCornerMultNext * aCornerDims; RefPtr builder; RefPtr path; if (aFirstColor.a > 0) { builder = aDrawTarget->CreatePathBuilder(); builder->MoveTo(cornerStart); } if (aFirstColor != aSecondColor) { // Draw first half with first color if (aFirstColor.a > 0) { builder->LineTo(aOuterCorner); // Draw skirt as part of first half if (aSkirtSize > 0) { builder->LineTo(aOuterCorner + aCornerMultNext * aSkirtSize); builder->LineTo(aInnerCorner - aCornerMultPrev * (aSkirtSize * aSkirtSlope)); } builder->LineTo(aInnerCorner); builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aFirstColor)); } // Draw second half with second color if (aSecondColor.a > 0) { builder = aDrawTarget->CreatePathBuilder(); builder->MoveTo(cornerEnd); builder->LineTo(aInnerCorner); builder->LineTo(aOuterCorner); builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aSecondColor)); } } else if (aFirstColor.a > 0) { // Draw corner with single color builder->LineTo(aOuterCorner); builder->LineTo(cornerEnd); builder->LineTo(aInnerCorner); builder->Close(); path = builder->Finish(); aDrawTarget->Fill(path, ColorPattern(aFirstColor)); } } void nsCSSBorderRenderer::DrawSolidBorder() { const twoFloats cornerMults[4] = {{-1, 0}, {0, -1}, {+1, 0}, {0, +1}}; const twoFloats centerAdjusts[4] = { {0, +0.5}, {-0.5, 0}, {0, -0.5}, {+0.5, 0}}; RectCornerRadii innerRadii; ComputeInnerRadii(mBorderRadii, mBorderWidths, &innerRadii); Rect strokeRect = mOuterRect; strokeRect.Deflate(Margin(mBorderWidths[0] / 2.0, mBorderWidths[1] / 2.0, mBorderWidths[2] / 2.0, mBorderWidths[3] / 2.0)); for (const auto i : mozilla::AllPhysicalSides()) { // We now draw the current side and the CW corner following it. // The CCW corner of this side was already drawn in the previous iteration. // The side will be drawn as an explicit stroke, and the CW corner will be // filled separately. // If the next side does not have a matching color, then we split the // corner into two halves, one of each side's color and draw both. // Thus, the CCW corner of the next side will end up drawn here. // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) Corner c = Corner((i + 1) % 4); Corner prevCorner = Corner(i); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i1 = (i + 1) % 4; int i2 = (i + 2) % 4; int i3 = (i + 3) % 4; Float sideWidth = 0.0f; DeviceColor firstColor, secondColor; if (IsVisible(mBorderStyles[i]) && mBorderWidths[i]) { // draw the side since it is visible sideWidth = mBorderWidths[i]; firstColor = ToDeviceColor(mBorderColors[i]); // if the next side is visible, use its color for corner secondColor = IsVisible(mBorderStyles[i1]) && mBorderWidths[i1] ? ToDeviceColor(mBorderColors[i1]) : firstColor; } else if (IsVisible(mBorderStyles[i1]) && mBorderWidths[i1]) { // assign next side's color to both corner sides firstColor = ToDeviceColor(mBorderColors[i1]); secondColor = firstColor; } else { // neither side is visible, so nothing to do continue; } Point outerCorner = mOuterRect.AtCorner(c); Point innerCorner = mInnerRect.AtCorner(c); // start and end points of border side stroke between corners Point sideStart = mOuterRect.AtCorner(prevCorner) + cornerMults[i2] * mBorderCornerDimensions[prevCorner]; Point sideEnd = outerCorner + cornerMults[i] * mBorderCornerDimensions[c]; // check if the side is visible and not inverted if (sideWidth > 0 && firstColor.a > 0 && -(sideEnd - sideStart).DotProduct(cornerMults[i]) > 0) { mDrawTarget->StrokeLine(sideStart + centerAdjusts[i] * sideWidth, sideEnd + centerAdjusts[i] * sideWidth, ColorPattern(firstColor), StrokeOptions(sideWidth)); } Float skirtSize = 0.0f, skirtSlope = 0.0f; // the sides don't match, so compute a skirt if (firstColor != secondColor && mPresContext->Type() != nsPresContext::eContext_Print) { Point cornerDir = outerCorner - innerCorner; ComputeCornerSkirtSize( firstColor.a, secondColor.a, cornerDir.DotProduct(cornerMults[i]), cornerDir.DotProduct(cornerMults[i3]), skirtSize, skirtSlope); } if (!mBorderRadii[c].IsEmpty()) { // the corner has a border radius DrawBorderRadius(mDrawTarget, c, outerCorner, innerCorner, cornerMults[i], cornerMults[i3], mBorderCornerDimensions[c], mBorderRadii[c], innerRadii[c], firstColor, secondColor, skirtSize, skirtSlope); } else if (!mBorderCornerDimensions[c].IsEmpty()) { // a corner with no border radius