/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 sw=2 et tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTableFrame.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/Helpers.h" #include "mozilla/Likely.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/IntegerRange.h" #include "mozilla/PresShell.h" #include "mozilla/PresShellInlines.h" #include "mozilla/WritingModes.h" #include "gfxContext.h" #include "nsCOMPtr.h" #include "mozilla/ComputedStyle.h" #include "nsFrameList.h" #include "nsStyleConsts.h" #include "nsIContent.h" #include "nsCellMap.h" #include "nsTableCellFrame.h" #include "nsHTMLParts.h" #include "nsTableColFrame.h" #include "nsTableColGroupFrame.h" #include "nsTableRowFrame.h" #include "nsTableRowGroupFrame.h" #include "nsTableWrapperFrame.h" #include "BasicTableLayoutStrategy.h" #include "FixedTableLayoutStrategy.h" #include "nsPresContext.h" #include "nsContentUtils.h" #include "nsCSSRendering.h" #include "nsGkAtoms.h" #include "nsCSSAnonBoxes.h" #include "nsIScriptError.h" #include "nsFrameManager.h" #include "nsError.h" #include "nsCSSFrameConstructor.h" #include "mozilla/Range.h" #include "mozilla/RestyleManager.h" #include "mozilla/ServoStyleSet.h" #include "nsDisplayList.h" #include "nsIScrollableFrame.h" #include "nsCSSProps.h" #include "nsLayoutUtils.h" #include "nsStyleChangeList.h" #include #include "mozilla/layers/StackingContextHelper.h" #include "mozilla/layers/RenderRootStateManager.h" using namespace mozilla; using namespace mozilla::image; using namespace mozilla::layout; using mozilla::gfx::AutoRestoreTransform; using mozilla::gfx::DrawTarget; using mozilla::gfx::Float; using mozilla::gfx::ToDeviceColor; /******************************************************************************** ** TableReflowInput ** ********************************************************************************/ namespace mozilla { struct TableReflowInput { // the real reflow input const ReflowInput& mReflowInput; // The table's available size (in reflowInput's writing mode) LogicalSize mAvailSize; // Stationary inline-offset nscoord mICoord; // Running block-offset nscoord mBCoord; TableReflowInput(const ReflowInput& aReflowInput, const LogicalSize& aAvailSize) : mReflowInput(aReflowInput), mAvailSize(aAvailSize) { MOZ_ASSERT(mReflowInput.mFrame->IsTableFrame(), "TableReflowInput should only be created for nsTableFrame"); nsTableFrame* table = static_cast(mReflowInput.mFrame->FirstInFlow()); WritingMode wm = aReflowInput.GetWritingMode(); LogicalMargin borderPadding = table->GetChildAreaOffset(wm, &mReflowInput); mICoord = borderPadding.IStart(wm) + table->GetColSpacing(-1); mBCoord = borderPadding.BStart(wm); // cellspacing added during reflow // XXX do we actually need to check for unconstrained inline-size here? if (NS_UNCONSTRAINEDSIZE != mAvailSize.ISize(wm)) { int32_t colCount = table->GetColCount(); mAvailSize.ISize(wm) -= borderPadding.IStartEnd(wm) + table->GetColSpacing(-1) + table->GetColSpacing(colCount); mAvailSize.ISize(wm) = std::max(0, mAvailSize.ISize(wm)); } if (NS_UNCONSTRAINEDSIZE != mAvailSize.BSize(wm)) { mAvailSize.BSize(wm) -= borderPadding.BStartEnd(wm) + table->GetRowSpacing(-1) + table->GetRowSpacing(table->GetRowCount()); mAvailSize.BSize(wm) = std::max(0, mAvailSize.BSize(wm)); } } void ReduceAvailableBSizeBy(WritingMode aWM, nscoord aAmount) { if (mAvailSize.BSize(aWM) == NS_UNCONSTRAINEDSIZE) { return; } mAvailSize.BSize(aWM) -= aAmount; mAvailSize.BSize(aWM) = std::max(0, mAvailSize.BSize(aWM)); } }; } // namespace mozilla /******************************************************************************** ** nsTableFrame ** ********************************************************************************/ struct BCPropertyData { BCPropertyData() : mBStartBorderWidth(0), mIEndBorderWidth(0), mBEndBorderWidth(0), mIStartBorderWidth(0), mIStartCellBorderWidth(0), mIEndCellBorderWidth(0) {} TableArea mDamageArea; BCPixelSize mBStartBorderWidth; BCPixelSize mIEndBorderWidth; BCPixelSize mBEndBorderWidth; BCPixelSize mIStartBorderWidth; BCPixelSize mIStartCellBorderWidth; BCPixelSize mIEndCellBorderWidth; }; ComputedStyle* nsTableFrame::GetParentComputedStyle( nsIFrame** aProviderFrame) const { // Since our parent, the table wrapper frame, returned this frame, we // must return whatever our parent would normally have returned. MOZ_ASSERT(GetParent(), "table constructed without table wrapper"); if (!mContent->GetParent() && !Style()->IsPseudoOrAnonBox()) { // We're the root. We have no ComputedStyle parent. *aProviderFrame = nullptr; return nullptr; } return GetParent()->DoGetParentComputedStyle(aProviderFrame); } nsTableFrame::nsTableFrame(ComputedStyle* aStyle, nsPresContext* aPresContext, ClassID aID) : nsContainerFrame(aStyle, aPresContext, aID) { memset(&mBits, 0, sizeof(mBits)); } void nsTableFrame::Init(nsIContent* aContent, nsContainerFrame* aParent, nsIFrame* aPrevInFlow) { MOZ_ASSERT(!mCellMap, "Init called twice"); MOZ_ASSERT(!mTableLayoutStrategy, "Init called twice"); MOZ_ASSERT(!aPrevInFlow || aPrevInFlow->IsTableFrame(), "prev-in-flow must be of same type"); // Let the base class do its processing nsContainerFrame::Init(aContent, aParent, aPrevInFlow); // see if border collapse is on, if so set it const nsStyleTableBorder* tableStyle = StyleTableBorder(); bool borderCollapse = (StyleBorderCollapse::Collapse == tableStyle->mBorderCollapse); SetBorderCollapse(borderCollapse); if (borderCollapse) { SetNeedToCalcHasBCBorders(true); } if (!aPrevInFlow) { // If we're the first-in-flow, we manage the cell map & layout strategy that // get used by our continuation chain: mCellMap = MakeUnique(*this, borderCollapse); if (IsAutoLayout()) { mTableLayoutStrategy = MakeUnique(this); } else { mTableLayoutStrategy = MakeUnique(this); } } else { // Set my isize, because all frames in a table flow are the same isize and // code in nsTableWrapperFrame depends on this being set. WritingMode wm = GetWritingMode(); SetSize(LogicalSize(wm, aPrevInFlow->ISize(wm), BSize(wm))); } } // Define here (Rather than in the header), even if it's trival, to avoid // UniquePtr members causing compile errors when their destructors are // implicitly inserted into this destructor. Destruction requires // the full definition of types that these UniquePtrs are managing, and // the header only has forward declarations of them. nsTableFrame::~nsTableFrame() = default; void nsTableFrame::DestroyFrom(nsIFrame* aDestructRoot, PostDestroyData& aPostDestroyData) { mColGroups.DestroyFramesFrom(aDestructRoot, aPostDestroyData); nsContainerFrame::DestroyFrom(aDestructRoot, aPostDestroyData); } // Make sure any views are positioned properly void nsTableFrame::RePositionViews(nsIFrame* aFrame) { nsContainerFrame::PositionFrameView(aFrame); nsContainerFrame::PositionChildViews(aFrame); } static bool IsRepeatedFrame(nsIFrame* kidFrame) { return (kidFrame->IsTableRowFrame() || kidFrame->IsTableRowGroupFrame()) && kidFrame->HasAnyStateBits(NS_REPEATED_ROW_OR_ROWGROUP); } bool nsTableFrame::PageBreakAfter(nsIFrame* aSourceFrame, nsIFrame* aNextFrame) { const nsStyleDisplay* display = aSourceFrame->StyleDisplay(); nsTableRowGroupFrame* prevRg = do_QueryFrame(aSourceFrame); // don't allow a page break after a repeated element ... if ((display->BreakAfter() || (prevRg && prevRg->HasInternalBreakAfter())) && !IsRepeatedFrame(aSourceFrame)) { return !(aNextFrame && IsRepeatedFrame(aNextFrame)); // or before } if (aNextFrame) { display = aNextFrame->StyleDisplay(); // don't allow a page break before a repeated element ... nsTableRowGroupFrame* nextRg = do_QueryFrame(aNextFrame); if ((display->BreakBefore() || (nextRg && nextRg->HasInternalBreakBefore())) && !IsRepeatedFrame(aNextFrame)) { return !IsRepeatedFrame(aSourceFrame); // or after } } return false; } /* static */ void nsTableFrame::RegisterPositionedTablePart(nsIFrame* aFrame) { nsTableFrame* tableFrame = nsTableFrame::GetTableFrame(aFrame); MOZ_ASSERT(tableFrame, "Should have a table frame here"); tableFrame = static_cast(tableFrame->FirstContinuation()); // Retrieve the positioned parts array for this table. FrameTArray* positionedParts = tableFrame->GetProperty(PositionedTablePartArray()); // Lazily create the array if it doesn't exist yet. if (!positionedParts) { positionedParts = new FrameTArray; tableFrame->SetProperty(PositionedTablePartArray(), positionedParts); } // Add this frame to the list. positionedParts->AppendElement(aFrame); } /* static */ void nsTableFrame::UnregisterPositionedTablePart(nsIFrame* aFrame, nsIFrame* aDestructRoot) { // Retrieve the table frame, and check if we hit aDestructRoot on the way. bool didPassThrough; nsTableFrame* tableFrame = GetTableFramePassingThrough(aDestructRoot, aFrame, &didPassThrough); if (!didPassThrough && !tableFrame->GetPrevContinuation()) { // The table frame will be destroyed, and it's the first im flow (and thus // owning the PositionedTablePartArray), so we don't need to do // anything. return; } tableFrame = static_cast(tableFrame->FirstContinuation()); // Retrieve the positioned parts array for this table. FrameTArray* positionedParts = tableFrame->GetProperty(PositionedTablePartArray()); // Remove the frame. MOZ_ASSERT( positionedParts && positionedParts->Contains(aFrame), "Asked to unregister a positioned table part that wasn't registered"); if (positionedParts) { positionedParts->RemoveElement(aFrame); } } // XXX this needs to be cleaned up so that the frame constructor breaks out col // group frames into a separate child list, bug 343048. void nsTableFrame::SetInitialChildList(ChildListID aListID, nsFrameList&& aChildList) { if (aListID != FrameChildListID::Principal) { nsContainerFrame::SetInitialChildList(aListID, std::move(aChildList)); return; } MOZ_ASSERT(mFrames.IsEmpty() && mColGroups.IsEmpty(), "unexpected second call to SetInitialChildList"); #ifdef DEBUG for (nsIFrame* f : aChildList) { MOZ_ASSERT(f->GetParent() == this, "Unexpected parent"); } #endif // XXXbz the below code is an icky cesspit that's only needed in its current // form for two reasons: // 1) Both rowgroups and column groups come in on the principal child list. while (aChildList.NotEmpty()) { nsIFrame* childFrame = aChildList.FirstChild(); aChildList.RemoveFirstChild(); const nsStyleDisplay* childDisplay = childFrame->StyleDisplay(); if (mozilla::StyleDisplay::TableColumnGroup == childDisplay->mDisplay) { NS_ASSERTION(childFrame->IsTableColGroupFrame(), "This is not a colgroup"); mColGroups.AppendFrame(nullptr, childFrame); } else { // row groups and unknown frames go on the main list for now mFrames.AppendFrame(nullptr, childFrame); } } // If we have a prev-in-flow, then we're a table that has been split and // so don't treat this like an append if (!GetPrevInFlow()) { // process col groups first so that real cols get constructed before // anonymous ones due to cells in rows. InsertColGroups(0, mColGroups); InsertRowGroups(mFrames); // calc collapsing borders if (IsBorderCollapse()) { SetFullBCDamageArea(); } } } void nsTableFrame::RowOrColSpanChanged(nsTableCellFrame* aCellFrame) { if (aCellFrame) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { // for now just remove the cell from the map and reinsert it uint32_t rowIndex = aCellFrame->RowIndex(); uint32_t colIndex = aCellFrame->ColIndex(); RemoveCell(aCellFrame, rowIndex); AutoTArray cells; cells.AppendElement(aCellFrame); InsertCells(cells, rowIndex, colIndex - 1); // XXX Should this use IntrinsicDirty::FrameAncestorsAndDescendants? It // currently doesn't need to, but it might given more optimization. PresShell()->FrameNeedsReflow(this, IntrinsicDirty::FrameAndAncestors, NS_FRAME_IS_DIRTY); } } } /* ****** CellMap methods ******* */ /* return the effective col count */ int32_t nsTableFrame::GetEffectiveColCount() const { int32_t colCount = GetColCount(); if (LayoutStrategy()->GetType() == nsITableLayoutStrategy::Auto) { nsTableCellMap* cellMap = GetCellMap(); if (!cellMap) { return 0; } // don't count cols at the end that don't have originating cells for (int32_t colIdx = colCount - 1; colIdx >= 0; colIdx--) { if (cellMap->GetNumCellsOriginatingInCol(colIdx) > 0) { break; } colCount--; } } return colCount; } int32_t nsTableFrame::GetIndexOfLastRealCol() { int32_t numCols = mColFrames.Length(); if (numCols > 0) { for (int32_t colIdx = numCols - 1; colIdx >= 0; colIdx--) { nsTableColFrame* colFrame = GetColFrame(colIdx); if (colFrame) { if (eColAnonymousCell != colFrame->GetColType()) { return colIdx; } } } } return -1; } nsTableColFrame* nsTableFrame::GetColFrame(int32_t aColIndex) const { MOZ_ASSERT(!GetPrevInFlow(), "GetColFrame called on next in flow"); int32_t numCols = mColFrames.Length(); if ((aColIndex >= 0) && (aColIndex < numCols)) { MOZ_ASSERT(mColFrames.ElementAt(aColIndex)); return mColFrames.ElementAt(aColIndex); } else { MOZ_ASSERT_UNREACHABLE("invalid col index"); return nullptr; } } int32_t nsTableFrame::GetEffectiveRowSpan(int32_t aRowIndex, const nsTableCellFrame& aCell) const { nsTableCellMap* cellMap = GetCellMap(); MOZ_ASSERT(nullptr != cellMap, "bad call, cellMap not yet allocated."); return cellMap->GetEffectiveRowSpan(aRowIndex, aCell.ColIndex()); } int32_t nsTableFrame::GetEffectiveRowSpan(const nsTableCellFrame& aCell, nsCellMap* aCellMap) { nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1); uint32_t colIndex = aCell.ColIndex(); uint32_t rowIndex = aCell.RowIndex(); if (aCellMap) return aCellMap->GetRowSpan(rowIndex, colIndex, true); else return tableCellMap->GetEffectiveRowSpan(rowIndex, colIndex); } int32_t nsTableFrame::GetEffectiveColSpan(const nsTableCellFrame& aCell, nsCellMap* aCellMap) const { nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1); uint32_t colIndex = aCell.ColIndex(); uint32_t rowIndex = aCell.RowIndex(); if (aCellMap) return aCellMap->GetEffectiveColSpan(*tableCellMap, rowIndex, colIndex); else return tableCellMap->GetEffectiveColSpan(rowIndex, colIndex); } bool nsTableFrame::HasMoreThanOneCell(int32_t aRowIndex) const { nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT1(1); return tableCellMap->HasMoreThanOneCell(aRowIndex); } void nsTableFrame::AdjustRowIndices(int32_t aRowIndex, int32_t aAdjustment) { // Iterate over the row groups and adjust the row indices of all rows // whose index is >= aRowIndex. RowGroupArray rowGroups; OrderRowGroups(rowGroups); for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { rowGroups[rgIdx]->AdjustRowIndices(aRowIndex, aAdjustment); } } void nsTableFrame::ResetRowIndices( const nsFrameList::Slice& aRowGroupsToExclude) { // Iterate over the row groups and adjust the row indices of all rows // omit the rowgroups that will be inserted later mDeletedRowIndexRanges.clear(); RowGroupArray rowGroups; OrderRowGroups(rowGroups); nsTHashSet excludeRowGroups; for (nsIFrame* excludeRowGroup : aRowGroupsToExclude) { excludeRowGroups.Insert( static_cast(excludeRowGroup)); #ifdef DEBUG { // Check to make sure that the row indices of all rows in excluded row // groups are '0' (i.e. the initial value since they haven't been added // yet) const nsFrameList& rowFrames = excludeRowGroup->PrincipalChildList(); for (nsIFrame* r : rowFrames) { auto* row = static_cast(r); MOZ_ASSERT(row->GetRowIndex() == 0, "exclusions cannot be used for rows that were already added," "because we'd need to process mDeletedRowIndexRanges"); } } #endif } int32_t rowIndex = 0; for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; if (!excludeRowGroups.Contains(rgFrame)) { const nsFrameList& rowFrames = rgFrame->PrincipalChildList(); for (nsIFrame* r : rowFrames) { if (mozilla::StyleDisplay::TableRow == r->StyleDisplay()->mDisplay) { auto* row = static_cast(r); row->SetRowIndex(rowIndex); rowIndex++; } } } } } void nsTableFrame::InsertColGroups(int32_t aStartColIndex, const nsFrameList::Slice& aColGroups) { int32_t colIndex = aStartColIndex; // XXX: We cannot use range-based for loop because AddColsToTable() can // destroy the nsTableColGroupFrame in the slice we're traversing! Need to // check the validity of *colGroupIter. auto colGroupIter = aColGroups.begin(); for (auto colGroupIterEnd = aColGroups.end(); *colGroupIter && colGroupIter != colGroupIterEnd; ++colGroupIter) { MOZ_ASSERT((*colGroupIter)->IsTableColGroupFrame()); auto* cgFrame = static_cast(*colGroupIter); cgFrame->SetStartColumnIndex(colIndex); cgFrame->AddColsToTable(colIndex, false, cgFrame->PrincipalChildList()); int32_t numCols = cgFrame->GetColCount(); colIndex += numCols; } if (*colGroupIter) { nsTableColGroupFrame::ResetColIndices(*colGroupIter, colIndex); } } void nsTableFrame::InsertCol(nsTableColFrame& aColFrame, int32_t aColIndex) { mColFrames.InsertElementAt(aColIndex, &aColFrame); nsTableColType insertedColType = aColFrame.GetColType(); int32_t numCacheCols = mColFrames.Length(); nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { int32_t numMapCols = cellMap->GetColCount(); if (numCacheCols > numMapCols) { bool removedFromCache = false; if (eColAnonymousCell != insertedColType) { nsTableColFrame* lastCol = mColFrames.ElementAt(numCacheCols - 1); if (lastCol) { nsTableColType lastColType = lastCol->GetColType(); if (eColAnonymousCell == lastColType) { // remove the col from the cache mColFrames.RemoveLastElement(); // remove the col from the synthetic col group nsTableColGroupFrame* lastColGroup = (nsTableColGroupFrame*)mColGroups.LastChild(); if (lastColGroup) { MOZ_ASSERT(lastColGroup->IsSynthetic()); lastColGroup->RemoveChild(*lastCol, false); // remove the col group if it is empty if (lastColGroup->GetColCount() <= 0) { mColGroups.DestroyFrame((nsIFrame*)lastColGroup); } } removedFromCache = true; } } } if (!removedFromCache) { cellMap->AddColsAtEnd(1); } } } // for now, just bail and recalc all of the collapsing borders if (IsBorderCollapse()) { TableArea damageArea(aColIndex, 0, GetColCount() - aColIndex, GetRowCount()); AddBCDamageArea(damageArea); } } void nsTableFrame::RemoveCol(nsTableColGroupFrame* aColGroupFrame, int32_t aColIndex, bool aRemoveFromCache, bool aRemoveFromCellMap) { if (aRemoveFromCache) { mColFrames.RemoveElementAt(aColIndex); } if (aRemoveFromCellMap) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { // If we have some anonymous cols at the end already, we just // add a new anonymous col. if (!mColFrames.IsEmpty() && mColFrames.LastElement() && // XXXbz is this ever null? mColFrames.LastElement()->GetColType() == eColAnonymousCell) { AppendAnonymousColFrames(1); } else { // All of our colframes correspond to actual tags. It's possible // that we still have at least as many tags as we have logical // columns from cells, but we might have one less. Handle the latter // case as follows: First ask the cellmap to drop its last col if it // doesn't have any actual cells in it. Then call // MatchCellMapToColCache to append an anonymous column if it's needed; // this needs to be after RemoveColsAtEnd, since it will determine the // need for a new column frame based on the width of the cell map. cellMap->RemoveColsAtEnd(); MatchCellMapToColCache(cellMap); } } } // for now, just bail and recalc all of the collapsing borders if (IsBorderCollapse()) { TableArea damageArea(0, 0, GetColCount(), GetRowCount()); AddBCDamageArea(damageArea); } } /** Get the cell map for this table frame. It is not always mCellMap. * Only the first-in-flow has a legit cell map. */ nsTableCellMap* nsTableFrame::GetCellMap() const { return static_cast(FirstInFlow())->mCellMap.get(); } nsTableColGroupFrame* nsTableFrame::CreateSyntheticColGroupFrame() { nsIContent* colGroupContent = GetContent(); nsPresContext* presContext = PresContext(); mozilla::PresShell* presShell = presContext->PresShell(); RefPtr colGroupStyle; colGroupStyle = presShell->StyleSet()->ResolveNonInheritingAnonymousBoxStyle( PseudoStyleType::tableColGroup); // Create a col group frame nsTableColGroupFrame* newFrame = NS_NewTableColGroupFrame(presShell, colGroupStyle); newFrame->SetIsSynthetic(); newFrame->Init(colGroupContent, this, nullptr); return newFrame; } void nsTableFrame::AppendAnonymousColFrames(int32_t aNumColsToAdd) { MOZ_ASSERT(aNumColsToAdd > 0, "We should be adding _something_."); // get the last col group frame nsTableColGroupFrame* colGroupFrame = static_cast(mColGroups.LastChild()); if (!colGroupFrame || !colGroupFrame->IsSynthetic()) { int32_t colIndex = (colGroupFrame) ? colGroupFrame->GetStartColumnIndex() + colGroupFrame->GetColCount() : 0; colGroupFrame = CreateSyntheticColGroupFrame(); if (!colGroupFrame) { return; } // add the new frame to the child list mColGroups.AppendFrame(this, colGroupFrame); colGroupFrame->SetStartColumnIndex(colIndex); } AppendAnonymousColFrames(colGroupFrame, aNumColsToAdd, eColAnonymousCell, true); } // XXX this needs to be moved to nsCSSFrameConstructor // Right now it only creates the col frames at the end void nsTableFrame::AppendAnonymousColFrames( nsTableColGroupFrame* aColGroupFrame, int32_t aNumColsToAdd, nsTableColType aColType, bool aAddToTable) { MOZ_ASSERT(aColGroupFrame, "null frame"); MOZ_ASSERT(aColType != eColAnonymousCol, "Shouldn't happen"); MOZ_ASSERT(aNumColsToAdd > 0, "We should be adding _something_."); mozilla::PresShell* presShell = PresShell(); // Get the last col frame nsFrameList newColFrames; int32_t startIndex = mColFrames.Length(); int32_t lastIndex = startIndex + aNumColsToAdd - 1; for (int32_t childX = startIndex; childX <= lastIndex; childX++) { // all anonymous cols that we create here use a pseudo ComputedStyle of the // col group nsIContent* iContent = aColGroupFrame->GetContent(); RefPtr computedStyle = presShell->StyleSet()->ResolveNonInheritingAnonymousBoxStyle( PseudoStyleType::tableCol); // ASSERTION to check for bug 54454 sneaking back in... NS_ASSERTION(iContent, "null content in CreateAnonymousColFrames"); // create the new col frame nsIFrame* colFrame = NS_NewTableColFrame(presShell, computedStyle); ((nsTableColFrame*)colFrame)->SetColType(aColType); colFrame->Init(iContent, aColGroupFrame, nullptr); newColFrames.AppendFrame(nullptr, colFrame); } nsFrameList& cols = aColGroupFrame->GetWritableChildList(); nsIFrame* oldLastCol = cols.LastChild(); const nsFrameList::Slice& newCols = cols.InsertFrames(nullptr, oldLastCol, std::move(newColFrames)); if (aAddToTable) { // get the starting col index in the cache int32_t startColIndex; if (oldLastCol) { startColIndex = static_cast(oldLastCol)->GetColIndex() + 1; } else { startColIndex = aColGroupFrame->GetStartColumnIndex(); } aColGroupFrame->AddColsToTable(startColIndex, true, newCols); } } void nsTableFrame::MatchCellMapToColCache(nsTableCellMap* aCellMap) { int32_t numColsInMap = GetColCount(); int32_t numColsInCache = mColFrames.Length(); int32_t numColsToAdd = numColsInMap - numColsInCache; if (numColsToAdd > 0) { // this sets the child list, updates the col cache and cell map AppendAnonymousColFrames(numColsToAdd); } if (numColsToAdd < 0) { int32_t numColsNotRemoved = DestroyAnonymousColFrames(-numColsToAdd); // if the cell map has fewer cols than the cache, correct it if (numColsNotRemoved > 0) { aCellMap->AddColsAtEnd(numColsNotRemoved); } } } void nsTableFrame::DidResizeColumns() { MOZ_ASSERT(!GetPrevInFlow(), "should only be called on first-in-flow"); if (mBits.mResizedColumns) return; // already marked for (nsTableFrame* f = this; f; f = static_cast(f->GetNextInFlow())) f->mBits.mResizedColumns = true; } void nsTableFrame::AppendCell(nsTableCellFrame& aCellFrame, int32_t aRowIndex) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { TableArea damageArea(0, 0, 0, 0); cellMap->AppendCell(aCellFrame, aRowIndex, true, damageArea); MatchCellMapToColCache(cellMap); if (IsBorderCollapse()) { AddBCDamageArea(damageArea); } } } void nsTableFrame::InsertCells(nsTArray& aCellFrames, int32_t aRowIndex, int32_t aColIndexBefore) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { TableArea damageArea(0, 0, 0, 0); cellMap->InsertCells(aCellFrames, aRowIndex, aColIndexBefore, damageArea); MatchCellMapToColCache(cellMap); if (IsBorderCollapse()) { AddBCDamageArea(damageArea); } } } // this removes the frames from the col group and table, but not the cell map int32_t nsTableFrame::DestroyAnonymousColFrames(int32_t aNumFrames) { // only remove cols that are of type eTypeAnonymous cell (they are at the end) int32_t endIndex = mColFrames.Length() - 1; int32_t startIndex = (endIndex - aNumFrames) + 1; int32_t numColsRemoved = 0; for (int32_t colIdx = endIndex; colIdx >= startIndex; colIdx--) { nsTableColFrame* colFrame = GetColFrame(colIdx); if (colFrame && (eColAnonymousCell == colFrame->GetColType())) { nsTableColGroupFrame* cgFrame = static_cast(colFrame->GetParent()); // remove the frame from the colgroup cgFrame->RemoveChild(*colFrame, false); // remove the frame from the cache, but not the cell map RemoveCol(nullptr, colIdx, true, false); numColsRemoved++; } else { break; } } return (aNumFrames - numColsRemoved); } void nsTableFrame::RemoveCell(nsTableCellFrame* aCellFrame, int32_t aRowIndex) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { TableArea damageArea(0, 0, 0, 0); cellMap->RemoveCell(aCellFrame, aRowIndex, damageArea); MatchCellMapToColCache(cellMap); if (IsBorderCollapse()) { AddBCDamageArea(damageArea); } } } int32_t nsTableFrame::GetStartRowIndex( const nsTableRowGroupFrame* aRowGroupFrame) const { RowGroupArray orderedRowGroups; OrderRowGroups(orderedRowGroups); int32_t rowIndex = 0; for (uint32_t rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) { nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex]; if (rgFrame == aRowGroupFrame) { break; } int32_t numRows = rgFrame->GetRowCount(); rowIndex += numRows; } return rowIndex; } // this cannot extend beyond a single row group void nsTableFrame::AppendRows(nsTableRowGroupFrame* aRowGroupFrame, int32_t aRowIndex, nsTArray& aRowFrames) { nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { int32_t absRowIndex = GetStartRowIndex(aRowGroupFrame) + aRowIndex; InsertRows(aRowGroupFrame, aRowFrames, absRowIndex, true); } } // this cannot extend beyond a single row group int32_t nsTableFrame::InsertRows(nsTableRowGroupFrame* aRowGroupFrame, nsTArray& aRowFrames, int32_t aRowIndex, bool aConsiderSpans) { #ifdef DEBUG_TABLE_CELLMAP printf("=== insertRowsBefore firstRow=%d \n", aRowIndex); Dump(true, false, true); #endif int32_t numColsToAdd = 0; nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { TableArea damageArea(0, 0, 0, 0); bool shouldRecalculateIndex = !IsDeletedRowIndexRangesEmpty(); if (shouldRecalculateIndex) { ResetRowIndices(nsFrameList::Slice(nullptr, nullptr)); } int32_t origNumRows = cellMap->GetRowCount(); int32_t numNewRows = aRowFrames.Length(); cellMap->InsertRows(aRowGroupFrame, aRowFrames, aRowIndex, aConsiderSpans, damageArea); MatchCellMapToColCache(cellMap); // Perform row index adjustment only if row indices were not // reset above if (!shouldRecalculateIndex) { if (aRowIndex < origNumRows) { AdjustRowIndices(aRowIndex, numNewRows); } // assign the correct row indices to the new rows. If they were // recalculated above it may not have been done correctly because each row // is constructed with index 0 for (int32_t rowB = 0; rowB < numNewRows; rowB++) { nsTableRowFrame* rowFrame = aRowFrames.ElementAt(rowB); rowFrame->SetRowIndex(aRowIndex + rowB); } } if (IsBorderCollapse()) { AddBCDamageArea(damageArea); } } #ifdef DEBUG_TABLE_CELLMAP printf("=== insertRowsAfter \n"); Dump(true, false, true); #endif return numColsToAdd; } void nsTableFrame::AddDeletedRowIndex(int32_t aDeletedRowStoredIndex) { if (mDeletedRowIndexRanges.empty()) { mDeletedRowIndexRanges.insert(std::pair( aDeletedRowStoredIndex, aDeletedRowStoredIndex)); return; } // Find the position of the current deleted row's stored index // among the previous deleted row index ranges and merge ranges if // they are consecutive, else add a new (disjoint) range to the map. // Call to mDeletedRowIndexRanges.upper_bound is // O(log(mDeletedRowIndexRanges.size())) therefore call to // AddDeletedRowIndex is also ~O(log(mDeletedRowIndexRanges.size())) // greaterIter = will point to smallest range in the map with lower value // greater than the aDeletedRowStoredIndex. // If no such value exists, point to end of map. // smallerIter = will point to largest range in the map with higher value // smaller than the aDeletedRowStoredIndex // If no such value exists, point to beginning of map. // i.e. when both values exist below is true: // smallerIter->second < aDeletedRowStoredIndex < greaterIter->first auto greaterIter = mDeletedRowIndexRanges.upper_bound(aDeletedRowStoredIndex); auto smallerIter = greaterIter; if (smallerIter != mDeletedRowIndexRanges.begin()) { smallerIter--; // While greaterIter might be out-of-bounds (by being equal to end()), // smallerIter now cannot be, since we returned early above for a 0-size // map. } // Note: smallerIter can only be equal to greaterIter when both // of them point to the beginning of the map and in that case smallerIter // does not "exist" but we clip smallerIter to point to beginning of map // so that it doesn't point to something unknown or outside the map boundry. // Note: When greaterIter is not the end (i.e. it "exists") upper_bound() // ensures aDeletedRowStoredIndex < greaterIter->first so no need to // assert that. MOZ_ASSERT(smallerIter == greaterIter || aDeletedRowStoredIndex > smallerIter->second, "aDeletedRowIndexRanges already contains aDeletedRowStoredIndex! " "Trying to delete an already deleted row?"); if (smallerIter->second == aDeletedRowStoredIndex - 1) { if (greaterIter != mDeletedRowIndexRanges.end() && greaterIter->first == aDeletedRowStoredIndex + 1) { // merge current index with smaller and greater range as they are // consecutive smallerIter->second = greaterIter->second; mDeletedRowIndexRanges.erase(greaterIter); } else { // add aDeletedRowStoredIndex in the smaller range as it is consecutive smallerIter->second = aDeletedRowStoredIndex; } } else if (greaterIter != mDeletedRowIndexRanges.end() && greaterIter->first == aDeletedRowStoredIndex + 1) { // add aDeletedRowStoredIndex in the greater range as it is consecutive mDeletedRowIndexRanges.insert(std::pair( aDeletedRowStoredIndex, greaterIter->second)); mDeletedRowIndexRanges.erase(greaterIter); } else { // add new range as aDeletedRowStoredIndex is disjoint from existing ranges mDeletedRowIndexRanges.insert(std::pair( aDeletedRowStoredIndex, aDeletedRowStoredIndex)); } } int32_t nsTableFrame::GetAdjustmentForStoredIndex(int32_t aStoredIndex) { if (mDeletedRowIndexRanges.empty()) return 0; int32_t adjustment = 0; // O(log(mDeletedRowIndexRanges.size())) auto endIter = mDeletedRowIndexRanges.upper_bound(aStoredIndex); for (auto iter = mDeletedRowIndexRanges.begin(); iter != endIter; ++iter) { adjustment += iter->second - iter->first + 1; } return adjustment; } // this cannot extend beyond a single row group void nsTableFrame::RemoveRows(nsTableRowFrame& aFirstRowFrame, int32_t aNumRowsToRemove, bool aConsiderSpans) { #ifdef TBD_OPTIMIZATION // decide if we need to rebalance. we have to do this here because the row // group cannot do it when it gets the dirty reflow corresponding to the frame // being destroyed bool stopTelling = false; for (nsIFrame* kidFrame = aFirstFrame.FirstChild(); (kidFrame && !stopAsking); kidFrame = kidFrame->GetNextSibling()) { nsTableCellFrame* cellFrame = do_QueryFrame(kidFrame); if (cellFrame) { stopTelling = tableFrame->CellChangedWidth( *cellFrame, cellFrame->GetPass1MaxElementWidth(), cellFrame->GetMaximumWidth(), true); } } // XXX need to consider what happens if there are cells that have rowspans // into the deleted row. Need to consider moving rows if a rebalance doesn't // happen #endif int32_t firstRowIndex = aFirstRowFrame.GetRowIndex(); #ifdef DEBUG_TABLE_CELLMAP printf("=== removeRowsBefore firstRow=%d numRows=%d\n", firstRowIndex, aNumRowsToRemove); Dump(true, false, true); #endif nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { TableArea damageArea(0, 0, 0, 0); // Mark rows starting from aFirstRowFrame to the next 'aNumRowsToRemove-1' // number of rows as deleted. nsTableRowGroupFrame* parentFrame = aFirstRowFrame.GetTableRowGroupFrame(); parentFrame->MarkRowsAsDeleted(aFirstRowFrame, aNumRowsToRemove); cellMap->RemoveRows(firstRowIndex, aNumRowsToRemove, aConsiderSpans, damageArea); MatchCellMapToColCache(cellMap); if (IsBorderCollapse()) { AddBCDamageArea(damageArea); } } #ifdef DEBUG_TABLE_CELLMAP printf("=== removeRowsAfter\n"); Dump(true, true, true); #endif } // collect the rows ancestors of aFrame int32_t nsTableFrame::CollectRows(nsIFrame* aFrame, nsTArray& aCollection) { MOZ_ASSERT(aFrame, "null frame"); int32_t numRows = 0; for (nsIFrame* childFrame : aFrame->PrincipalChildList()) { aCollection.AppendElement(static_cast(childFrame)); numRows++; } return numRows; } void nsTableFrame::InsertRowGroups(const nsFrameList::Slice& aRowGroups) { #ifdef DEBUG_TABLE_CELLMAP printf("=== insertRowGroupsBefore\n"); Dump(true, false, true); #endif nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { RowGroupArray orderedRowGroups; OrderRowGroups(orderedRowGroups); AutoTArray rows; // Loop over the rowgroups and check if some of them are new, if they are // insert cellmaps in the order that is predefined by OrderRowGroups, // XXXbz this code is O(N*M) where N is number of new rowgroups // and M is number of rowgroups we have! uint32_t rgIndex; for (rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) { for (nsIFrame* rowGroup : aRowGroups) { if (orderedRowGroups[rgIndex] == rowGroup) { nsTableRowGroupFrame* priorRG = (0 == rgIndex) ? nullptr : orderedRowGroups[rgIndex - 1]; // create and add the cell map for the row group cellMap->InsertGroupCellMap(orderedRowGroups[rgIndex], priorRG); break; } } } cellMap->Synchronize(this); ResetRowIndices(aRowGroups); // now that the cellmaps are reordered too insert the rows for (rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) { for (nsIFrame* rowGroup : aRowGroups) { if (orderedRowGroups[rgIndex] == rowGroup) { nsTableRowGroupFrame* priorRG = (0 == rgIndex) ? nullptr : orderedRowGroups[rgIndex - 1]; // collect the new row frames in an array and add them to the table int32_t numRows = CollectRows(rowGroup, rows); if (numRows > 0) { int32_t rowIndex = 0; if (priorRG) { int32_t priorNumRows = priorRG->GetRowCount(); rowIndex = priorRG->GetStartRowIndex() + priorNumRows; } InsertRows(orderedRowGroups[rgIndex], rows, rowIndex, true); rows.Clear(); } break; } } } } #ifdef DEBUG_TABLE_CELLMAP printf("=== insertRowGroupsAfter\n"); Dump(true, true, true); #endif } ///////////////////////////////////////////////////////////////////////////// // Child frame enumeration const nsFrameList& nsTableFrame::GetChildList(ChildListID aListID) const { if (aListID == FrameChildListID::ColGroup) { return mColGroups; } return nsContainerFrame::GetChildList(aListID); } void nsTableFrame::GetChildLists(nsTArray* aLists) const { nsContainerFrame::GetChildLists(aLists); mColGroups.AppendIfNonempty(aLists, FrameChildListID::ColGroup); } static inline bool FrameHasBorder(nsIFrame* f) { if (!f->StyleVisibility()->IsVisible()) { return false; } return f->StyleBorder()->HasBorder(); } void nsTableFrame::CalcHasBCBorders() { if (!IsBorderCollapse()) { SetHasBCBorders(false); return; } if (FrameHasBorder(this)) { SetHasBCBorders(true); return; } // Check col and col group has borders. for (nsIFrame* f : this->GetChildList(FrameChildListID::ColGroup)) { if (FrameHasBorder(f)) { SetHasBCBorders(true); return; } nsTableColGroupFrame* colGroup = static_cast(f); for (nsTableColFrame* col = colGroup->GetFirstColumn(); col; col = col->GetNextCol()) { if (FrameHasBorder(col)) { SetHasBCBorders(true); return; } } } // check row group, row and cell has borders. RowGroupArray rowGroups; OrderRowGroups(rowGroups); for (nsTableRowGroupFrame* rowGroup : rowGroups) { if (FrameHasBorder(rowGroup)) { SetHasBCBorders(true); return; } for (nsTableRowFrame* row = rowGroup->GetFirstRow(); row; row = row->GetNextRow()) { if (FrameHasBorder(row)) { SetHasBCBorders(true); return; } for (nsTableCellFrame* cell = row->GetFirstCell(); cell; cell = cell->GetNextCell()) { if (FrameHasBorder(cell)) { SetHasBCBorders(true); return; } } } } SetHasBCBorders(false); } namespace mozilla { class nsDisplayTableBorderCollapse; } // table paint code is concerned primarily with borders and bg color // SEC: TODO: adjust the rect for captions void nsTableFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, const nsDisplayListSet& aLists) { DO_GLOBAL_REFLOW_COUNT_DSP_COLOR("nsTableFrame", NS_RGB(255, 128, 255)); DisplayBorderBackgroundOutline(aBuilder, aLists); nsDisplayTableBackgroundSet tableBGs(aBuilder, this); nsDisplayListCollection lists(aBuilder); // This is similar to what // nsContainerFrame::BuildDisplayListForNonBlockChildren does, except that we // allow the children's background and borders to go in our BorderBackground // list. This doesn't really affect background painting --- the children won't // actually draw their own backgrounds because the nsTableFrame already drew // them, unless a child has its own stacking context, in which case the child // won't use its passed-in BorderBackground list anyway. It does affect cell // borders though; this lets us get cell borders into the nsTableFrame's // BorderBackground list. for (nsIFrame* colGroup : FirstContinuation()->GetChildList(FrameChildListID::ColGroup)) { for (nsIFrame* col : colGroup->PrincipalChildList()) { tableBGs.AddColumn((nsTableColFrame*)col); } } for (nsIFrame* kid : PrincipalChildList()) { BuildDisplayListForChild(aBuilder, kid, lists); } tableBGs.MoveTo(aLists); lists.MoveTo(aLists); if (IsVisibleForPainting()) { // In the collapsed border model, overlay all collapsed borders. if (IsBorderCollapse()) { if (HasBCBorders()) { aLists.BorderBackground()->AppendNewToTop( aBuilder, this); } } else { const nsStyleBorder* borderStyle = StyleBorder(); if (borderStyle->HasBorder()) { aLists.BorderBackground()->AppendNewToTop(aBuilder, this); } } } } nsMargin nsTableFrame::GetDeflationForBackground( nsPresContext* aPresContext) const { if (eCompatibility_NavQuirks != aPresContext->CompatibilityMode() || !IsBorderCollapse()) return nsMargin(0, 0, 0, 0); WritingMode wm = GetWritingMode(); return GetOuterBCBorder(wm).GetPhysicalMargin(wm); } LogicalSides nsTableFrame::GetLogicalSkipSides() const { LogicalSides skip(mWritingMode); if (MOZ_UNLIKELY(StyleBorder()->mBoxDecorationBreak == StyleBoxDecorationBreak::Clone)) { return skip; } // frame attribute was accounted for in nsHTMLTableElement::MapTableBorderInto // account for pagination if (GetPrevInFlow()) { skip |= eLogicalSideBitsBStart; } if (GetNextInFlow()) { skip |= eLogicalSideBitsBEnd; } return skip; } void nsTableFrame::SetColumnDimensions(nscoord aBSize, WritingMode aWM, const LogicalMargin& aBorderPadding, const nsSize& aContainerSize) { const nscoord colBSize = aBSize - (aBorderPadding.BStartEnd(aWM) + GetRowSpacing(-1) + GetRowSpacing(GetRowCount())); int32_t colIdx = 0; LogicalPoint colGroupOrigin(aWM, aBorderPadding.IStart(aWM) + GetColSpacing(-1), aBorderPadding.BStart(aWM) + GetRowSpacing(-1)); nsTableFrame* fif = static_cast(FirstInFlow()); for (nsIFrame* colGroupFrame : mColGroups) { MOZ_ASSERT(colGroupFrame->IsTableColGroupFrame()); // first we need to figure out the size of the colgroup int32_t groupFirstCol = colIdx; nscoord colGroupISize = 0; nscoord cellSpacingI = 0; const nsFrameList& columnList = colGroupFrame->PrincipalChildList(); for (nsIFrame* colFrame : columnList) { if (mozilla::StyleDisplay::TableColumn == colFrame->StyleDisplay()->mDisplay) { NS_ASSERTION(colIdx < GetColCount(), "invalid number of columns"); cellSpacingI = GetColSpacing(colIdx); colGroupISize += fif->GetColumnISizeFromFirstInFlow(colIdx) + cellSpacingI; ++colIdx; } } if (colGroupISize) { colGroupISize -= cellSpacingI; } LogicalRect colGroupRect(aWM, colGroupOrigin.I(aWM), colGroupOrigin.B(aWM), colGroupISize, colBSize); colGroupFrame->SetRect(aWM, colGroupRect, aContainerSize); nsSize colGroupSize = colGroupFrame->GetSize(); // then we can place the columns correctly within the group colIdx = groupFirstCol; LogicalPoint colOrigin(aWM); for (nsIFrame* colFrame : columnList) { if (mozilla::StyleDisplay::TableColumn == colFrame->StyleDisplay()->mDisplay) { nscoord colISize = fif->GetColumnISizeFromFirstInFlow(colIdx); LogicalRect colRect(aWM, colOrigin.I(aWM), colOrigin.B(aWM), colISize, colBSize); colFrame->SetRect(aWM, colRect, colGroupSize); cellSpacingI = GetColSpacing(colIdx); colOrigin.I(aWM) += colISize + cellSpacingI; ++colIdx; } } colGroupOrigin.I(aWM) += colGroupISize + cellSpacingI; } } // SEC: TODO need to worry about continuing frames prev/next in flow for // splitting across pages. // XXX this could be made more general to handle row modifications that change // the table bsize, but first we need to scrutinize every Invalidate void nsTableFrame::ProcessRowInserted(nscoord aNewBSize) { SetRowInserted(false); // reset the bit that got us here nsTableFrame::RowGroupArray rowGroups; OrderRowGroups(rowGroups); // find the row group containing the inserted row for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; NS_ASSERTION(rgFrame, "Must have rgFrame here"); // find the row that was inserted first for (nsIFrame* childFrame : rgFrame->PrincipalChildList()) { nsTableRowFrame* rowFrame = do_QueryFrame(childFrame); if (rowFrame) { if (rowFrame->IsFirstInserted()) { rowFrame->SetFirstInserted(false); // damage the table from the 1st row inserted to the end of the table nsIFrame::InvalidateFrame(); // XXXbz didn't we do this up front? Why do we need to do it again? SetRowInserted(false); return; // found it, so leave } } } } } /* virtual */ void nsTableFrame::MarkIntrinsicISizesDirty() { nsITableLayoutStrategy* tls = LayoutStrategy(); if (MOZ_UNLIKELY(!tls)) { // This is a FrameNeedsReflow() from nsBlockFrame::RemoveFrame() // walking up the ancestor chain in a table next-in-flow. In this case // our original first-in-flow (which owns the TableLayoutStrategy) has // already been destroyed and unhooked from the flow chain and thusly // LayoutStrategy() returns null. All the frames in the flow will be // destroyed so no need to mark anything dirty here. See bug 595758. return; } tls->MarkIntrinsicISizesDirty(); // XXXldb Call SetBCDamageArea? nsContainerFrame::MarkIntrinsicISizesDirty(); } /* virtual */ nscoord nsTableFrame::GetMinISize(gfxContext* aRenderingContext) { if (NeedToCalcBCBorders()) CalcBCBorders(); ReflowColGroups(aRenderingContext); return LayoutStrategy()->GetMinISize(aRenderingContext); } /* virtual */ nscoord nsTableFrame::GetPrefISize(gfxContext* aRenderingContext) { if (NeedToCalcBCBorders()) CalcBCBorders(); ReflowColGroups(aRenderingContext); return LayoutStrategy()->GetPrefISize(aRenderingContext, false); } /* virtual */ nsIFrame::IntrinsicSizeOffsetData nsTableFrame::IntrinsicISizeOffsets(nscoord aPercentageBasis) { IntrinsicSizeOffsetData result = nsContainerFrame::IntrinsicISizeOffsets(aPercentageBasis); result.margin = 0; if (IsBorderCollapse()) { result.padding = 0; WritingMode wm = GetWritingMode(); LogicalMargin outerBC = GetIncludedOuterBCBorder(wm); result.border = outerBC.IStartEnd(wm); } return result; } /* virtual */ nsIFrame::SizeComputationResult nsTableFrame::ComputeSize( gfxContext* aRenderingContext, WritingMode aWM, const LogicalSize& aCBSize, nscoord aAvailableISize, const LogicalSize& aMargin, const LogicalSize& aBorderPadding, const StyleSizeOverrides& aSizeOverrides, ComputeSizeFlags aFlags) { // Only table wrapper calls this method, and it should use our writing mode. MOZ_ASSERT(aWM == GetWritingMode(), "aWM should be the same as our writing mode!"); auto result = nsContainerFrame::ComputeSize( aRenderingContext, aWM, aCBSize, aAvailableISize, aMargin, aBorderPadding, aSizeOverrides, aFlags); // If our containing block wants to override inner table frame's inline-size // (e.g. when resolving flex base size), don't enforce the min inline-size // later in this method. if (aSizeOverrides.mApplyOverridesVerbatim && aSizeOverrides.mStyleISize && aSizeOverrides.mStyleISize->IsLengthPercentage()) { return result; } // If we're a container for font size inflation, then shrink // wrapping inside of us should not apply font size inflation. AutoMaybeDisableFontInflation an(this); // Tables never shrink below their min inline-size. nscoord minISize = GetMinISize(aRenderingContext); if (minISize > result.mLogicalSize.ISize(aWM)) { result.mLogicalSize.ISize(aWM) = minISize; } return result; } nscoord nsTableFrame::TableShrinkISizeToFit(gfxContext* aRenderingContext, nscoord aISizeInCB) { // If we're a container for font size inflation, then shrink // wrapping inside of us should not apply font size inflation. AutoMaybeDisableFontInflation an(this); nscoord result; nscoord minISize = GetMinISize(aRenderingContext); if (minISize > aISizeInCB) { result = minISize; } else { // Tables shrink inline-size to fit with a slightly different algorithm // from the one they use for their intrinsic isize (the difference // relates to handling of percentage isizes on columns). So this // function differs from nsIFrame::ShrinkISizeToFit by only the // following line. // Since we've already called GetMinISize, we don't need to do any // of the other stuff GetPrefISize does. nscoord prefISize = LayoutStrategy()->GetPrefISize(aRenderingContext, true); if (prefISize > aISizeInCB) { result = aISizeInCB; } else { result = prefISize; } } return result; } /* virtual */ LogicalSize nsTableFrame::ComputeAutoSize( gfxContext* aRenderingContext, WritingMode aWM, const LogicalSize& aCBSize, nscoord aAvailableISize, const LogicalSize& aMargin, const LogicalSize& aBorderPadding, const StyleSizeOverrides& aSizeOverrides, ComputeSizeFlags aFlags) { // Tables always shrink-wrap. nscoord cbBased = aAvailableISize - aMargin.ISize(aWM) - aBorderPadding.ISize(aWM); return LogicalSize(aWM, TableShrinkISizeToFit(aRenderingContext, cbBased), NS_UNCONSTRAINEDSIZE); } // Return true if aParentReflowInput.frame or any of its ancestors within // the containing table have non-auto bsize. (e.g. pct or fixed bsize) bool nsTableFrame::AncestorsHaveStyleBSize( const ReflowInput& aParentReflowInput) { WritingMode wm = aParentReflowInput.GetWritingMode(); for (const ReflowInput* rs = &aParentReflowInput; rs && rs->mFrame; rs = rs->mParentReflowInput) { LayoutFrameType frameType = rs->mFrame->Type(); if (LayoutFrameType::TableCell == frameType || LayoutFrameType::TableRow == frameType || LayoutFrameType::TableRowGroup == frameType) { const auto& bsize = rs->mStylePosition->BSize(wm); // calc() with both lengths and percentages treated like 'auto' on // internal table elements if (!bsize.IsAuto() && !bsize.HasLengthAndPercentage()) { return true; } } else if (LayoutFrameType::Table == frameType) { // we reached the containing table, so always return return !rs->mStylePosition->BSize(wm).IsAuto(); } } return false; } // See if a special block-size reflow needs to occur and if so, // call RequestSpecialBSizeReflow void nsTableFrame::CheckRequestSpecialBSizeReflow( const ReflowInput& aReflowInput) { NS_ASSERTION(aReflowInput.mFrame->IsTableCellFrame() || aReflowInput.mFrame->IsTableRowFrame() || aReflowInput.mFrame->IsTableRowGroupFrame() || aReflowInput.mFrame->IsTableFrame(), "unexpected frame type"); WritingMode wm = aReflowInput.GetWritingMode(); if (!aReflowInput.mFrame->GetPrevInFlow() && // 1st in flow (NS_UNCONSTRAINEDSIZE == aReflowInput.ComputedBSize() || // no computed bsize 0 == aReflowInput.ComputedBSize()) && aReflowInput.mStylePosition->BSize(wm) .ConvertsToPercentage() && // pct bsize nsTableFrame::AncestorsHaveStyleBSize(*aReflowInput.mParentReflowInput)) { nsTableFrame::RequestSpecialBSizeReflow(aReflowInput); } } // Notify the frame and its ancestors (up to the containing table) that a // special bsize reflow will occur. During a special bsize reflow, a table, row // group, row, or cell returns the last size it was reflowed at. However, the // table may change the bsize of row groups, rows, cells in // DistributeBSizeToRows after. And the row group can change the bsize of rows, // cells in CalculateRowBSizes. void nsTableFrame::RequestSpecialBSizeReflow(const ReflowInput& aReflowInput) { // notify the frame and its ancestors of the special reflow, stopping at the // containing table for (const ReflowInput* rs = &aReflowInput; rs && rs->mFrame; rs = rs->mParentReflowInput) { LayoutFrameType frameType = rs->mFrame->Type(); NS_ASSERTION(LayoutFrameType::TableCell == frameType || LayoutFrameType::TableRow == frameType || LayoutFrameType::TableRowGroup == frameType || LayoutFrameType::Table == frameType, "unexpected frame type"); rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); if (LayoutFrameType::Table == frameType) { NS_ASSERTION(rs != &aReflowInput, "should not request special bsize reflow for table"); // always stop when we reach a table break; } } } /****************************************************************************************** * Before reflow, intrinsic inline-size calculation is done using GetMinISize * and GetPrefISize. This used to be known as pass 1 reflow. * * After the intrinsic isize calculation, the table determines the * column widths using BalanceColumnISizes() and * then reflows each child again with a constrained avail isize. This reflow is * referred to as the pass 2 reflow. * * A special bsize reflow (pass 3 reflow) can occur during an initial or resize * reflow if (a) a row group, row, cell, or a frame inside a cell has a percent * bsize but no computed bsize or (b) in paginated mode, a table has a bsize. * (a) supports percent nested tables contained inside cells whose bsizes aren't * known until after the pass 2 reflow. (b) is necessary because the table * cannot split until after the pass 2 reflow. The mechanics of the special * bsize reflow (variety a) are as follows: * * 1) Each table related frame (table, row group, row, cell) implements * NeedsSpecialReflow() to indicate that it should get the reflow. It does * this when it has a percent bsize but no computed bsize by calling * CheckRequestSpecialBSizeReflow(). This method calls * RequestSpecialBSizeReflow() which calls SetNeedSpecialReflow() on its * ancestors until it reaches the containing table and calls * SetNeedToInitiateSpecialReflow() on it. For percent bsize frames inside * cells, during DidReflow(), the cell's NotifyPercentBSize() is called * (the cell is the reflow input's mPercentBSizeObserver in this case). * NotifyPercentBSize() calls RequestSpecialBSizeReflow(). * * XXX (jfkthame) This comment appears to be out of date; it refers to * methods/flags that are no longer present in the code. * * 2) After the pass 2 reflow, if the table's NeedToInitiateSpecialReflow(true) * was called, it will do the special bsize reflow, setting the reflow * input's mFlags.mSpecialBSizeReflow to true and mSpecialHeightInitiator to * itself. It won't do this if IsPrematureSpecialHeightReflow() returns true * because in that case another special bsize reflow will be coming along * with the containing table as the mSpecialHeightInitiator. It is only * relevant to do the reflow when the mSpecialHeightInitiator is the * containing table, because if it is a remote ancestor, then appropriate * bsizes will not be known. * * 3) Since the bsizes of the table, row groups, rows, and cells was determined * during the pass 2 reflow, they return their last desired sizes during the * special bsize reflow. The reflow only permits percent bsize frames inside * the cells to resize based on the cells bsize and that bsize was * determined during the pass 2 reflow. * * So, in the case of deeply nested tables, all of the tables that were told to * initiate a special reflow will do so, but if a table is already in a special * reflow, it won't inititate the reflow until the current initiator is its * containing table. Since these reflows are only received by frames that need * them and they don't cause any rebalancing of tables, the extra overhead is * minimal. * * The type of special reflow that occurs during printing (variety b) follows * the same mechanism except that all frames will receive the reflow even if * they don't really need them. * * Open issues with the special bsize reflow: * * 1) At some point there should be 2 kinds of special bsize reflows because (a) * and (b) above are really quite different. This would avoid unnecessary * reflows during printing. * * 2) When a cell contains frames whose percent bsizes > 100%, there is data * loss (see bug 115245). However, this can also occur if a cell has a fixed * bsize and there is no special bsize reflow. * * XXXldb Special bsize reflow should really be its own method, not * part of nsIFrame::Reflow. It should then call nsIFrame::Reflow on * the contents of the cells to do the necessary block-axis resizing. * ******************************************************************************************/ /* Layout the entire inner table. */ void nsTableFrame::Reflow(nsPresContext* aPresContext, ReflowOutput& aDesiredSize, const ReflowInput& aReflowInput, nsReflowStatus& aStatus) { MarkInReflow(); DO_GLOBAL_REFLOW_COUNT("nsTableFrame"); DISPLAY_REFLOW(aPresContext, this, aReflowInput, aDesiredSize, aStatus); MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!"); MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_OUT_OF_FLOW), "The nsTableWrapperFrame should be the out-of-flow if needed"); const WritingMode wm = aReflowInput.GetWritingMode(); MOZ_ASSERT(aReflowInput.ComputedLogicalMargin(wm).IsAllZero(), "Only nsTableWrapperFrame can have margins!"); bool isPaginated = aPresContext->IsPaginated(); if (!GetPrevInFlow() && !mTableLayoutStrategy) { NS_ERROR("strategy should have been created in Init"); return; } // see if collapsing borders need to be calculated if (!GetPrevInFlow() && IsBorderCollapse() && NeedToCalcBCBorders()) { CalcBCBorders(); } aDesiredSize.ISize(wm) = aReflowInput.AvailableISize(); // Check for an overflow list, and append any row group frames being pushed MoveOverflowToChildList(); bool haveDesiredBSize = false; SetHaveReflowedColGroups(false); // The tentative width is the width we assumed for the table when the child // frames were positioned (which only matters in vertical-rl mode, because // they're positioned relative to the right-hand edge). Then, after reflowing // the kids, we can check whether the table ends up with a different width // than this tentative value (either because it was unconstrained, so we used // zero, or because it was enlarged by the child frames), we make the // necessary positioning adjustments along the x-axis. nscoord tentativeContainerWidth = 0; bool mayAdjustXForAllChildren = false; // Reflow the entire table (pass 2 and possibly pass 3). This phase is // necessary during a constrained initial reflow and other reflows which // require either a strategy init or balance. This isn't done during an // unconstrained reflow, because it will occur later when the parent reflows // with a constrained isize. if (IsSubtreeDirty() || aReflowInput.ShouldReflowAllKids() || IsGeometryDirty() || isPaginated || aReflowInput.IsBResize() || NeedToCollapse()) { if (aReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE || // Also check IsBResize(), to handle the first Reflow preceding a // special bsize Reflow, when we've already had a special bsize // Reflow (where ComputedBSize() would not be // NS_UNCONSTRAINEDSIZE, but without a style change in between). aReflowInput.IsBResize()) { // XXX Eventually, we should modify DistributeBSizeToRows to use // nsTableRowFrame::GetInitialBSize instead of nsIFrame::BSize(). // That way, it will make its calculations based on internal table // frame bsizes as they are before they ever had any extra bsize // distributed to them. In the meantime, this reflows all the // internal table frames, which restores them to their state before // DistributeBSizeToRows was called. SetGeometryDirty(); } bool needToInitiateSpecialReflow = false; if (isPaginated) { // see if an extra reflow will be necessary in pagination mode // when there is a specified table bsize if (!GetPrevInFlow() && NS_UNCONSTRAINEDSIZE != aReflowInput.AvailableBSize()) { LogicalMargin bp = GetChildAreaOffset(wm, &aReflowInput); nscoord tableSpecifiedBSize = CalcBorderBoxBSize(aReflowInput, bp, NS_UNCONSTRAINEDSIZE); if (tableSpecifiedBSize > 0 && tableSpecifiedBSize != NS_UNCONSTRAINEDSIZE) { needToInitiateSpecialReflow = true; } } } else { needToInitiateSpecialReflow = HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE); } nsIFrame* lastChildReflowed = nullptr; NS_ASSERTION(!aReflowInput.mFlags.mSpecialBSizeReflow, "Shouldn't be in special bsize reflow here!"); // do the pass 2 reflow unless this is a special bsize reflow and we will be // initiating a special bsize reflow // XXXldb I changed this. Should I change it back? // if we need to initiate a special bsize reflow, then don't constrain the // bsize of the reflow before that nscoord availBSize = needToInitiateSpecialReflow ? NS_UNCONSTRAINEDSIZE : aReflowInput.AvailableBSize(); ReflowTable(aDesiredSize, aReflowInput, availBSize, lastChildReflowed, aStatus); // When in vertical-rl mode, there may be two kinds of scenarios in which // the positioning of all the children need to be adjusted along the x-axis // because the width we assumed for the table when the child frames were // being positioned(i.e. tentative width) may be different from the final // width for the table: // 1. If the computed width for the table is unconstrained, a dummy zero // width was assumed as the tentative width to begin with. // 2. If the child frames enlarge the width for the table, the final width // becomes larger than the tentative one. // Let's record the tentative width here, if later the final width turns out // to be different from this tentative one, it means one of the above // scenarios happens, then we adjust positioning of all the children. // Note that vertical-lr, unlike vertical-rl, doesn't need to take special // care of this situation, because they're positioned relative to the // left-hand edge. if (wm.IsVerticalRL()) { tentativeContainerWidth = aReflowInput.ComputedSizeAsContainerIfConstrained().width; mayAdjustXForAllChildren = true; } // reevaluate special bsize reflow conditions if (HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) { needToInitiateSpecialReflow = true; } // XXXldb Are all these conditions correct? if (needToInitiateSpecialReflow && aStatus.IsComplete()) { // XXXldb Do we need to set the IsBResize flag on any reflow inputs? ReflowInput& mutable_rs = const_cast(aReflowInput); // distribute extra block-direction space to rows CalcDesiredBSize(aReflowInput, aDesiredSize); mutable_rs.mFlags.mSpecialBSizeReflow = true; ReflowTable(aDesiredSize, aReflowInput, aReflowInput.AvailableBSize(), lastChildReflowed, aStatus); if (lastChildReflowed && aStatus.IsIncomplete()) { // if there is an incomplete child, then set the desired bsize // to include it but not the next one LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput); aDesiredSize.BSize(wm) = borderPadding.BEnd(wm) + GetRowSpacing(GetRowCount()) + lastChildReflowed->GetNormalRect() .YMost(); // XXX YMost should be B-flavored } haveDesiredBSize = true; mutable_rs.mFlags.mSpecialBSizeReflow = false; } } aDesiredSize.ISize(wm) = aReflowInput.ComputedISize() + aReflowInput.ComputedLogicalBorderPadding(wm).IStartEnd(wm); if (!haveDesiredBSize) { CalcDesiredBSize(aReflowInput, aDesiredSize); } if (IsRowInserted()) { ProcessRowInserted(aDesiredSize.BSize(wm)); } // For more information on the reason for what we should do this, refer to the // code which defines and evaluates the variables xAdjustmentForAllKids and // tentativeContainerWidth in the previous part in this function. if (mayAdjustXForAllChildren) { nscoord xAdjustmentForAllKids = aDesiredSize.Width() - tentativeContainerWidth; if (0 != xAdjustmentForAllKids) { for (nsIFrame* kid : mFrames) { kid->MovePositionBy(nsPoint(xAdjustmentForAllKids, 0)); RePositionViews(kid); } } } // Calculate the overflow area contribution from our children. We couldn't // do this on the fly during ReflowChildren(), because in vertical-rl mode // with unconstrained width, we weren't placing them in their final positions // until the fixupKidPositions loop just above. for (nsIFrame* kid : mFrames) { ConsiderChildOverflow(aDesiredSize.mOverflowAreas, kid); } LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput); SetColumnDimensions(aDesiredSize.BSize(wm), wm, borderPadding, aDesiredSize.PhysicalSize()); NS_WARNING_ASSERTION(NS_UNCONSTRAINEDSIZE != aReflowInput.AvailableISize(), "reflow branch removed unconstrained available isizes"); if (NeedToCollapse()) { // This code and the code it depends on assumes that all row groups // and rows have just been reflowed (i.e., it makes adjustments to // their rects that are not idempotent). Thus the reflow code // checks NeedToCollapse() to ensure this is true. AdjustForCollapsingRowsCols(aDesiredSize, wm, borderPadding); } // If there are any relatively-positioned table parts, we need to reflow their // absolutely-positioned descendants now that their dimensions are final. FixupPositionedTableParts(aPresContext, aDesiredSize, aReflowInput); // make sure the table overflow area does include the table rect. nsRect tableRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height()); if (ShouldApplyOverflowClipping(aReflowInput.mStyleDisplay) != PhysicalAxes::Both) { // collapsed border may leak out LogicalMargin bcMargin = GetExcludedOuterBCBorder(wm); tableRect.Inflate(bcMargin.GetPhysicalMargin(wm)); } aDesiredSize.mOverflowAreas.UnionAllWith(tableRect); FinishAndStoreOverflow(&aDesiredSize); } void nsTableFrame::FixupPositionedTableParts(nsPresContext* aPresContext, ReflowOutput& aDesiredSize, const ReflowInput& aReflowInput) { FrameTArray* positionedParts = GetProperty(PositionedTablePartArray()); if (!positionedParts) { return; } OverflowChangedTracker overflowTracker; overflowTracker.SetSubtreeRoot(this); for (size_t i = 0; i < positionedParts->Length(); ++i) { nsIFrame* positionedPart = positionedParts->ElementAt(i); // As we've already finished reflow, positionedParts's size and overflow // areas have already been assigned, so we just pull them back out. const WritingMode wm = positionedPart->GetWritingMode(); const LogicalSize size = positionedPart->GetLogicalSize(wm); ReflowOutput desiredSize(aReflowInput.GetWritingMode()); desiredSize.SetSize(wm, size); desiredSize.mOverflowAreas = positionedPart->GetOverflowAreasRelativeToSelf(); // Construct a dummy reflow input and reflow status. // XXX(seth): Note that the dummy reflow input doesn't have a correct // chain of parent reflow inputs. It also doesn't necessarily have a // correct containing block. LogicalSize availSize = size; availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; ReflowInput reflowInput(aPresContext, positionedPart, aReflowInput.mRenderingContext, availSize, ReflowInput::InitFlag::DummyParentReflowInput); nsReflowStatus reflowStatus; // Reflow absolutely-positioned descendants of the positioned part. // FIXME: Unconditionally using NS_UNCONSTRAINEDSIZE for the bsize and // ignoring any change to the reflow status aren't correct. We'll never // paginate absolutely positioned frames. positionedPart->FinishReflowWithAbsoluteFrames( PresContext(), desiredSize, reflowInput, reflowStatus, true); // FinishReflowWithAbsoluteFrames has updated overflow on // |positionedPart|. We need to make sure that update propagates // through the intermediate frames between it and this frame. nsIFrame* positionedFrameParent = positionedPart->GetParent(); if (positionedFrameParent != this) { overflowTracker.AddFrame(positionedFrameParent, OverflowChangedTracker::CHILDREN_CHANGED); } } // Propagate updated overflow areas up the tree. overflowTracker.Flush(); // Update our own overflow areas. (OverflowChangedTracker doesn't update the // subtree root itself.) aDesiredSize.SetOverflowAreasToDesiredBounds(); nsLayoutUtils::UnionChildOverflow(this, aDesiredSize.mOverflowAreas); } bool nsTableFrame::ComputeCustomOverflow(OverflowAreas& aOverflowAreas) { // As above in Reflow, make sure the table overflow area includes the table // rect, and check for collapsed borders leaking out. if (ShouldApplyOverflowClipping(StyleDisplay()) != PhysicalAxes::Both) { nsRect bounds(nsPoint(0, 0), GetSize()); WritingMode wm = GetWritingMode(); LogicalMargin bcMargin = GetExcludedOuterBCBorder(wm); bounds.Inflate(bcMargin.GetPhysicalMargin(wm)); aOverflowAreas.UnionAllWith(bounds); } return nsContainerFrame::ComputeCustomOverflow(aOverflowAreas); } void nsTableFrame::ReflowTable(ReflowOutput& aDesiredSize, const ReflowInput& aReflowInput, nscoord aAvailBSize, nsIFrame*& aLastChildReflowed, nsReflowStatus& aStatus) { aLastChildReflowed = nullptr; if (!GetPrevInFlow()) { mTableLayoutStrategy->ComputeColumnISizes(aReflowInput); } // Constrain our reflow isize to the computed table isize (of the 1st in // flow). and our reflow bsize to our avail bsize minus border, padding, // cellspacing WritingMode wm = aReflowInput.GetWritingMode(); aDesiredSize.ISize(wm) = aReflowInput.ComputedISize() + aReflowInput.ComputedLogicalBorderPadding(wm).IStartEnd(wm); TableReflowInput reflowInput( aReflowInput, LogicalSize(wm, aDesiredSize.ISize(wm), aAvailBSize)); ReflowChildren(reflowInput, aStatus, aLastChildReflowed, aDesiredSize.mOverflowAreas); ReflowColGroups(aReflowInput.mRenderingContext); } nsIFrame* nsTableFrame::GetFirstBodyRowGroupFrame() { nsIFrame* headerFrame = nullptr; nsIFrame* footerFrame = nullptr; for (nsIFrame* kidFrame : mFrames) { const nsStyleDisplay* childDisplay = kidFrame->StyleDisplay(); // We expect the header and footer row group frames to be first, and we only // allow one header and one footer if (mozilla::StyleDisplay::TableHeaderGroup == childDisplay->mDisplay) { if (headerFrame) { // We already have a header frame and so this header frame is treated // like an ordinary body row group frame return kidFrame; } headerFrame = kidFrame; } else if (mozilla::StyleDisplay::TableFooterGroup == childDisplay->mDisplay) { if (footerFrame) { // We already have a footer frame and so this footer frame is treated // like an ordinary body row group frame return kidFrame; } footerFrame = kidFrame; } else if (mozilla::StyleDisplay::TableRowGroup == childDisplay->mDisplay) { return kidFrame; } } return nullptr; } // Table specific version that takes into account repeated header and footer // frames when continuing table frames void nsTableFrame::PushChildren(const RowGroupArray& aRowGroups, int32_t aPushFrom) { MOZ_ASSERT(aPushFrom > 0, "pushing first child"); // extract the frames from the array into a sibling list nsFrameList frames; uint32_t childX; for (childX = aPushFrom; childX < aRowGroups.Length(); ++childX) { nsTableRowGroupFrame* rgFrame = aRowGroups[childX]; if (!rgFrame->IsRepeatable()) { mFrames.RemoveFrame(rgFrame); frames.AppendFrame(nullptr, rgFrame); } } if (frames.IsEmpty()) { return; } nsTableFrame* nextInFlow = static_cast(GetNextInFlow()); if (nextInFlow) { // Insert the frames after any repeated header and footer frames. nsIFrame* firstBodyFrame = nextInFlow->GetFirstBodyRowGroupFrame(); nsIFrame* prevSibling = nullptr; if (firstBodyFrame) { prevSibling = firstBodyFrame->GetPrevSibling(); } // When pushing and pulling frames we need to check for whether any // views need to be reparented. ReparentFrameViewList(frames, this, nextInFlow); nextInFlow->mFrames.InsertFrames(nextInFlow, prevSibling, std::move(frames)); } else { // Add the frames to our overflow list. SetOverflowFrames(std::move(frames)); } } // collapsing row groups, rows, col groups and cols are accounted for after both // passes of reflow so that it has no effect on the calculations of reflow. void nsTableFrame::AdjustForCollapsingRowsCols( ReflowOutput& aDesiredSize, const WritingMode aWM, const LogicalMargin& aBorderPadding) { nscoord bTotalOffset = 0; // total offset among all rows in all row groups // reset the bit, it will be set again if row/rowgroup or col/colgroup are // collapsed SetNeedToCollapse(false); // collapse the rows and/or row groups as necessary // Get the ordered children RowGroupArray rowGroups; OrderRowGroups(rowGroups); nsTableFrame* firstInFlow = static_cast(FirstInFlow()); nscoord iSize = firstInFlow->GetCollapsedISize(aWM, aBorderPadding); nscoord rgISize = iSize - GetColSpacing(-1) - GetColSpacing(GetColCount()); OverflowAreas overflow; // Walk the list of children for (uint32_t childX = 0; childX < rowGroups.Length(); childX++) { nsTableRowGroupFrame* rgFrame = rowGroups[childX]; NS_ASSERTION(rgFrame, "Must have row group frame here"); bTotalOffset += rgFrame->CollapseRowGroupIfNecessary(bTotalOffset, rgISize, aWM); ConsiderChildOverflow(overflow, rgFrame); } aDesiredSize.BSize(aWM) -= bTotalOffset; aDesiredSize.ISize(aWM) = iSize; overflow.UnionAllWith( nsRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height())); FinishAndStoreOverflow(overflow, nsSize(aDesiredSize.Width(), aDesiredSize.Height())); } nscoord nsTableFrame::GetCollapsedISize(const WritingMode aWM, const LogicalMargin& aBorderPadding) { NS_ASSERTION(!GetPrevInFlow(), "GetCollapsedISize called on next in flow"); nscoord iSize = GetColSpacing(GetColCount()); iSize += aBorderPadding.IStartEnd(aWM); nsTableFrame* fif = static_cast(FirstInFlow()); for (nsIFrame* groupFrame : mColGroups) { const nsStyleVisibility* groupVis = groupFrame->StyleVisibility(); bool collapseGroup = StyleVisibility::Collapse == groupVis->mVisible; nsTableColGroupFrame* cgFrame = (nsTableColGroupFrame*)groupFrame; for (nsTableColFrame* colFrame = cgFrame->GetFirstColumn(); colFrame; colFrame = colFrame->GetNextCol()) { const nsStyleDisplay* colDisplay = colFrame->StyleDisplay(); nscoord colIdx = colFrame->GetColIndex(); if (mozilla::StyleDisplay::TableColumn == colDisplay->mDisplay) { const nsStyleVisibility* colVis = colFrame->StyleVisibility(); bool collapseCol = StyleVisibility::Collapse == colVis->mVisible; nscoord colISize = fif->GetColumnISizeFromFirstInFlow(colIdx); if (!collapseGroup && !collapseCol) { iSize += colISize; if (ColumnHasCellSpacingBefore(colIdx)) { iSize += GetColSpacing(colIdx - 1); } } else { SetNeedToCollapse(true); } } } } return iSize; } /* virtual */ void nsTableFrame::DidSetComputedStyle(ComputedStyle* aOldComputedStyle) { nsContainerFrame::DidSetComputedStyle(aOldComputedStyle); if (!aOldComputedStyle) // avoid this on init return; if (IsBorderCollapse() && BCRecalcNeeded(aOldComputedStyle, Style())) { SetFullBCDamageArea(); } // avoid this on init or nextinflow if (!mTableLayoutStrategy || GetPrevInFlow()) return; bool isAuto = IsAutoLayout(); if (isAuto != (LayoutStrategy()->GetType() == nsITableLayoutStrategy::Auto)) { if (isAuto) mTableLayoutStrategy = MakeUnique(this); else mTableLayoutStrategy = MakeUnique(this); } } void nsTableFrame::AppendFrames(ChildListID aListID, nsFrameList&& aFrameList) { NS_ASSERTION(aListID == FrameChildListID::Principal || aListID == FrameChildListID::ColGroup, "unexpected child list"); // Because we actually have two child lists, one for col group frames and one // for everything else, we need to look at each frame individually // XXX The frame construction code should be separating out child frames // based on the type, bug 343048. while (!aFrameList.IsEmpty()) { nsIFrame* f = aFrameList.FirstChild(); aFrameList.RemoveFrame(f); // See what kind of frame we have const nsStyleDisplay* display = f->StyleDisplay(); if (mozilla::StyleDisplay::TableColumnGroup == display->mDisplay) { if (MOZ_UNLIKELY(GetPrevInFlow())) { nsFrameList colgroupFrame(f, f); auto firstInFlow = static_cast(FirstInFlow()); firstInFlow->AppendFrames(aListID, std::move(colgroupFrame)); continue; } nsTableColGroupFrame* lastColGroup = nsTableColGroupFrame::GetLastRealColGroup(this); int32_t startColIndex = (lastColGroup) ? lastColGroup->GetStartColumnIndex() + lastColGroup->GetColCount() : 0; mColGroups.InsertFrame(this, lastColGroup, f); // Insert the colgroup and its cols into the table InsertColGroups(startColIndex, nsFrameList::Slice(f, f->GetNextSibling())); } else if (IsRowGroup(display->mDisplay)) { DrainSelfOverflowList(); // ensure the last frame is in mFrames // Append the new row group frame to the sibling chain mFrames.AppendFrame(nullptr, f); // insert the row group and its rows into the table InsertRowGroups(nsFrameList::Slice(f, nullptr)); } else { // Nothing special to do, just add the frame to our child list MOZ_ASSERT_UNREACHABLE( "How did we get here? Frame construction screwed up"); mFrames.AppendFrame(nullptr, f); } } #ifdef DEBUG_TABLE_CELLMAP printf("=== TableFrame::AppendFrames\n"); Dump(true, true, true); #endif PresShell()->FrameNeedsReflow(this, IntrinsicDirty::FrameAndAncestors, NS_FRAME_HAS_DIRTY_CHILDREN); SetGeometryDirty(); } void nsTableFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame, const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) { // The frames in aFrameList can be a mix of row group frames and col group // frames. The problem is that they should go in separate child lists so // we need to deal with that here... // XXX The frame construction code should be separating out child frames // based on the type, bug 343048. NS_ASSERTION(!aPrevFrame || aPrevFrame->GetParent() == this, "inserting after sibling frame with different parent"); if ((aPrevFrame && !aPrevFrame->GetNextSibling()) || (!aPrevFrame && GetChildList(aListID).IsEmpty())) { // Treat this like an append; still a workaround for bug 343048. AppendFrames(aListID, std::move(aFrameList)); return; } // Collect ColGroupFrames into a separate list and insert those separately // from the other frames (bug 759249). nsFrameList colGroupList; nsFrameList principalList; do { const auto display = aFrameList.FirstChild()->StyleDisplay()->mDisplay; nsFrameList head = aFrameList.Split([display](nsIFrame* aFrame) { return aFrame->StyleDisplay()->mDisplay != display; }); if (display == mozilla::StyleDisplay::TableColumnGroup) { colGroupList.AppendFrames(nullptr, std::move(head)); } else { principalList.AppendFrames(nullptr, std::move(head)); } } while (aFrameList.NotEmpty()); // We pass aPrevFrame for both ColGroup and other frames since // HomogenousInsertFrames will only use it if it's a suitable // prev-sibling for the frames in the frame list. if (colGroupList.NotEmpty()) { HomogenousInsertFrames(FrameChildListID::ColGroup, aPrevFrame, colGroupList); } if (principalList.NotEmpty()) { HomogenousInsertFrames(FrameChildListID::Principal, aPrevFrame, principalList); } } void nsTableFrame::HomogenousInsertFrames(ChildListID aListID, nsIFrame* aPrevFrame, nsFrameList& aFrameList) { // See what kind of frame we have const nsStyleDisplay* display = aFrameList.FirstChild()->StyleDisplay(); bool isColGroup = mozilla::StyleDisplay::TableColumnGroup == display->mDisplay; #ifdef DEBUG // Verify that either all siblings have display:table-column-group, or they // all have display values different from table-column-group. for (nsIFrame* frame : aFrameList) { auto nextDisplay = frame->StyleDisplay()->mDisplay; MOZ_ASSERT( isColGroup == (nextDisplay == mozilla::StyleDisplay::TableColumnGroup), "heterogenous childlist"); } #endif if (MOZ_UNLIKELY(isColGroup && GetPrevInFlow())) { auto firstInFlow = static_cast(FirstInFlow()); firstInFlow->AppendFrames(aListID, std::move(aFrameList)); return; } if (aPrevFrame) { const nsStyleDisplay* prevDisplay = aPrevFrame->StyleDisplay(); // Make sure they belong on the same frame list if ((display->mDisplay == mozilla::StyleDisplay::TableColumnGroup) != (prevDisplay->mDisplay == mozilla::StyleDisplay::TableColumnGroup)) { // the previous frame is not valid, see comment at ::AppendFrames // XXXbz Using content indices here means XBL will get screwed // over... Oh, well. nsIFrame* pseudoFrame = aFrameList.FirstChild(); nsIContent* parentContent = GetContent(); nsIContent* content = nullptr; aPrevFrame = nullptr; while (pseudoFrame && (parentContent == (content = pseudoFrame->GetContent()))) { pseudoFrame = pseudoFrame->PrincipalChildList().FirstChild(); } nsCOMPtr container = content->GetParent(); if (MOZ_LIKELY(container)) { // XXX need this null-check, see bug 411823. const Maybe newIndex = container->ComputeIndexOf(content); nsIFrame* kidFrame; nsTableColGroupFrame* lastColGroup = nullptr; if (isColGroup) { kidFrame = mColGroups.FirstChild(); lastColGroup = nsTableColGroupFrame::GetLastRealColGroup(this); } else { kidFrame = mFrames.FirstChild(); } // Important: need to start at a value smaller than all valid indices Maybe lastIndex; while (kidFrame) { if (isColGroup) { if (kidFrame == lastColGroup) { aPrevFrame = kidFrame; // there is no real colgroup after this one break; } } pseudoFrame = kidFrame; while (pseudoFrame && (parentContent == (content = pseudoFrame->GetContent()))) { pseudoFrame = pseudoFrame->PrincipalChildList().FirstChild(); } const Maybe index = container->ComputeIndexOf(content); // XXX Keep the odd traditional behavior in some indices are nothing // cases for now. if ((index.isSome() && (lastIndex.isNothing() || *index > *lastIndex)) && (newIndex.isSome() && (index.isNothing() || *index < *newIndex))) { lastIndex = index; aPrevFrame = kidFrame; } kidFrame = kidFrame->GetNextSibling(); } } } } if (mozilla::StyleDisplay::TableColumnGroup == display->mDisplay) { NS_ASSERTION(aListID == FrameChildListID::ColGroup, "unexpected child list"); // Insert the column group frames const nsFrameList::Slice& newColgroups = mColGroups.InsertFrames(this, aPrevFrame, std::move(aFrameList)); // find the starting col index for the first new col group int32_t startColIndex = 0; if (aPrevFrame) { nsTableColGroupFrame* prevColGroup = (nsTableColGroupFrame*)GetFrameAtOrBefore( this, aPrevFrame, LayoutFrameType::TableColGroup); if (prevColGroup) { startColIndex = prevColGroup->GetStartColumnIndex() + prevColGroup->GetColCount(); } } InsertColGroups(startColIndex, newColgroups); } else if (IsRowGroup(display->mDisplay)) { NS_ASSERTION(aListID == FrameChildListID::Principal, "unexpected child list"); DrainSelfOverflowList(); // ensure aPrevFrame is in mFrames // Insert the frames in the sibling chain const nsFrameList::Slice& newRowGroups = mFrames.InsertFrames(nullptr, aPrevFrame, std::move(aFrameList)); InsertRowGroups(newRowGroups); } else { NS_ASSERTION(aListID == FrameChildListID::Principal, "unexpected child list"); MOZ_ASSERT_UNREACHABLE("How did we even get here?"); // Just insert the frame and don't worry about reflowing it mFrames.InsertFrames(nullptr, aPrevFrame, std::move(aFrameList)); return; } PresShell()->FrameNeedsReflow(this, IntrinsicDirty::FrameAndAncestors, NS_FRAME_HAS_DIRTY_CHILDREN); SetGeometryDirty(); #ifdef DEBUG_TABLE_CELLMAP printf("=== TableFrame::InsertFrames\n"); Dump(true, true, true); #endif } void nsTableFrame::DoRemoveFrame(ChildListID aListID, nsIFrame* aOldFrame) { if (aListID == FrameChildListID::ColGroup) { nsIFrame* nextColGroupFrame = aOldFrame->GetNextSibling(); nsTableColGroupFrame* colGroup = (nsTableColGroupFrame*)aOldFrame; int32_t firstColIndex = colGroup->GetStartColumnIndex(); int32_t lastColIndex = firstColIndex + colGroup->GetColCount() - 1; mColGroups.DestroyFrame(aOldFrame); nsTableColGroupFrame::ResetColIndices(nextColGroupFrame, firstColIndex); // remove the cols from the table int32_t colIdx; for (colIdx = lastColIndex; colIdx >= firstColIndex; colIdx--) { nsTableColFrame* colFrame = mColFrames.SafeElementAt(colIdx); if (colFrame) { RemoveCol(colGroup, colIdx, true, false); } } // If we have some anonymous cols at the end already, we just // add more of them. if (!mColFrames.IsEmpty() && mColFrames.LastElement() && // XXXbz is this ever null? mColFrames.LastElement()->GetColType() == eColAnonymousCell) { int32_t numAnonymousColsToAdd = GetColCount() - mColFrames.Length(); if (numAnonymousColsToAdd > 0) { // this sets the child list, updates the col cache and cell map AppendAnonymousColFrames(numAnonymousColsToAdd); } } else { // All of our colframes correspond to actual tags. It's possible // that we still have at least as many tags as we have logical // columns from cells, but we might have one less. Handle the latter case // as follows: First ask the cellmap to drop its last col if it doesn't // have any actual cells in it. Then call MatchCellMapToColCache to // append an anonymous column if it's needed; this needs to be after // RemoveColsAtEnd, since it will determine the need for a new column // frame based on the width of the cell map. nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { // XXXbz is this ever null? cellMap->RemoveColsAtEnd(); MatchCellMapToColCache(cellMap); } } } else { NS_ASSERTION(aListID == FrameChildListID::Principal, "unexpected child list"); nsTableRowGroupFrame* rgFrame = static_cast(aOldFrame); // remove the row group from the cell map nsTableCellMap* cellMap = GetCellMap(); if (cellMap) { cellMap->RemoveGroupCellMap(rgFrame); } // remove the row group frame from the sibling chain mFrames.DestroyFrame(aOldFrame); // the removal of a row group changes the cellmap, the columns might change if (cellMap) { cellMap->Synchronize(this); // Create an empty slice ResetRowIndices(nsFrameList::Slice(nullptr, nullptr)); TableArea damageArea; cellMap->RebuildConsideringCells(nullptr, nullptr, 0, 0, false, damageArea); static_cast(FirstInFlow()) ->MatchCellMapToColCache(cellMap); } } } void nsTableFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame) { NS_ASSERTION(aListID == FrameChildListID::ColGroup || mozilla::StyleDisplay::TableColumnGroup != aOldFrame->StyleDisplay()->mDisplay, "Wrong list name; use FrameChildListID::ColGroup iff colgroup"); mozilla::PresShell* presShell = PresShell(); nsTableFrame* lastParent = nullptr; while (aOldFrame) { nsIFrame* oldFrameNextContinuation = aOldFrame->GetNextContinuation(); nsTableFrame* parent = static_cast(aOldFrame->GetParent()); if (parent != lastParent) { parent->DrainSelfOverflowList(); } parent->DoRemoveFrame(aListID, aOldFrame); aOldFrame = oldFrameNextContinuation; if (parent != lastParent) { // for now, just bail and recalc all of the collapsing borders // as the cellmap changes we need to recalc if (parent->IsBorderCollapse()) { parent->SetFullBCDamageArea(); } parent->SetGeometryDirty(); presShell->FrameNeedsReflow(parent, IntrinsicDirty::FrameAndAncestors, NS_FRAME_HAS_DIRTY_CHILDREN); lastParent = parent; } } #ifdef DEBUG_TABLE_CELLMAP printf("=== TableFrame::RemoveFrame\n"); Dump(true, true, true); #endif } /* virtual */ nsMargin nsTableFrame::GetUsedBorder() const { if (!IsBorderCollapse()) return nsContainerFrame::GetUsedBorder(); WritingMode wm = GetWritingMode(); return GetIncludedOuterBCBorder(wm).GetPhysicalMargin(wm); } /* virtual */ nsMargin nsTableFrame::GetUsedPadding() const { if (!IsBorderCollapse()) return nsContainerFrame::GetUsedPadding(); return nsMargin(0, 0, 0, 0); } /* virtual */ nsMargin nsTableFrame::GetUsedMargin() const { // The margin is inherited to the table wrapper frame via // the ::-moz-table-wrapper rule in ua.css. return nsMargin(0, 0, 0, 0); } NS_DECLARE_FRAME_PROPERTY_DELETABLE(TableBCProperty, BCPropertyData) BCPropertyData* nsTableFrame::GetBCProperty() const { return GetProperty(TableBCProperty()); } BCPropertyData* nsTableFrame::GetOrCreateBCProperty() { BCPropertyData* value = GetProperty(TableBCProperty()); if (!value) { value = new BCPropertyData(); SetProperty(TableBCProperty(), value); } return value; } static void DivideBCBorderSize(BCPixelSize aPixelSize, BCPixelSize& aSmallHalf, BCPixelSize& aLargeHalf) { aSmallHalf = aPixelSize / 2; aLargeHalf = aPixelSize - aSmallHalf; } LogicalMargin nsTableFrame::GetOuterBCBorder(const WritingMode aWM) const { if (NeedToCalcBCBorders()) { const_cast(this)->CalcBCBorders(); } int32_t d2a = PresContext()->AppUnitsPerDevPixel(); BCPropertyData* propData = GetBCProperty(); if (propData) { return LogicalMargin( aWM, BC_BORDER_START_HALF_COORD(d2a, propData->mBStartBorderWidth), BC_BORDER_END_HALF_COORD(d2a, propData->mIEndBorderWidth), BC_BORDER_END_HALF_COORD(d2a, propData->mBEndBorderWidth), BC_BORDER_START_HALF_COORD(d2a, propData->mIStartBorderWidth)); } return LogicalMargin(aWM); } LogicalMargin nsTableFrame::GetIncludedOuterBCBorder( const WritingMode aWM) const { if (NeedToCalcBCBorders()) { const_cast(this)->CalcBCBorders(); } int32_t d2a = PresContext()->AppUnitsPerDevPixel(); BCPropertyData* propData = GetBCProperty(); if (propData) { return LogicalMargin( aWM, BC_BORDER_START_HALF_COORD(d2a, propData->mBStartBorderWidth), BC_BORDER_END_HALF_COORD(d2a, propData->mIEndCellBorderWidth), BC_BORDER_END_HALF_COORD(d2a, propData->mBEndBorderWidth), BC_BORDER_START_HALF_COORD(d2a, propData->mIStartCellBorderWidth)); } return LogicalMargin(aWM); } LogicalMargin nsTableFrame::GetExcludedOuterBCBorder( const WritingMode aWM) const { return GetOuterBCBorder(aWM) - GetIncludedOuterBCBorder(aWM); } static LogicalMargin GetSeparateModelBorderPadding( const WritingMode aWM, const ReflowInput* aReflowInput, ComputedStyle* aComputedStyle) { // XXXbz Either we _do_ have a reflow input and then we can use its // mComputedBorderPadding or we don't and then we get the padding // wrong! const nsStyleBorder* border = aComputedStyle->StyleBorder(); LogicalMargin borderPadding(aWM, border->GetComputedBorder()); if (aReflowInput) { borderPadding += aReflowInput->ComputedLogicalPadding(aWM); } return borderPadding; } void nsTableFrame::GetCollapsedBorderPadding( Maybe& aBorder, Maybe& aPadding) const { if (IsBorderCollapse()) { // Border-collapsed tables don't use any of their padding, and only part of // their border. const auto wm = GetWritingMode(); aBorder.emplace(GetIncludedOuterBCBorder(wm)); aPadding.emplace(wm); } } LogicalMargin nsTableFrame::GetChildAreaOffset( const WritingMode aWM, const ReflowInput* aReflowInput) const { return IsBorderCollapse() ? GetIncludedOuterBCBorder(aWM) : GetSeparateModelBorderPadding(aWM, aReflowInput, mComputedStyle); } void nsTableFrame::InitChildReflowInput(ReflowInput& aReflowInput) { const auto childWM = aReflowInput.GetWritingMode(); LogicalMargin border(childWM); if (IsBorderCollapse()) { nsTableRowGroupFrame* rgFrame = static_cast(aReflowInput.mFrame); border = rgFrame->GetBCBorderWidth(childWM); } const LogicalMargin zeroPadding(childWM); aReflowInput.Init(PresContext(), Nothing(), Some(border), Some(zeroPadding)); NS_ASSERTION(!mBits.mResizedColumns || !aReflowInput.mParentReflowInput->mFlags.mSpecialBSizeReflow, "should not resize columns on special bsize reflow"); if (mBits.mResizedColumns) { aReflowInput.SetIResize(true); } } // Position and size aKidFrame and update our reflow input. The origin of // aKidRect is relative to the upper-left origin of our frame void nsTableFrame::PlaceChild(TableReflowInput& aReflowInput, nsIFrame* aKidFrame, const ReflowInput& aKidReflowInput, const mozilla::LogicalPoint& aKidPosition, const nsSize& aContainerSize, ReflowOutput& aKidDesiredSize, const nsRect& aOriginalKidRect, const nsRect& aOriginalKidInkOverflow) { WritingMode wm = aReflowInput.mReflowInput.GetWritingMode(); bool isFirstReflow = aKidFrame->HasAnyStateBits(NS_FRAME_FIRST_REFLOW); // Place and size the child FinishReflowChild(aKidFrame, PresContext(), aKidDesiredSize, &aKidReflowInput, wm, aKidPosition, aContainerSize, ReflowChildFlags::ApplyRelativePositioning); InvalidateTableFrame(aKidFrame, aOriginalKidRect, aOriginalKidInkOverflow, isFirstReflow); // Adjust the running block-offset aReflowInput.mBCoord += aKidDesiredSize.BSize(wm); // If our bsize is constrained, then update the available bsize aReflowInput.ReduceAvailableBSizeBy(wm, aKidDesiredSize.BSize(wm)); } void nsTableFrame::OrderRowGroups(RowGroupArray& aChildren, nsTableRowGroupFrame** aHead, nsTableRowGroupFrame** aFoot) const { aChildren.Clear(); nsTableRowGroupFrame* head = nullptr; nsTableRowGroupFrame* foot = nullptr; nsIFrame* kidFrame = mFrames.FirstChild(); while (kidFrame) { const nsStyleDisplay* kidDisplay = kidFrame->StyleDisplay(); nsTableRowGroupFrame* rowGroup = static_cast(kidFrame); switch (kidDisplay->mDisplay) { case mozilla::StyleDisplay::TableHeaderGroup: if (head) { // treat additional thead like tbody aChildren.AppendElement(rowGroup); } else { head = rowGroup; } break; case mozilla::StyleDisplay::TableFooterGroup: if (foot) { // treat additional tfoot like tbody aChildren.AppendElement(rowGroup); } else { foot = rowGroup; } break; case mozilla::StyleDisplay::TableRowGroup: aChildren.AppendElement(rowGroup); break; default: MOZ_ASSERT_UNREACHABLE("How did this produce an nsTableRowGroupFrame?"); // Just ignore it break; } // Get the next sibling but skip it if it's also the next-in-flow, since // a next-in-flow will not be part of the current table. while (kidFrame) { nsIFrame* nif = kidFrame->GetNextInFlow(); kidFrame = kidFrame->GetNextSibling(); if (kidFrame != nif) break; } } // put the thead first if (head) { aChildren.InsertElementAt(0, head); } if (aHead) *aHead = head; // put the tfoot after the last tbody if (foot) { aChildren.AppendElement(foot); } if (aFoot) *aFoot = foot; } static bool IsRepeatable(nscoord aFrameHeight, nscoord aPageHeight) { return aFrameHeight < (aPageHeight / 4); } nscoord nsTableFrame::SetupHeaderFooterChild( const TableReflowInput& aReflowInput, nsTableRowGroupFrame* aFrame) { nsPresContext* presContext = PresContext(); nscoord pageHeight = presContext->GetPageSize().height; // Reflow the child with unconstrained height WritingMode wm = aFrame->GetWritingMode(); LogicalSize availSize = aReflowInput.mReflowInput.AvailableSize(wm); nsSize containerSize = availSize.GetPhysicalSize(wm); // XXX check for containerSize.* == NS_UNCONSTRAINEDSIZE availSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; ReflowInput kidReflowInput(presContext, aReflowInput.mReflowInput, aFrame, availSize, Nothing(), ReflowInput::InitFlag::CallerWillInit); InitChildReflowInput(kidReflowInput); kidReflowInput.mFlags.mIsTopOfPage = true; ReflowOutput desiredSize(aReflowInput.mReflowInput); nsReflowStatus status; ReflowChild(aFrame, presContext, desiredSize, kidReflowInput, wm, LogicalPoint(wm, aReflowInput.mICoord, aReflowInput.mBCoord), containerSize, ReflowChildFlags::Default, status); // The child will be reflowed again "for real" so no need to place it now aFrame->SetRepeatable(IsRepeatable(desiredSize.Height(), pageHeight)); return desiredSize.Height(); } void nsTableFrame::PlaceRepeatedFooter(TableReflowInput& aReflowInput, nsTableRowGroupFrame* aTfoot, nscoord aFooterHeight) { nsPresContext* presContext = PresContext(); WritingMode wm = aTfoot->GetWritingMode(); LogicalSize kidAvailSize = aReflowInput.mAvailSize; nsSize containerSize = kidAvailSize.GetPhysicalSize(wm); // XXX check for containerSize.* == NS_UNCONSTRAINEDSIZE kidAvailSize.BSize(wm) = aFooterHeight; ReflowInput footerReflowInput(presContext, aReflowInput.mReflowInput, aTfoot, kidAvailSize, Nothing(), ReflowInput::InitFlag::CallerWillInit); InitChildReflowInput(footerReflowInput); aReflowInput.mBCoord += GetRowSpacing(GetRowCount()); nsRect origTfootRect = aTfoot->GetRect(); nsRect origTfootInkOverflow = aTfoot->InkOverflowRect(); nsReflowStatus footerStatus; ReflowOutput desiredSize(aReflowInput.mReflowInput); LogicalPoint kidPosition(wm, aReflowInput.mICoord, aReflowInput.mBCoord); ReflowChild(aTfoot, presContext, desiredSize, footerReflowInput, wm, kidPosition, containerSize, ReflowChildFlags::Default, footerStatus); PlaceChild(aReflowInput, aTfoot, footerReflowInput, kidPosition, containerSize, desiredSize, origTfootRect, origTfootInkOverflow); } // Reflow the children based on the avail size and reason in aReflowInput void nsTableFrame::ReflowChildren(TableReflowInput& aReflowInput, nsReflowStatus& aStatus, nsIFrame*& aLastChildReflowed, OverflowAreas& aOverflowAreas) { aStatus.Reset(); aLastChildReflowed = nullptr; nsIFrame* prevKidFrame = nullptr; WritingMode wm = aReflowInput.mReflowInput.GetWritingMode(); NS_WARNING_ASSERTION( wm.IsVertical() || NS_UNCONSTRAINEDSIZE != aReflowInput.mReflowInput.ComputedWidth(), "shouldn't have unconstrained width in horizontal mode"); nsSize containerSize = aReflowInput.mReflowInput.ComputedSizeAsContainerIfConstrained(); nsPresContext* presContext = PresContext(); // nsTableFrame is not able to pull back children from its next-in-flow, per // bug 1772383. So even under paginated contexts, tables should not fragment // if they are inside of (i.e. potentially being fragmented by) a column-set // frame. (This is indicated by the "mTableIsSplittable" flag.) bool isPaginated = presContext->IsPaginated() && NS_UNCONSTRAINEDSIZE != aReflowInput.mAvailSize.BSize(wm) && aReflowInput.mReflowInput.mFlags.mTableIsSplittable; // Tables currently (though we ought to fix this) only fragment in // paginated contexts, not in multicolumn contexts. (See bug 888257.) // This is partly because they don't correctly handle incremental // layout when paginated. // // Since we propagate NS_FRAME_IS_DIRTY from parent to child at the // start of the parent's reflow (behavior that's new as of bug // 1308876), we can do things that are effectively incremental reflow // during paginated layout. Since the table code doesn't handle this // correctly, we need to set the flag that says to reflow everything // within the table structure. if (presContext->IsPaginated()) { SetGeometryDirty(); } aOverflowAreas.Clear(); bool reflowAllKids = aReflowInput.mReflowInput.ShouldReflowAllKids() || mBits.mResizedColumns || IsGeometryDirty() || NeedToCollapse(); RowGroupArray rowGroups; nsTableRowGroupFrame *thead, *tfoot; OrderRowGroups(rowGroups, &thead, &tfoot); bool pageBreak = false; nscoord footerHeight = 0; // Determine the repeatablility of headers and footers, and also the desired // height of any repeatable footer. // The repeatability of headers on continued tables is handled // when they are created in nsCSSFrameConstructor::CreateContinuingTableFrame. // We handle the repeatability of footers again here because we need to // determine the footer's height anyway. We could perhaps optimize by // using the footer's prev-in-flow's height instead of reflowing it again, // but there's no real need. if (isPaginated) { bool reorder = false; if (thead && !GetPrevInFlow()) { reorder = thead->GetNextInFlow(); SetupHeaderFooterChild(aReflowInput, thead); } if (tfoot) { reorder = reorder || tfoot->GetNextInFlow(); footerHeight = SetupHeaderFooterChild(aReflowInput, tfoot); } if (reorder) { // Reorder row groups - the reflow may have changed the nextinflows. OrderRowGroups(rowGroups, &thead, &tfoot); } } // if the child is a tbody in paginated mode reduce the height by a repeated // footer bool allowRepeatedFooter = false; for (size_t childX = 0; childX < rowGroups.Length(); childX++) { nsIFrame* kidFrame = rowGroups[childX]; nsTableRowGroupFrame* rowGroupFrame = rowGroups[childX]; nscoord cellSpacingB = GetRowSpacing(rowGroupFrame->GetStartRowIndex() + rowGroupFrame->GetRowCount()); // Get the frame state bits // See if we should only reflow the dirty child frames if (reflowAllKids || kidFrame->IsSubtreeDirty() || (aReflowInput.mReflowInput.mFlags.mSpecialBSizeReflow && (isPaginated || kidFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)))) { if (pageBreak) { if (allowRepeatedFooter) { PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight); } else if (tfoot && tfoot->IsRepeatable()) { tfoot->SetRepeatable(false); } PushChildren(rowGroups, childX); aStatus.Reset(); aStatus.SetIncomplete(); break; } LogicalSize kidAvailSize(aReflowInput.mAvailSize); allowRepeatedFooter = false; if (isPaginated && (NS_UNCONSTRAINEDSIZE != kidAvailSize.BSize(wm))) { nsTableRowGroupFrame* kidRG = static_cast(kidFrame); if (kidRG != thead && kidRG != tfoot && tfoot && tfoot->IsRepeatable()) { // the child is a tbody and there is a repeatable footer NS_ASSERTION(tfoot == rowGroups[rowGroups.Length() - 1], "Missing footer!"); if (footerHeight + cellSpacingB < kidAvailSize.BSize(wm)) { allowRepeatedFooter = true; kidAvailSize.BSize(wm) -= footerHeight + cellSpacingB; } } } nsRect oldKidRect = kidFrame->GetRect(); nsRect oldKidInkOverflow = kidFrame->InkOverflowRect(); ReflowOutput desiredSize(aReflowInput.mReflowInput); // Reflow the child into the available space ReflowInput kidReflowInput(presContext, aReflowInput.mReflowInput, kidFrame, kidAvailSize, Nothing(), ReflowInput::InitFlag::CallerWillInit); InitChildReflowInput(kidReflowInput); // If this isn't the first row group, and the previous row group has a // nonzero YMost, then we can't be at the top of the page. // We ignore a repeated head row group in this check to avoid causing // infinite loops in some circumstances - see bug 344883. if (childX > ((thead && IsRepeatedFrame(thead)) ? 