DrawCorner(mDrawTarget, outerCorner, innerCorner, cornerMults[i], cornerMults[i3], mBorderCornerDimensions[c], firstColor, secondColor, skirtSize, skirtSlope); } } } void nsCSSBorderRenderer::DrawBorders() { if (MOZ_UNLIKELY(!mDirtyRect.Intersects(mOuterRect))) { return; } if (mAllBordersSameStyle && (mBorderStyles[0] == StyleBorderStyle::None || mBorderStyles[0] == StyleBorderStyle::Hidden || mBorderColors[0] == NS_RGBA(0, 0, 0, 0))) { // All borders are the same style, and the style is either none or hidden, // or the color is transparent. return; } if (mAllBordersSameWidth && mBorderWidths[0] == 0.0) { // Some of the mAllBordersSameWidth codepaths depend on the border // width being greater than zero. return; } AutoRestoreTransform autoRestoreTransform; Matrix mat = mDrawTarget->GetTransform(); // Clamp the CTM to be pixel-aligned; we do this only // for translation-only matrices now, but we could do it // if the matrix has just a scale as well. We should not // do it if there's a rotation. if (mat.HasNonTranslation()) { if (!mat.HasNonAxisAlignedTransform()) { // Scale + transform. Avoid stroke fast-paths so that we have a chance // of snapping to pixel boundaries. mAvoidStroke = true; } } else { mat._31 = floor(mat._31 + 0.5); mat._32 = floor(mat._32 + 0.5); autoRestoreTransform.Init(mDrawTarget); mDrawTarget->SetTransform(mat); // round mOuterRect and mInnerRect; they're already an integer // number of pixels apart and should stay that way after // rounding. We don't do this if there's a scale in the current transform // since this loses information that might be relevant when we're scaling. mOuterRect.Round(); mInnerRect.Round(); } // Initial values only used when the border colors/widths are all the same: ColorPattern color(ToDeviceColor(mBorderColors[eSideTop])); StrokeOptions strokeOptions(mBorderWidths[eSideTop]); // stroke width // First there's a couple of 'special cases' that have specifically optimized // drawing paths, when none of these can be used we move on to the generalized // border drawing code. if (mAllBordersSameStyle && mAllBordersSameWidth && mBorderStyles[0] == StyleBorderStyle::Solid && mNoBorderRadius && !mAvoidStroke) { // Very simple case. Rect rect = mOuterRect; rect.Deflate(mBorderWidths[0] / 2.0); mDrawTarget->StrokeRect(rect, color, strokeOptions); return; } if (mAllBordersSameStyle && mBorderStyles[0] == StyleBorderStyle::Solid && !mAvoidStroke && !mNoBorderRadius) { // Relatively simple case. RoundedRect borderInnerRect(mOuterRect, mBorderRadii); borderInnerRect.Deflate(mBorderWidths[eSideTop], mBorderWidths[eSideBottom], mBorderWidths[eSideLeft], mBorderWidths[eSideRight]); // Instead of stroking we just use two paths: an inner and an outer. // This allows us to draw borders that we couldn't when stroking. For // example, borders with a border width >= the border radius. (i.e. when // there are square corners on the inside) // // Further, this approach can be more efficient because the backend // doesn't need to compute an offset curve to stroke the path. We know that // the rounded parts are elipses we can offset exactly and can just compute // a new cubic approximation. RefPtr builder = mDrawTarget->CreatePathBuilder(); AppendRoundedRectToPath(builder, mOuterRect, mBorderRadii, true); AppendRoundedRectToPath(builder, borderInnerRect.rect, borderInnerRect.corners, false); RefPtr path = builder->Finish(); mDrawTarget->Fill(path, color); return; } const bool allBordersSolid = AllBordersSolid(); // This leaves the border corners non-interpolated for single width borders. // Doing this is slightly faster and shouldn't be a problem visually. if (allBordersSolid && mAllBordersSameWidth && mBorderWidths[0] == 1 && mNoBorderRadius && !mAvoidStroke) { DrawSingleWidthSolidBorder(); return; } if (allBordersSolid && !mAvoidStroke) { DrawSolidBorder(); return; } PrintAsString(" mOuterRect: "); PrintAsString(mOuterRect); PrintAsStringNewline(); PrintAsString(" mInnerRect: "); PrintAsString(mInnerRect); PrintAsStringNewline(); PrintAsFormatString(" mBorderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", mBorderColors[0], mBorderColors[1], mBorderColors[2], mBorderColors[3]); // if conditioning the outside rect failed, then bail -- the outside // rect is supposed to enclose the entire border { gfxRect outerRect = ThebesRect(mOuterRect); gfxUtils::ConditionRect(outerRect); if (outerRect.IsEmpty()) { return; } mOuterRect = ToRect(outerRect); if (MOZ_UNLIKELY(!mDirtyRect.Intersects(mOuterRect))) { return; } gfxRect innerRect = ThebesRect(mInnerRect); gfxUtils::ConditionRect(innerRect); mInnerRect = ToRect(innerRect); } SideBits dashedSides = SideBits::eNone; bool forceSeparateCorners = false; for (const auto i : mozilla::AllPhysicalSides()) { StyleBorderStyle style = mBorderStyles[i]; if (style == StyleBorderStyle::Dashed || style == StyleBorderStyle::Dotted) { // we need to draw things separately for dashed/dotting forceSeparateCorners = true; dashedSides |= static_cast(1 << i); } } PrintAsFormatString(" mAllBordersSameStyle: %d dashedSides: 0x%02x\n", mAllBordersSameStyle, static_cast(dashedSides)); if (mAllBordersSameStyle && !forceSeparateCorners) { /* Draw everything in one go */ DrawBorderSides(SideBits::eAll); PrintAsStringNewline("---------------- (1)"); } else { AUTO_PROFILER_LABEL("nsCSSBorderRenderer::DrawBorders:multipass", GRAPHICS); /* We have more than one pass to go. Draw the corners separately from the * sides. */ // The corner is going to have negligible size if its two adjacent border // sides are only 1px wide and there is no border radius. In that case we // skip the overhead of painting the corner by setting the width or height // of the corner to zero, which effectively extends one of the corner's // adjacent border sides. We extend the longer adjacent side so that // opposite sides will be the same length, which is necessary for opposite // dashed/dotted sides to be symmetrical. // // if width > height // +--+--------------+--+ +--------------------+ // | | | | | | // +--+--------------+--+ +--+--------------+--+ // | | | | | | | | // | | | | => | | | | // | | | | | | | | // +--+--------------+--+ +--+--------------+--+ // | | | | | | // +--+--------------+--+ +--------------------+ // // if width <= height // +--+--------+--+ +--+--------+--+ // | | | | | | | | // +--+--------+--+ | +--------+ | // | | | | | | | | // | | | | | | | | // | | | | | | | | // | | | | => | | | | // | | | | | | | | // | | | | | | | | // | | | | | | | | // +--+--------+--+ | +--------+ | // | | | | | | | | // +--+--------+--+ +--+--------+--+ // // Note that if we have different border widths we could end up with // opposite sides of different length. For example, if the left and // bottom borders are 2px wide instead of 1px, we will end up doing // something like: // // +----+------------+--+ +----+---------------+ // | | | | | | | // +----+------------+--+ +----+------------+--+ // | | | | | | | | // | | | | => | | | | // | | | | | | | | // +----+------------+--+ +----+------------+--+ // | | | | | | | | // | | | | | | | | // +----+------------+--+ +----+------------+--+ // // XXX Should we only do this optimization if |mAllBordersSameWidth| is // true? // // XXX In fact is this optimization even worth the complexity it adds to // the code? 1px wide dashed borders are not overly common, and drawing // corners for them is not that expensive. for (const auto corner : mozilla::AllPhysicalCorners()) { const mozilla::Side sides[2] = {mozilla::Side(corner), PREV_SIDE(corner)}; if (!IsZeroSize(mBorderRadii[corner])) { continue; } if (mBorderWidths[sides[0]] == 1.0 && mBorderWidths[sides[1]] == 1.0) { if (mOuterRect.Width() > mOuterRect.Height()) { mBorderCornerDimensions[corner].width = 0.0; } else { mBorderCornerDimensions[corner].height = 0.0; } } } // First, the corners for (const auto corner : mozilla::AllPhysicalCorners()) { // if there's no corner, don't do all this work for it if (IsZeroSize(mBorderCornerDimensions[corner])) { continue; } const int sides[2] = {corner, PREV_SIDE(corner)}; SideBits sideBits = static_cast((1 << sides[0]) | (1 << sides[1])); bool simpleCornerStyle = AreBorderSideFinalStylesSame(sideBits); // If we don't have anything complex going on in this corner, // then we can just fill the corner with a solid color, and avoid // the potentially expensive clip. if (simpleCornerStyle && IsZeroSize(mBorderRadii[corner]) && IsSolidCornerStyle(mBorderStyles[sides[0]], corner)) { sRGBColor color = MakeBorderColor( mBorderColors[sides[0]], BorderColorStyleForSolidCorner(mBorderStyles[sides[0]], corner)); mDrawTarget->FillRect(GetCornerRect(corner), ColorPattern(ToDeviceColor(color))); continue; } // clip to the corner mDrawTarget->PushClipRect(GetCornerRect(corner)); if (simpleCornerStyle) { // we don't need