1u : 0u) && (rowGroups[childX - 1]->GetNormalRect().YMost() > 0)) { kidReflowInput.mFlags.mIsTopOfPage = false; } aReflowInput.mBCoord += cellSpacingB; aReflowInput.ReduceAvailableBSizeBy(wm, cellSpacingB); // record the presence of a next in flow, it might get destroyed so we // need to reorder the row group array const bool reorder = kidFrame->GetNextInFlow(); LogicalPoint kidPosition(wm, aReflowInput.mICoord, aReflowInput.mBCoord); aStatus.Reset(); ReflowChild(kidFrame, presContext, desiredSize, kidReflowInput, wm, kidPosition, containerSize, ReflowChildFlags::Default, aStatus); if (reorder) { // Reorder row groups - the reflow may have changed the nextinflows. OrderRowGroups(rowGroups, &thead, &tfoot); childX = rowGroups.IndexOf(kidFrame); if (childX == RowGroupArray::NoIndex) { // XXXbz can this happen? childX = rowGroups.Length(); } } if (isPaginated && !aStatus.IsFullyComplete() && ShouldAvoidBreakInside(aReflowInput.mReflowInput)) { aStatus.SetInlineLineBreakBeforeAndReset(); break; } // see if the rowgroup did not fit on this page might be pushed on // the next page if (isPaginated && (aStatus.IsInlineBreakBefore() || (aStatus.IsComplete() && (NS_UNCONSTRAINEDSIZE != kidReflowInput.AvailableHeight()) && kidReflowInput.AvailableHeight() < desiredSize.Height()))) { if (ShouldAvoidBreakInside(aReflowInput.mReflowInput)) { aStatus.SetInlineLineBreakBeforeAndReset(); break; } // if we are on top of the page place with dataloss if (kidReflowInput.mFlags.mIsTopOfPage) { if (childX + 1 < rowGroups.Length()) { nsIFrame* nextRowGroupFrame = rowGroups[childX + 1]; if (nextRowGroupFrame) { PlaceChild(aReflowInput, kidFrame, kidReflowInput, kidPosition, containerSize, desiredSize, oldKidRect, oldKidInkOverflow); if (allowRepeatedFooter) { PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight); } else if (tfoot && tfoot->IsRepeatable()) { tfoot->SetRepeatable(false); } aStatus.Reset(); aStatus.SetIncomplete(); PushChildren(rowGroups, childX + 1); aLastChildReflowed = kidFrame; break; } } } else { // we are not on top, push this rowgroup onto the next page if (prevKidFrame) { // we had a rowgroup before so push this if (allowRepeatedFooter) { PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight); } else if (tfoot && tfoot->IsRepeatable()) { tfoot->SetRepeatable(false); } aStatus.Reset(); aStatus.SetIncomplete(); PushChildren(rowGroups, childX); aLastChildReflowed = prevKidFrame; break; } else { // we can't push so lets make clear how much space we need PlaceChild(aReflowInput, kidFrame, kidReflowInput, kidPosition, containerSize, desiredSize, oldKidRect, oldKidInkOverflow); aLastChildReflowed = kidFrame; if (allowRepeatedFooter) { PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight); aLastChildReflowed = tfoot; } break; } } } aLastChildReflowed = kidFrame; pageBreak = false; // see if there is a page break after this row group or before the next // one if (aStatus.IsComplete() && isPaginated && (NS_UNCONSTRAINEDSIZE != kidReflowInput.AvailableHeight())) { nsIFrame* nextKid = (childX + 1 < rowGroups.Length()) ? rowGroups[childX + 1] : nullptr; pageBreak = PageBreakAfter(kidFrame, nextKid); } // Place the child PlaceChild(aReflowInput, kidFrame, kidReflowInput, kidPosition, containerSize, desiredSize, oldKidRect, oldKidInkOverflow); // Remember where we just were in case we end up pushing children prevKidFrame = kidFrame; MOZ_ASSERT(!aStatus.IsIncomplete() || isPaginated, "Table contents should only fragment in paginated contexts"); // Special handling for incomplete children if (isPaginated && aStatus.IsIncomplete()) { nsIFrame* kidNextInFlow = kidFrame->GetNextInFlow(); if (!kidNextInFlow) { // The child doesn't have a next-in-flow so create a continuing // frame. This hooks the child into the flow kidNextInFlow = PresShell()->FrameConstructor()->CreateContinuingFrame(kidFrame, this); // Insert the kid's new next-in-flow into our sibling list... mFrames.InsertFrame(nullptr, kidFrame, kidNextInFlow); // and in rowGroups after childX so that it will get pushed below. rowGroups.InsertElementAt( childX + 1, static_cast(kidNextInFlow)); } else if (kidNextInFlow == kidFrame->GetNextSibling()) { // OrderRowGroups excludes NIFs in the child list from 'rowGroups' // so we deal with that here to make sure they get pushed. MOZ_ASSERT(!rowGroups.Contains(kidNextInFlow), "OrderRowGroups must not put our NIF in 'rowGroups'"); rowGroups.InsertElementAt( childX + 1, static_cast(kidNextInFlow)); } // We've used up all of our available space so push the remaining // children. if (allowRepeatedFooter) { PlaceRepeatedFooter(aReflowInput, tfoot, footerHeight); } else if (tfoot && tfoot->IsRepeatable()) { tfoot->SetRepeatable(false); } nsIFrame* nextSibling = kidFrame->GetNextSibling(); if (nextSibling) { PushChildren(rowGroups, childX + 1); } break; } } else { // it isn't being reflowed aReflowInput.mBCoord += cellSpacingB; LogicalRect kidRect(wm, kidFrame->GetNormalRect(), containerSize); if (kidRect.BStart(wm) != aReflowInput.mBCoord) { // invalidate the old position kidFrame->InvalidateFrameSubtree(); // move to the new position kidFrame->MovePositionBy( wm, LogicalPoint(wm, 0, aReflowInput.mBCoord - kidRect.BStart(wm))); RePositionViews(kidFrame); // invalidate the new position kidFrame->InvalidateFrameSubtree(); } aReflowInput.mBCoord += kidRect.BSize(wm); aReflowInput.ReduceAvailableBSizeBy(wm, cellSpacingB + kidRect.BSize(wm)); } } // We've now propagated the column resizes and geometry changes to all // the children. mBits.mResizedColumns = false; ClearGeometryDirty(); // nsTableFrame does not pull children from its next-in-flow (bug 1772383). // This is generally fine, since tables only fragment for printing // (bug 888257) where incremental-reflow is impossible, and so children don't // usually dynamically move back and forth between continuations. However, // there are edge cases even with printing where nsTableFrame: // (1) Generates a continuation and passes children to it, // (2) Receives another call to Reflow, during which it // (3) Successfully lays out its remaining children. // If the completed status flows up as-is, the continuation will be destroyed. // To avoid that, we return an incomplete status if the continuation contains // any child that is not a repeated frame. auto hasNextInFlowThatMustBePreserved = [this, isPaginated]() -> bool { if (!isPaginated) { return false; } auto* nextInFlow = static_cast(GetNextInFlow()); if (!nextInFlow) { return false; } for (nsIFrame* kidFrame : nextInFlow->mFrames) { if (!IsRepeatedFrame(kidFrame)) { return true; } } return false; }; if (aStatus.IsComplete() && hasNextInFlowThatMustBePreserved()) { aStatus.SetIncomplete(); } } void nsTableFrame::ReflowColGroups(gfxContext* aRenderingContext) { if (!GetPrevInFlow() && !HaveReflowedColGroups()) { ReflowOutput kidMet(GetWritingMode()); nsPresContext* presContext = PresContext(); for (nsIFrame* kidFrame : mColGroups) { if (kidFrame->IsSubtreeDirty()) { // The column groups don't care about dimensions or reflow inputs. ReflowInput kidReflowInput(presContext, kidFrame, aRenderingContext, LogicalSize(kidFrame->GetWritingMode())); nsReflowStatus cgStatus; ReflowChild(kidFrame, presContext, kidMet, kidReflowInput, 0, 0, ReflowChildFlags::Default, cgStatus); FinishReflowChild(kidFrame, presContext, kidMet, &kidReflowInput, 0, 0, ReflowChildFlags::Default); } } SetHaveReflowedColGroups(true); } } void nsTableFrame::CalcDesiredBSize(const ReflowInput& aReflowInput, ReflowOutput& aDesiredSize) { WritingMode wm = aReflowInput.GetWritingMode(); nsTableCellMap* cellMap = GetCellMap(); if (!cellMap) { NS_ERROR("never ever call me until the cell map is built!"); aDesiredSize.BSize(wm) = 0; return; } LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput); // get the natural bsize based on the last child's (row group) rect RowGroupArray rowGroups; OrderRowGroups(rowGroups); nscoord desiredBSize = borderPadding.BStartEnd(wm); if (rowGroups.IsEmpty()) { if (eCompatibility_NavQuirks == PresContext()->CompatibilityMode()) { // empty tables should not have a size in quirks mode aDesiredSize.BSize(wm) = 0; } else { aDesiredSize.BSize(wm) = CalcBorderBoxBSize(aReflowInput, borderPadding, desiredBSize); } return; } int32_t rowCount = cellMap->GetRowCount(); int32_t colCount = cellMap->GetColCount(); if (rowCount > 0 && colCount > 0) { desiredBSize += GetRowSpacing(-1); for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { desiredBSize += rowGroups[rgIdx]->BSize(wm) + GetRowSpacing(rowGroups[rgIdx]->GetRowCount() + rowGroups[rgIdx]->GetStartRowIndex()); } } // see if a specified table bsize requires dividing additional space to rows if (!GetPrevInFlow()) { nscoord bSize = CalcBorderBoxBSize(aReflowInput, borderPadding, desiredBSize); if (bSize > desiredBSize) { // proportionately distribute the excess bsize to unconstrained rows in // each unconstrained row group. DistributeBSizeToRows(aReflowInput, bSize - desiredBSize); // this might have changed the overflow area incorporate the childframe // overflow area. for (nsIFrame* kidFrame : mFrames) { ConsiderChildOverflow(aDesiredSize.mOverflowAreas, kidFrame); } aDesiredSize.BSize(wm) = bSize; } else { // Tables don't shrink below their intrinsic size, apparently, even when // constrained by stuff like flex / grid or what not. aDesiredSize.BSize(wm) = desiredBSize; } } else { // FIXME(emilio): Is this right? This only affects fragmented tables... aDesiredSize.BSize(wm) = desiredBSize; } } static void ResizeCells(nsTableFrame& aTableFrame) { nsTableFrame::RowGroupArray rowGroups; aTableFrame.OrderRowGroups(rowGroups); WritingMode wm = aTableFrame.GetWritingMode(); ReflowOutput tableDesiredSize(wm); tableDesiredSize.SetSize(wm, aTableFrame.GetLogicalSize(wm)); tableDesiredSize.SetOverflowAreasToDesiredBounds(); for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; ReflowOutput groupDesiredSize(wm); groupDesiredSize.SetSize(wm, rgFrame->GetLogicalSize(wm)); groupDesiredSize.SetOverflowAreasToDesiredBounds(); nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); while (rowFrame) { rowFrame->DidResize(); rgFrame->ConsiderChildOverflow(groupDesiredSize.mOverflowAreas, rowFrame); rowFrame = rowFrame->GetNextRow(); } rgFrame->FinishAndStoreOverflow(&groupDesiredSize); tableDesiredSize.mOverflowAreas.UnionWith(groupDesiredSize.mOverflowAreas + rgFrame->GetPosition()); } aTableFrame.FinishAndStoreOverflow(&tableDesiredSize); } void nsTableFrame::DistributeBSizeToRows(const ReflowInput& aReflowInput, nscoord aAmount) { WritingMode wm = aReflowInput.GetWritingMode(); LogicalMargin borderPadding = GetChildAreaOffset(wm, &aReflowInput); nsSize containerSize = aReflowInput.ComputedSizeAsContainerIfConstrained(); RowGroupArray rowGroups; OrderRowGroups(rowGroups); nscoord amountUsed = 0; // distribute space to each pct bsize row whose row group doesn't have a // computed bsize, and base the pct on the table bsize. If the row group had a // computed bsize, then this was already done in // nsTableRowGroupFrame::CalculateRowBSizes nscoord pctBasis = aReflowInput.ComputedBSize() - GetRowSpacing(-1, GetRowCount()); nscoord bOriginRG = borderPadding.BStart(wm) + GetRowSpacing(0); nscoord bEndRG = bOriginRG; uint32_t rgIdx; for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; nscoord amountUsedByRG = 0; nscoord bOriginRow = 0; LogicalRect rgNormalRect(wm, rgFrame->GetNormalRect(), containerSize); if (!rgFrame->HasStyleBSize()) { nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); while (rowFrame) { // We don't know the final width of the rowGroupFrame yet, so use 0,0 // as a dummy containerSize here; we'll adjust the row positions at // the end, after the rowGroup size is finalized. const nsSize dummyContainerSize; LogicalRect rowNormalRect(wm, rowFrame->GetNormalRect(), dummyContainerSize); nscoord cellSpacingB = GetRowSpacing(rowFrame->GetRowIndex()); if ((amountUsed < aAmount) && rowFrame->HasPctBSize()) { nscoord pctBSize = rowFrame->GetInitialBSize(pctBasis); nscoord amountForRow = std::min(aAmount - amountUsed, pctBSize - rowNormalRect.BSize(wm)); if (amountForRow > 0) { // XXXbz we don't need to move the row's b-position to bOriginRow? nsRect origRowRect = rowFrame->GetRect(); nscoord newRowBSize = rowNormalRect.BSize(wm) + amountForRow; rowFrame->SetSize( wm, LogicalSize(wm, rowNormalRect.ISize(wm), newRowBSize)); bOriginRow += newRowBSize + cellSpacingB; bEndRG += newRowBSize + cellSpacingB; amountUsed += amountForRow; amountUsedByRG += amountForRow; // rowFrame->DidResize(); nsTableFrame::RePositionViews(rowFrame); rgFrame->InvalidateFrameWithRect(origRowRect); rgFrame->InvalidateFrame(); } } else { if (amountUsed > 0 && bOriginRow != rowNormalRect.BStart(wm) && !HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) { rowFrame->InvalidateFrameSubtree(); rowFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRow - rowNormalRect.BStart(wm))); nsTableFrame::RePositionViews(rowFrame); rowFrame->InvalidateFrameSubtree(); } bOriginRow += rowNormalRect.BSize(wm) + cellSpacingB; bEndRG += rowNormalRect.BSize(wm) + cellSpacingB; } rowFrame = rowFrame->GetNextRow(); } if (amountUsed > 0) { if (rgNormalRect.BStart(wm) != bOriginRG) { rgFrame->InvalidateFrameSubtree(); } nsRect origRgNormalRect = rgFrame->GetRect(); nsRect origRgInkOverflow = rgFrame->InkOverflowRect(); rgFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRG - rgNormalRect.BStart(wm))); rgFrame->SetSize(wm, LogicalSize(wm, rgNormalRect.ISize(wm), rgNormalRect.BSize(wm) + amountUsedByRG)); nsTableFrame::InvalidateTableFrame(rgFrame, origRgNormalRect, origRgInkOverflow, false); } } else if (amountUsed > 0 && bOriginRG != rgNormalRect.BStart(wm)) { rgFrame->InvalidateFrameSubtree(); rgFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRG - rgNormalRect.BStart(wm))); // Make sure child views are properly positioned nsTableFrame::RePositionViews(rgFrame); rgFrame->InvalidateFrameSubtree(); } bOriginRG = bEndRG; } if (amountUsed >= aAmount) { ResizeCells(*this); return; } // get the first row without a style bsize where its row group has an // unconstrained bsize nsTableRowGroupFrame* firstUnStyledRG = nullptr; nsTableRowFrame* firstUnStyledRow = nullptr; for (rgIdx = 0; rgIdx < rowGroups.Length() && !firstUnStyledRG; rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; if (!rgFrame->HasStyleBSize()) { nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); while (rowFrame) { if (!rowFrame->HasStyleBSize()) { firstUnStyledRG = rgFrame; firstUnStyledRow = rowFrame; break; } rowFrame = rowFrame->GetNextRow(); } } } nsTableRowFrame* lastEligibleRow = nullptr; // Accumulate the correct divisor. This will be the total bsize of all // unstyled rows inside unstyled row groups, unless there are none, in which // case, it will be number of all rows. If the unstyled rows don't have a // bsize, divide the space equally among them. nscoord divisor = 0; int32_t eligibleRows = 0; bool expandEmptyRows = false; if (!firstUnStyledRow) { // there is no unstyled row divisor = GetRowCount(); } else { for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; if (!firstUnStyledRG || !rgFrame->HasStyleBSize()) { nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); while (rowFrame) { if (!firstUnStyledRG || !rowFrame->HasStyleBSize()) { NS_ASSERTION(rowFrame->BSize(wm) >= 0, "negative row frame block-size"); divisor += rowFrame->BSize(wm); eligibleRows++; lastEligibleRow = rowFrame; } rowFrame = rowFrame->GetNextRow(); } } } if (divisor <= 0) { if (eligibleRows > 0) { expandEmptyRows = true; } else { NS_ERROR("invalid divisor"); return; } } } // allocate the extra bsize to the unstyled row groups and rows nscoord bSizeToDistribute = aAmount - amountUsed; bOriginRG = borderPadding.BStart(wm) + GetRowSpacing(-1); bEndRG = bOriginRG; for (rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; nscoord amountUsedByRG = 0; nscoord bOriginRow = 0; LogicalRect rgNormalRect(wm, rgFrame->GetNormalRect(), containerSize); nsRect rgInkOverflow = rgFrame->InkOverflowRect(); // see if there is an eligible