a group for this corner, the sides are the same, // but we weren't able to render just a solid block for the corner. DrawBorderSides(sideBits); } else { // Sides are different. We could draw using OP_ADD to // get correct color blending behaviour at the seam. We'd need // to do it in an offscreen surface to ensure that we're // always compositing on transparent black. If the colors // don't have transparency and the current destination surface // has an alpha channel, we could just clear the region and // avoid the temporary, but that situation doesn't happen all // that often in practice (we double buffer to no-alpha // surfaces). We choose just to seam though, as the performance // advantages outway the modest easthetic improvement. for (int cornerSide = 0; cornerSide < 2; cornerSide++) { mozilla::Side side = mozilla::Side(sides[cornerSide]); StyleBorderStyle style = mBorderStyles[side]; PrintAsFormatString("corner: %d cornerSide: %d side: %d style: %d\n", corner, cornerSide, side, static_cast(style)); RefPtr path = GetSideClipSubPath(side); mDrawTarget->PushClip(path); DrawBorderSides(static_cast(1 << side)); mDrawTarget->PopClip(); } } mDrawTarget->PopClip(); PrintAsStringNewline(); } // in the case of a single-unit border, we already munged the // corners up above; so we can just draw the top left and bottom // right sides separately, if they're the same. // // We need to check for mNoBorderRadius, because when there is // one, FillSolidBorder always draws the full rounded rectangle // and expects there to be a clip in place. SideBits alreadyDrawnSides = SideBits::eNone; if (mOneUnitBorder && mNoBorderRadius && (dashedSides & (SideBits::eTop | SideBits::eLeft)) == SideBits::eNone) { bool tlBordersSameStyle = AreBorderSideFinalStylesSame(SideBits::eTop | SideBits::eLeft); bool brBordersSameStyle = AreBorderSideFinalStylesSame(SideBits::eBottom | SideBits::eRight); if (tlBordersSameStyle) { DrawBorderSides(SideBits::eTop | SideBits::eLeft); alreadyDrawnSides |= (SideBits::eTop | SideBits::eLeft); } if (brBordersSameStyle && (dashedSides & (SideBits::eBottom | SideBits::eRight)) == SideBits::eNone) { DrawBorderSides(SideBits::eBottom | SideBits::eRight); alreadyDrawnSides |= (SideBits::eBottom | SideBits::eRight); } } // We're done with the corners, now draw the sides. for (const auto side : mozilla::AllPhysicalSides()) { // if we drew it above, skip it if (alreadyDrawnSides & static_cast(1 << side)) { continue; } // If there's no border on this side, skip it if (mBorderWidths[side] == 0.0 || mBorderStyles[side] == StyleBorderStyle::Hidden || mBorderStyles[side] == StyleBorderStyle::None) { continue; } if (dashedSides & static_cast(1 << side)) { // Dashed sides will always draw just the part ignoring the // corners for the side, so no need to clip. DrawDashedOrDottedSide(side); PrintAsStringNewline("---------------- (d)"); continue; } // Undashed sides will currently draw the entire side, // including parts that would normally be covered by a corner, // so we need to clip. // // XXX Optimization -- it would be good to make this work like // DrawDashedOrDottedSide, and have a DrawOneSide function that just // draws one side and not the corners, because then we can // avoid the potentially expensive clip. mDrawTarget->PushClipRect(GetSideClipWithoutCornersRect(side)); DrawBorderSides(static_cast(1 << side)); mDrawTarget->PopClip(); PrintAsStringNewline("---------------- (*)"); } } } void nsCSSBorderRenderer::CreateWebRenderCommands( nsDisplayItem* aItem, wr::DisplayListBuilder& aBuilder, wr::IpcResourceUpdateQueue& aResources, const layers::StackingContextHelper& aSc) { LayoutDeviceRect outerRect = LayoutDeviceRect::FromUnknownRect(mOuterRect); wr::LayoutRect roundedRect = wr::ToLayoutRect(outerRect); wr::LayoutRect clipRect = roundedRect; wr::BorderSide side[4]; for (const auto i : mozilla::AllPhysicalSides()) { side[i] = wr::ToBorderSide(ToDeviceColor(mBorderColors[i]), mBorderStyles[i]); } wr::BorderRadius borderRadius = wr::ToBorderRadius(mBorderRadii); if (mLocalClip) { LayoutDeviceRect localClip = LayoutDeviceRect::FromUnknownRect(mLocalClip.value()); clipRect = wr::ToLayoutRect(localClip.Intersect(outerRect)); } Range wrsides(side, 4); aBuilder.PushBorder(roundedRect, clipRect, mBackfaceIsVisible, wr::ToBorderWidths(mBorderWidths[0], mBorderWidths[1], mBorderWidths[2], mBorderWidths[3]), wrsides, borderRadius); } /* static */ Maybe nsCSSBorderImageRenderer::CreateBorderImageRenderer( nsPresContext* aPresContext, nsIFrame* aForFrame, const nsRect& aBorderArea, const nsStyleBorder& aStyleBorder, const nsRect& aDirtyRect, Sides aSkipSides, uint32_t aFlags, ImgDrawResult* aDrawResult) { MOZ_ASSERT(aDrawResult); if (aDirtyRect.IsEmpty()) { *aDrawResult = ImgDrawResult::SUCCESS; return Nothing(); } nsImageRenderer imgRenderer(aForFrame, &aStyleBorder.mBorderImageSource, aFlags); if (!imgRenderer.PrepareImage()) { *aDrawResult = imgRenderer.PrepareResult(); return Nothing(); } // We should always get here with the frame's border, but we may construct an // nsStyleBorder om the stack to deal with :visited and other shenaningans. // // We always copy the border image and such from the non-visited one, so // there's no need to do anything with it. MOZ_ASSERT(aStyleBorder.GetBorderImageRequest() == aForFrame->StyleBorder()->GetBorderImageRequest()); nsCSSBorderImageRenderer renderer(aForFrame, aBorderArea, aStyleBorder, aSkipSides, imgRenderer); *aDrawResult = ImgDrawResult::SUCCESS; return Some(renderer); } ImgDrawResult nsCSSBorderImageRenderer::DrawBorderImage( nsPresContext* aPresContext, gfxContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect) { // NOTE: no Save() yet, we do that later by calling autoSR.EnsureSaved() // in case we need it. gfxContextAutoSaveRestore autoSR; if (!mClip.IsEmpty()) { autoSR.EnsureSaved(&aRenderingContext); aRenderingContext.Clip(NSRectToSnappedRect( mClip, aForFrame->PresContext()->AppUnitsPerDevPixel(), *aRenderingContext.GetDrawTarget())); } // intrinsicSize.CanComputeConcreteSize() return false means we can not // read intrinsic size from aStyleBorder.mBorderImageSource. // In this condition, we pass imageSize(a resolved size comes from // default sizing algorithm) to renderer as the viewport size. CSSSizeOrRatio intrinsicSize = mImageRenderer.ComputeIntrinsicSize(); Maybe svgViewportSize = intrinsicSize.CanComputeConcreteSize() ? Nothing() : Some(mImageSize); bool hasIntrinsicRatio = intrinsicSize.HasRatio(); mImageRenderer.PurgeCacheForViewportChange(svgViewportSize, hasIntrinsicRatio); // These helper tables recharacterize the 'slice' and 'width' margins // in a more convenient form: they are the x/y/width/height coords // required for various bands of the border, and they have been transformed // to be relative to the innerRect (for 'slice') or the page (for 'border'). enum { LEFT, MIDDLE, RIGHT, TOP = LEFT, BOTTOM = RIGHT }; const nscoord borderX[3] = { mArea.x + 0, mArea.x + mWidths.left, mArea.x + mArea.width - mWidths.right, }; const nscoord borderY[3] = { mArea.y + 0, mArea.y + mWidths.top, mArea.y + mArea.height - mWidths.bottom, }; const nscoord borderWidth[3] = { mWidths.left, mArea.width - mWidths.left - mWidths.right, mWidths.right, }; const nscoord borderHeight[3] = { mWidths.top, mArea.height - mWidths.top - mWidths.bottom, mWidths.bottom, }; const int32_t sliceX[3] = { 0, mSlice.left, mImageSize.width - mSlice.right, }; const int32_t sliceY[3] = { 0, mSlice.top, mImageSize.height - mSlice.bottom, }; const int32_t sliceWidth[3] = { mSlice.left, std::max(mImageSize.width - mSlice.left - mSlice.right, 0), mSlice.right, }; const int32_t sliceHeight[3] = { mSlice.top, std::max(mImageSize.height - mSlice.top - mSlice.bottom, 0), mSlice.bottom, }; ImgDrawResult result = ImgDrawResult::SUCCESS; for (int i = LEFT; i <= RIGHT; i++) { for (int j = TOP; j <= BOTTOM; j++) { StyleBorderImageRepeat fillStyleH, fillStyleV; nsSize unitSize; if (i == MIDDLE && j == MIDDLE) { // Discard the middle portion unless set to fill. if (!mFill) { continue; } // css-background: // The middle image's width is scaled by the same factor as the // top image unless that factor is zero or infinity, in which // case the scaling factor of the bottom is substituted, and // failing that, the width is not scaled. The height of the // middle image is scaled by the same factor as the left image // unless that factor is zero or infinity, in which case the // scaling factor of the right image is substituted, and failing // that, the height is not scaled. gfxFloat hFactor, vFactor; if (0 < mWidths.left && 0 < mSlice.left) { vFactor = gfxFloat(mWidths.left) / mSlice.left; } else if (0 < mWidths.right && 0 < mSlice.right) { vFactor = gfxFloat(mWidths.right) / mSlice.right; } else { vFactor = 1; } if (0 < mWidths.top && 0 < mSlice.top) { hFactor = gfxFloat(mWidths.top) / mSlice.top; } else if (0 < mWidths.bottom && 0 < mSlice.bottom) { hFactor = gfxFloat(mWidths.bottom) / mSlice.bottom; } else { hFactor = 1; } unitSize.width = sliceWidth[i] * hFactor; unitSize.height = sliceHeight[j] * vFactor; fillStyleH = mRepeatModeHorizontal; fillStyleV = mRepeatModeVertical; } else if (i == MIDDLE) { // top, bottom // Sides are always stretched to the thickness of their border, // and stretched proportionately on the other axis. gfxFloat factor; if (0 < borderHeight[j] && 0 < sliceHeight[j]) { factor = gfxFloat(borderHeight[j]) / sliceHeight[j]; } else { factor = 1; } unitSize.width = sliceWidth[i] * factor; unitSize.height = borderHeight[j]; fillStyleH = mRepeatModeHorizontal; fillStyleV = StyleBorderImageRepeat::Stretch; } else if (j == MIDDLE) { // left, right gfxFloat factor; if (0 < borderWidth[i] && 0 < sliceWidth[i]) { factor = gfxFloat(borderWidth[i]) / sliceWidth[i]; } else { factor = 1; } unitSize.width = borderWidth[i]; unitSize.height = sliceHeight[j] * factor; fillStyleH = StyleBorderImageRepeat::Stretch; fillStyleV = mRepeatModeVertical; } else { // Corners are always stretched to fit the corner. unitSize.width = borderWidth[i]; unitSize.height = borderHeight[j]; fillStyleH = StyleBorderImageRepeat::Stretch; fillStyleV = StyleBorderImageRepeat::Stretch; } nsRect destArea(borderX[i], borderY[j], borderWidth[i], borderHeight[j]); nsRect subArea(sliceX[i], sliceY[j], sliceWidth[i], sliceHeight[j]); if (subArea.IsEmpty()) continue; nsIntRect intSubArea = subArea.ToOutsidePixels(AppUnitsPerCSSPixel()); result &= mImageRenderer.DrawBorderImageComponent( aPresContext, aRenderingContext, aDirtyRect, destArea, CSSIntRect(intSubArea.x, intSubArea.y, intSubArea.width, intSubArea.height), fillStyleH, fillStyleV, unitSize, j * (RIGHT + 1) + i, svgViewportSize, hasIntrinsicRatio); } } return result; } ImgDrawResult nsCSSBorderImageRenderer::CreateWebRenderCommands( nsDisplayItem* aItem, nsIFrame* aForFrame, mozilla::wr::DisplayListBuilder& aBuilder, mozilla::wr::IpcResourceUpdateQueue& aResources, const mozilla::layers::StackingContextHelper& aSc, mozilla::layers::RenderRootStateManager* aManager, nsDisplayListBuilder* aDisplayListBuilder) { if (!mImageRenderer.IsReady()) { return ImgDrawResult::NOT_READY; } float widths[4]; float slice[4]; float outset[4]; const int32_t appUnitsPerDevPixel = aForFrame->PresContext()->AppUnitsPerDevPixel(); for (const auto i : mozilla::AllPhysicalSides()) { slice[i] = (float)(mSlice.Side(i)) / appUnitsPerDevPixel; widths[i] = (float)(mWidths.Side(i)) / appUnitsPerDevPixel; // The outset is already taken into account by the adjustments to mArea // in our constructor. We use mArea as our dest rect so we can just supply // zero outsets to WebRender. outset[i] = 0.0f; } LayoutDeviceRect destRect = LayoutDeviceRect::FromAppUnits(mArea, appUnitsPerDevPixel); destRect.Round(); wr::LayoutRect dest = wr::ToLayoutRect(destRect); wr::LayoutRect clip = dest; if (!mClip.IsEmpty()) { LayoutDeviceRect clipRect = LayoutDeviceRect::FromAppUnits(mClip, appUnitsPerDevPixel); clip = wr::ToLayoutRect(clipRect); } ImgDrawResult drawResult = ImgDrawResult::SUCCESS; switch (mImageRenderer.GetType()) { case StyleImage::Tag::Rect: case StyleImage::Tag::Url: { RefPtr img = mImageRenderer.GetImage(); if (!img || img->GetType() == imgIContainer::TYPE_VECTOR) { // Vector images will redraw each segment of the border up to 8 times. // We draw using a restricted region derived from the segment's clip and // scale the image accordingly (see ClippedImage::Draw). If we follow // this convention as is for WebRender, we will need to rasterize the // entire vector image scaled up without the restriction region, which // means our main thread CPU and memory footprints will be much higher. // Ideally we would be able to provide a raster image for each segment // of the border. For now we use fallback. return ImgDrawResult::NOT_SUPPORTED; } uint32_t flags = aDisplayListBuilder->GetImageDecodeFlags(); LayoutDeviceRect imageRect = LayoutDeviceRect::FromAppUnits( nsRect(nsPoint(), mImageRenderer.GetSize()), appUnitsPerDevPixel); SVGImageContext svgContext; Maybe region; gfx::IntSize decodeSize = nsLayoutUtils::ComputeImageContainerDrawingParameters( img, aForFrame, imageRect, imageRect, aSc, flags, svgContext, region); RefPtr provider; drawResult = img->GetImageProvider(aManager->LayerManager(), decodeSize, svgContext, region, flags, getter_AddRefs(provider)); Maybe key = aManager->CommandBuilder().CreateImageProviderKey( aItem, provider, drawResult, aResources); if (key.isNothing()) { break; } auto rendering = wr::ToImageRendering(aItem->Frame()->UsedImageRendering()); if (mFill) { float epsilon = 0.0001; bool noVerticalBorders = widths[0] <= epsilon && widths[2] < epsilon; bool noHorizontalBorders = widths[1] <= epsilon && widths[3] < epsilon; // Border image with no border. It's a little silly but WebRender // currently does not handle this. We could fall back to a blob image // but there are reftests that are sensible to the test going through a // blob while the reference doesn't. if (noVerticalBorders && noHorizontalBorders) { aBuilder.PushImage(dest, clip, !aItem->BackfaceIsHidden(), false, rendering, key.value()); break; } // Fall-back if we want to fill the middle area and opposite edges are // both empty. // TODO(bug 1609893): moving some of the repetition handling code out // of the image shader will make it easier to handle these cases // properly. if (noHorizontalBorders || noVerticalBorders) { return ImgDrawResult::NOT_SUPPORTED; } } wr::WrBorderImage params{ wr::ToBorderWidths(widths[0], widths[1], widths[2], widths[3]), key.value(), rendering, mImageSize.width / appUnitsPerDevPixel, mImageSize.height / appUnitsPerDevPixel, mFill, wr::ToDeviceIntSideOffsets(slice[0], slice[1], slice[2], slice[3]), wr::ToLayoutSideOffsets(outset[0], outset[1], outset[2], outset[3]), wr::ToRepeatMode(mRepeatModeHorizontal), wr::ToRepeatMode(mRepeatModeVertical)}; aBuilder.PushBorderImage(dest, clip, !aItem->BackfaceIsHidden(), params); break; } case StyleImage::Tag::Gradient: { const StyleGradient& gradient = *mImageRenderer.GetGradientData(); nsCSSGradientRenderer renderer = nsCSSGradientRenderer::Create( aForFrame->PresContext(), aForFrame->Style(), gradient, mImageSize); wr::ExtendMode extendMode; nsTArray stops; LayoutDevicePoint lineStart; LayoutDevicePoint lineEnd; LayoutDeviceSize gradientRadius; LayoutDevicePoint gradientCenter; float gradientAngle; renderer.BuildWebRenderParameters(1.0, extendMode, stops, lineStart, lineEnd, gradientRadius, gradientCenter, gradientAngle); if (gradient.IsLinear()) { LayoutDevicePoint startPoint = LayoutDevicePoint(dest.min.x, dest.min.y) + lineStart; LayoutDevicePoint endPoint = LayoutDevicePoint(dest.min.x, dest.min.y) + lineEnd; aBuilder.PushBorderGradient( dest, clip, !aItem->BackfaceIsHidden(), wr::ToBorderWidths(widths[0], widths[1], widths[2], widths[3]), (float)(mImageSize.width) / appUnitsPerDevPixel, (float)(mImageSize.height) / appUnitsPerDevPixel, mFill, wr::ToDeviceIntSideOffsets(slice[0], slice[1], slice[2], slice[3]), wr::ToLayoutPoint(startPoint), wr::ToLayoutPoint(endPoint), stops, extendMode, wr::ToLayoutSideOffsets(outset[0], outset[1], outset[2], outset[3])); } else if (gradient.IsRadial()) { aBuilder.PushBorderRadialGradient( dest, clip, !aItem->BackfaceIsHidden(), wr::ToBorderWidths(widths[0], widths[1], widths[2], widths[3]), mFill, wr::ToLayoutPoint(lineStart), wr::ToLayoutSize(gradientRadius), stops, extendMode, wr::ToLayoutSideOffsets(outset[0], outset[1], outset[2], outset[3])); } else { MOZ_ASSERT(gradient.IsConic()); aBuilder.PushBorderConicGradient( dest, clip, !aItem->BackfaceIsHidden(), wr::ToBorderWidths(widths[0], widths[1], widths[2], widths[3]), mFill, wr::ToLayoutPoint(gradientCenter), gradientAngle, stops, extendMode, wr::ToLayoutSideOffsets(outset[0], outset[1], outset[2], outset[3])); } break; } default: MOZ_ASSERT_UNREACHABLE("Unsupport border image type"); drawResult = ImgDrawResult::NOT_SUPPORTED; } return drawResult; } nsCSSBorderImageRenderer::nsCSSBorderImageRenderer( const nsCSSBorderImageRenderer& aRhs) : mImageRenderer(aRhs.mImageRenderer), mImageSize(aRhs.mImageSize), mSlice(aRhs.mSlice), mWidths(aRhs.mWidths), mImageOutset(aRhs.mImageOutset), mArea(aRhs.mArea), mClip(aRhs.mClip), mRepeatModeHorizontal(aRhs.mRepeatModeHorizontal), mRepeatModeVertical(aRhs.mRepeatModeVertical), mFill(aRhs.mFill) { Unused << mImageRenderer.PrepareResult(); } nsCSSBorderImageRenderer& nsCSSBorderImageRenderer::operator=( const nsCSSBorderImageRenderer& aRhs) { mImageRenderer = aRhs.mImageRenderer; mImageSize = aRhs.mImageSize; mSlice = aRhs.mSlice; mWidths = aRhs.mWidths; mImageOutset = aRhs.mImageOutset; mArea = aRhs.mArea; mClip = aRhs.mClip; mRepeatModeHorizontal = aRhs.mRepeatModeHorizontal; mRepeatModeVertical = aRhs.mRepeatModeVertical; mFill = aRhs.mFill; Unused << mImageRenderer.PrepareResult(); return *this; } nsCSSBorderImageRenderer::nsCSSBorderImageRenderer( nsIFrame* aForFrame, const nsRect& aBorderArea, const nsStyleBorder& aStyleBorder, Sides aSkipSides, const nsImageRenderer& aImageRenderer) : mImageRenderer(aImageRenderer) { // Determine the border image area, which by default corresponds to the // border box but can be modified by 'border-image-outset'. // Note that 'border-radius' do not apply to 'border-image' borders per // . nsMargin borderWidths(aStyleBorder.GetComputedBorder()); mImageOutset = aStyleBorder.GetImageOutset(); if (nsCSSRendering::IsBoxDecorationSlice(aStyleBorder) && !aSkipSides.IsEmpty()) { mArea = nsCSSRendering::BoxDecorationRectForBorder( aForFrame, aBorderArea, aSkipSides, &aStyleBorder); if (mArea.IsEqualEdges(aBorderArea)) { // No need for a clip, just skip the sides we don't want. borderWidths.ApplySkipSides(aSkipSides); mImageOutset.ApplySkipSides(aSkipSides); mArea.Inflate(mImageOutset); } else { // We're drawing borders around the joined continuation boxes so we need // to clip that to the slice that we want for this frame. mArea.Inflate(mImageOutset); mImageOutset.ApplySkipSides(aSkipSides); mClip = aBorderArea; mClip.Inflate(mImageOutset); } } else { mArea = aBorderArea; mArea.Inflate(mImageOutset); } // Calculate the image size used to compute slice points. CSSSizeOrRatio intrinsicSize = mImageRenderer.ComputeIntrinsicSize(); mImageSize = nsImageRenderer::ComputeConcreteSize( CSSSizeOrRatio(), intrinsicSize, mArea.Size()); mImageRenderer.SetPreferredSize(intrinsicSize, mImageSize); // Compute the used values of 'border-image-slice' and 'border-image-width'; // we do them together because the latter can depend on the former. nsMargin slice; nsMargin border; for (const auto s : mozilla::AllPhysicalSides()) { const auto& slice = aStyleBorder.mBorderImageSlice.offsets.Get(s); int32_t imgDimension = SideIsVertical(s) ? mImageSize.width : mImageSize.height; nscoord borderDimension = SideIsVertical(s) ? mArea.width : mArea.height; double value; if (slice.IsNumber()) { value = nsPresContext::CSSPixelsToAppUnits(NS_lround(slice.AsNumber())); } else { MOZ_ASSERT(slice.IsPercentage()); value = slice.AsPercentage()._0 * imgDimension; } if (value < 0) { value = 0; } if (value > imgDimension && imgDimension > 0) { value = imgDimension; } mSlice.Side(s) = value; const auto& width = aStyleBorder.mBorderImageWidth.Get(s); switch (width.tag) { case StyleBorderImageSideWidth::Tag::LengthPercentage: value = std::max(0, width.AsLengthPercentage().Resolve(borderDimension)); break; case StyleBorderImageSideWidth::Tag::Number: value = width.AsNumber() * borderWidths.Side(s); break; case StyleBorderImageSideWidth::Tag::Auto: value = mSlice.Side(s); break; default: MOZ_ASSERT_UNREACHABLE("unexpected CSS unit for border image area"); value = 0; break; } // NSToCoordRoundWithClamp rounds towards infinity, but that's OK // because we expect value to be non-negative. MOZ_ASSERT(value >= 0); mWidths.Side(s) = NSToCoordRoundWithClamp(value); MOZ_ASSERT(mWidths.Side(s) >= 0); } // "If two opposite border-image-width offsets are large enough that they // overlap, their used values are proportionately reduced until they no // longer overlap." uint32_t combinedBorderWidth = uint32_t(mWidths.left) + uint32_t(mWidths.right); double scaleX = combinedBorderWidth > uint32_t(mArea.width) ? mArea.width / double(combinedBorderWidth) : 1.0; uint32_t combinedBorderHeight = uint32_t(mWidths.top) + uint32_t(mWidths.bottom); double scaleY = combinedBorderHeight > uint32_t(mArea.height) ? mArea.height / double(combinedBorderHeight) : 1.0; double scale = std::min(scaleX, scaleY); if (scale < 1.0) { mWidths.left *= scale; mWidths.right *= scale; mWidths.top *= scale; mWidths.bottom *= scale; NS_ASSERTION(mWidths.left + mWidths.right <= mArea.width && mWidths.top + mWidths.bottom <= mArea.height, "rounding error in width reduction???"); } mRepeatModeHorizontal = aStyleBorder.mBorderImageRepeatH; mRepeatModeVertical = aStyleBorder.mBorderImageRepeatV; mFill = aStyleBorder.mBorderImageSlice.fill; }