row group or we distribute to all rows if (!firstUnStyledRG || !rgFrame->HasStyleBSize() || !eligibleRows) { for (nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); rowFrame; rowFrame = rowFrame->GetNextRow()) { nscoord cellSpacingB = GetRowSpacing(rowFrame->GetRowIndex()); // We don't know the final width of the rowGroupFrame yet, so use 0,0 // as a dummy containerSize here; we'll adjust the row positions at // the end, after the rowGroup size is finalized. const nsSize dummyContainerSize; LogicalRect rowNormalRect(wm, rowFrame->GetNormalRect(), dummyContainerSize); nsRect rowInkOverflow = rowFrame->InkOverflowRect(); // see if there is an eligible row or we distribute to all rows if (!firstUnStyledRow || !rowFrame->HasStyleBSize() || !eligibleRows) { float ratio; if (eligibleRows) { if (!expandEmptyRows) { // The amount of additional space each row gets is proportional // to its bsize ratio = float(rowNormalRect.BSize(wm)) / float(divisor); } else { // empty rows get all the same additional space ratio = 1.0f / float(eligibleRows); } } else { // all rows get the same additional space ratio = 1.0f / float(divisor); } // give rows their additional space, except for the last row which // gets the remainder nscoord amountForRow = (rowFrame == lastEligibleRow) ? aAmount - amountUsed : NSToCoordRound(((float)(bSizeToDistribute)) * ratio); amountForRow = std::min(amountForRow, aAmount - amountUsed); if (bOriginRow != rowNormalRect.BStart(wm)) { rowFrame->InvalidateFrameSubtree(); } // update the row bsize nsRect origRowRect = rowFrame->GetRect(); nscoord newRowBSize = rowNormalRect.BSize(wm) + amountForRow; rowFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRow - rowNormalRect.BStart(wm))); rowFrame->SetSize( wm, LogicalSize(wm, rowNormalRect.ISize(wm), newRowBSize)); bOriginRow += newRowBSize + cellSpacingB; bEndRG += newRowBSize + cellSpacingB; amountUsed += amountForRow; amountUsedByRG += amountForRow; NS_ASSERTION((amountUsed <= aAmount), "invalid row allocation"); // rowFrame->DidResize(); nsTableFrame::RePositionViews(rowFrame); nsTableFrame::InvalidateTableFrame(rowFrame, origRowRect, rowInkOverflow, false); } else { if (amountUsed > 0 && bOriginRow != rowNormalRect.BStart(wm)) { rowFrame->InvalidateFrameSubtree(); rowFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRow - rowNormalRect.BStart(wm))); nsTableFrame::RePositionViews(rowFrame); rowFrame->InvalidateFrameSubtree(); } bOriginRow += rowNormalRect.BSize(wm) + cellSpacingB; bEndRG += rowNormalRect.BSize(wm) + cellSpacingB; } } if (amountUsed > 0) { if (rgNormalRect.BStart(wm) != bOriginRG) { rgFrame->InvalidateFrameSubtree(); } nsRect origRgNormalRect = rgFrame->GetRect(); rgFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRG - rgNormalRect.BStart(wm))); rgFrame->SetSize(wm, LogicalSize(wm, rgNormalRect.ISize(wm), rgNormalRect.BSize(wm) + amountUsedByRG)); nsTableFrame::InvalidateTableFrame(rgFrame, origRgNormalRect, rgInkOverflow, false); } // For vertical-rl mode, we needed to position the rows relative to the // right-hand (block-start) side of the group; but we couldn't do that // above, as we didn't know the rowGroupFrame's final block size yet. // So we used a dummyContainerSize of 0,0 earlier, placing the rows to // the left of the rowGroupFrame's (physical) origin. Now we move them // all rightwards by its final width. if (wm.IsVerticalRL()) { nscoord rgWidth = rgFrame->GetSize().width; for (nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); rowFrame; rowFrame = rowFrame->GetNextRow()) { rowFrame->InvalidateFrameSubtree(); rowFrame->MovePositionBy(nsPoint(rgWidth, 0)); nsTableFrame::RePositionViews(rowFrame); rowFrame->InvalidateFrameSubtree(); } } } else if (amountUsed > 0 && bOriginRG != rgNormalRect.BStart(wm)) { rgFrame->InvalidateFrameSubtree(); rgFrame->MovePositionBy( wm, LogicalPoint(wm, 0, bOriginRG - rgNormalRect.BStart(wm))); // Make sure child views are properly positioned nsTableFrame::RePositionViews(rgFrame); rgFrame->InvalidateFrameSubtree(); } bOriginRG = bEndRG; } ResizeCells(*this); } nscoord nsTableFrame::GetColumnISizeFromFirstInFlow(int32_t aColIndex) { MOZ_ASSERT(this == FirstInFlow()); nsTableColFrame* colFrame = GetColFrame(aColIndex); return colFrame ? colFrame->GetFinalISize() : 0; } nscoord nsTableFrame::GetColSpacing() { if (IsBorderCollapse()) return 0; return StyleTableBorder()->mBorderSpacingCol; } // XXX: could cache this. But be sure to check style changes if you do! nscoord nsTableFrame::GetColSpacing(int32_t aColIndex) { NS_ASSERTION(aColIndex >= -1 && aColIndex <= GetColCount(), "Column index exceeds the bounds of the table"); // Index is irrelevant for ordinary tables. We check that it falls within // appropriate bounds to increase confidence of correctness in situations // where it does matter. return GetColSpacing(); } nscoord nsTableFrame::GetColSpacing(int32_t aStartColIndex, int32_t aEndColIndex) { NS_ASSERTION(aStartColIndex >= -1 && aStartColIndex <= GetColCount(), "Start column index exceeds the bounds of the table"); NS_ASSERTION(aEndColIndex >= -1 && aEndColIndex <= GetColCount(), "End column index exceeds the bounds of the table"); NS_ASSERTION(aStartColIndex <= aEndColIndex, "End index must not be less than start index"); // Only one possible value so just multiply it out. Tables where index // matters will override this function return GetColSpacing() * (aEndColIndex - aStartColIndex); } nscoord nsTableFrame::GetRowSpacing() { if (IsBorderCollapse()) return 0; return StyleTableBorder()->mBorderSpacingRow; } // XXX: could cache this. But be sure to check style changes if you do! nscoord nsTableFrame::GetRowSpacing(int32_t aRowIndex) { NS_ASSERTION(aRowIndex >= -1 && aRowIndex <= GetRowCount(), "Row index exceeds the bounds of the table"); // Index is irrelevant for ordinary tables. We check that it falls within // appropriate bounds to increase confidence of correctness in situations // where it does matter. return GetRowSpacing(); } nscoord nsTableFrame::GetRowSpacing(int32_t aStartRowIndex, int32_t aEndRowIndex) { NS_ASSERTION(aStartRowIndex >= -1 && aStartRowIndex <= GetRowCount(), "Start row index exceeds the bounds of the table"); NS_ASSERTION(aEndRowIndex >= -1 && aEndRowIndex <= GetRowCount(), "End row index exceeds the bounds of the table"); NS_ASSERTION(aStartRowIndex <= aEndRowIndex, "End index must not be less than start index"); // Only one possible value so just multiply it out. Tables where index // matters will override this function return GetRowSpacing() * (aEndRowIndex - aStartRowIndex); } /* virtual */ nscoord nsTableFrame::GetLogicalBaseline(WritingMode aWM) const { nscoord baseline; if (!GetNaturalBaselineBOffset(aWM, BaselineSharingGroup::First, &baseline)) { baseline = BSize(aWM); } return baseline; } /* virtual */ bool nsTableFrame::GetNaturalBaselineBOffset( WritingMode aWM, BaselineSharingGroup aBaselineGroup, nscoord* aBaseline) const { if (StyleDisplay()->IsContainLayout()) { return false; } RowGroupArray orderedRowGroups; OrderRowGroups(orderedRowGroups); // XXX not sure if this should be the size of the containing block instead. nsSize containerSize = mRect.Size(); auto TableBaseline = [aWM, containerSize](nsTableRowGroupFrame* aRowGroup, nsTableRowFrame* aRow) { nscoord rgBStart = LogicalRect(aWM, aRowGroup->GetNormalRect(), containerSize).BStart(aWM); nscoord rowBStart = LogicalRect(aWM, aRow->GetNormalRect(), containerSize).BStart(aWM); return rgBStart + rowBStart + aRow->GetRowBaseline(aWM); }; if (aBaselineGroup == BaselineSharingGroup::First) { for (uint32_t rgIndex = 0; rgIndex < orderedRowGroups.Length(); rgIndex++) { nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex]; nsTableRowFrame* row = rgFrame->GetFirstRow(); if (row) { *aBaseline = TableBaseline(rgFrame, row); return true; } } } else { for (uint32_t rgIndex = orderedRowGroups.Length(); rgIndex-- > 0;) { nsTableRowGroupFrame* rgFrame = orderedRowGroups[rgIndex]; nsTableRowFrame* row = rgFrame->GetLastRow(); if (row) { *aBaseline = BSize(aWM) - TableBaseline(rgFrame, row); return true; } } } return false; } /* ----- global methods ----- */ nsTableFrame* NS_NewTableFrame(PresShell* aPresShell, ComputedStyle* aStyle) { return new (aPresShell) nsTableFrame(aStyle, aPresShell->GetPresContext()); } NS_IMPL_FRAMEARENA_HELPERS(nsTableFrame) nsTableFrame* nsTableFrame::GetTableFrame(nsIFrame* aFrame) { for (nsIFrame* ancestor = aFrame->GetParent(); ancestor; ancestor = ancestor->GetParent()) { if (ancestor->IsTableFrame()) { return static_cast(ancestor); } } MOZ_CRASH("unable to find table parent"); return nullptr; } nsTableFrame* nsTableFrame::GetTableFramePassingThrough( nsIFrame* aMustPassThrough, nsIFrame* aFrame, bool* aDidPassThrough) { MOZ_ASSERT(aMustPassThrough == aFrame || nsLayoutUtils::IsProperAncestorFrame(aMustPassThrough, aFrame), "aMustPassThrough should be an ancestor"); // Retrieve the table frame, and check if we hit aMustPassThrough on the // way. *aDidPassThrough = false; nsTableFrame* tableFrame = nullptr; for (nsIFrame* ancestor = aFrame; ancestor; ancestor = ancestor->GetParent()) { if (ancestor == aMustPassThrough) { *aDidPassThrough = true; } if (ancestor->IsTableFrame()) { tableFrame = static_cast(ancestor); break; } } MOZ_ASSERT(tableFrame, "Should have a table frame here"); return tableFrame; } bool nsTableFrame::IsAutoBSize(WritingMode aWM) { const auto& bsize = StylePosition()->BSize(aWM); if (bsize.IsAuto()) { return true; } return bsize.ConvertsToPercentage() && bsize.ToPercentage() <= 0.0f; } nscoord nsTableFrame::CalcBorderBoxBSize(const ReflowInput& aReflowInput, const LogicalMargin& aBorderPadding, nscoord aIntrinsicBorderBoxBSize) { WritingMode wm = aReflowInput.GetWritingMode(); nscoord bSize = aReflowInput.ComputedBSize(); nscoord bp = aBorderPadding.BStartEnd(wm); if (bSize == NS_UNCONSTRAINEDSIZE) { if (aIntrinsicBorderBoxBSize == NS_UNCONSTRAINEDSIZE) { return NS_UNCONSTRAINEDSIZE; } bSize = std::max(0, aIntrinsicBorderBoxBSize - bp); } return aReflowInput.ApplyMinMaxBSize(bSize) + bp; } bool nsTableFrame::IsAutoLayout() { if (StyleTable()->mLayoutStrategy == StyleTableLayout::Auto) return true; // a fixed-layout inline-table must have a inline size // and tables with inline size set to 'max-content' must be // auto-layout (at least as long as // FixedTableLayoutStrategy::GetPrefISize returns nscoord_MAX) const auto& iSize = StylePosition()->ISize(GetWritingMode()); return iSize.IsAuto() || iSize.IsMaxContent(); } #ifdef DEBUG_FRAME_DUMP nsresult nsTableFrame::GetFrameName(nsAString& aResult) const { return MakeFrameName(u"Table"_ns, aResult); } #endif // Find the closet sibling before aPriorChildFrame (including aPriorChildFrame) // that is of type aChildType nsIFrame* nsTableFrame::GetFrameAtOrBefore(nsIFrame* aParentFrame, nsIFrame* aPriorChildFrame, LayoutFrameType aChildType) { nsIFrame* result = nullptr; if (!aPriorChildFrame) { return result; } if (aChildType == aPriorChildFrame->Type()) { return aPriorChildFrame; } // aPriorChildFrame is not of type aChildType, so we need start from // the beginnng and find the closest one nsIFrame* lastMatchingFrame = nullptr; nsIFrame* childFrame = aParentFrame->PrincipalChildList().FirstChild(); while (childFrame && (childFrame != aPriorChildFrame)) { if (aChildType == childFrame->Type()) { lastMatchingFrame = childFrame; } childFrame = childFrame->GetNextSibling(); } return lastMatchingFrame; } #ifdef DEBUG void nsTableFrame::DumpRowGroup(nsIFrame* aKidFrame) { if (!aKidFrame) return; for (nsIFrame* cFrame : aKidFrame->PrincipalChildList()) { nsTableRowFrame* rowFrame = do_QueryFrame(cFrame); if (rowFrame) { printf("row(%d)=%p ", rowFrame->GetRowIndex(), static_cast(rowFrame)); for (nsIFrame* childFrame : cFrame->PrincipalChildList()) { nsTableCellFrame* cellFrame = do_QueryFrame(childFrame); if (cellFrame) { uint32_t colIndex = cellFrame->ColIndex(); printf("cell(%u)=%p ", colIndex, static_cast(childFrame)); } } printf("\n"); } else { DumpRowGroup(rowFrame); } } } void nsTableFrame::Dump(bool aDumpRows, bool aDumpCols, bool aDumpCellMap) { printf("***START TABLE DUMP*** \n"); // dump the columns widths array printf("mColWidths="); int32_t numCols = GetColCount(); int32_t colIdx; nsTableFrame* fif = static_cast(FirstInFlow()); for (colIdx = 0; colIdx < numCols; colIdx++) { printf("%d ", fif->GetColumnISizeFromFirstInFlow(colIdx)); } printf("\n"); if (aDumpRows) { nsIFrame* kidFrame = mFrames.FirstChild(); while (kidFrame) { DumpRowGroup(kidFrame); kidFrame = kidFrame->GetNextSibling(); } } if (aDumpCols) { // output col frame cache printf("\n col frame cache ->"); for (colIdx = 0; colIdx < numCols; colIdx++) { nsTableColFrame* colFrame = mColFrames.ElementAt(colIdx); if (0 == (colIdx % 8)) { printf("\n"); } printf("%d=%p ", colIdx, static_cast(colFrame)); nsTableColType colType = colFrame->GetColType(); switch (colType) { case eColContent: printf(" content "); break; case eColAnonymousCol: printf(" anonymous-column "); break; case eColAnonymousColGroup: printf(" anonymous-colgroup "); break; case eColAnonymousCell: printf(" anonymous-cell "); break; } } printf("\n colgroups->"); for (nsIFrame* childFrame : mColGroups) { if (LayoutFrameType::TableColGroup == childFrame->Type()) { nsTableColGroupFrame* colGroupFrame = (nsTableColGroupFrame*)childFrame; colGroupFrame->Dump(1); } } for (colIdx = 0; colIdx < numCols; colIdx++) { printf("\n"); nsTableColFrame* colFrame = GetColFrame(colIdx); colFrame->Dump(1); } } if (aDumpCellMap) { nsTableCellMap* cellMap = GetCellMap(); cellMap->Dump(); } printf(" ***END TABLE DUMP*** \n"); } #endif bool nsTableFrame::ColumnHasCellSpacingBefore(int32_t aColIndex) const { if (aColIndex == 0) { return true; } // Since fixed-layout tables should not have their column sizes change // as they load, we assume that all columns are significant. auto* fif = static_cast(FirstInFlow()); if (fif->LayoutStrategy()->GetType() == nsITableLayoutStrategy::Fixed) { return true; } nsTableCellMap* cellMap = fif->GetCellMap(); if (!cellMap) { return false; } if (cellMap->GetNumCellsOriginatingInCol(aColIndex) > 0) { return true; } // Check if we have a element with a non-zero definite inline size. // Note: percentages and calc(%) are intentionally not considered. if (const auto* col = fif->GetColFrame(aColIndex)) { const auto& iSize = col->StylePosition()->ISize(GetWritingMode()); if (iSize.ConvertsToLength() && iSize.ToLength() > 0) { const auto& maxISize = col->StylePosition()->MaxISize(GetWritingMode()); if (!maxISize.ConvertsToLength() || maxISize.ToLength() > 0) { return true; } } const auto& minISize = col->StylePosition()->MinISize(GetWritingMode()); if (minISize.ConvertsToLength() && minISize.ToLength() > 0) { return true; } } return false; } /******************************************************************************** * Collapsing Borders * * The CSS spec says to resolve border conflicts in this order: * 1) any border with the style HIDDEN wins * 2) the widest border with a style that is not NONE wins * 3) the border styles are ranked in this order, highest to lowest precedence: * double, solid, dashed, dotted, ridge, outset, groove, inset * 4) borders that are of equal width and style (differ only in color) have * this precedence: cell, row, rowgroup, col, colgroup, table * 5) if all border styles are NONE, then that's the computed border style. *******************************************************************************/ #ifdef DEBUG # define VerifyNonNegativeDamageRect(r) \ NS_ASSERTION((r).StartCol() >= 0, "negative col index"); \ NS_ASSERTION((r).StartRow() >= 0, "negative row index"); \ NS_ASSERTION((r).ColCount() >= 0, "negative cols damage"); \ NS_ASSERTION((r).RowCount() >= 0, "negative rows damage"); # define VerifyDamageRect(r) \ VerifyNonNegativeDamageRect(r); \ NS_ASSERTION((r).EndCol() <= GetColCount(), \ "cols damage extends outside table"); \ NS_ASSERTION((r).EndRow() <= GetRowCount(), \ "rows damage extends outside table"); #endif void nsTableFrame::AddBCDamageArea(const TableArea& aValue) { NS_ASSERTION(IsBorderCollapse(), "invalid AddBCDamageArea call"); #ifdef DEBUG VerifyDamageRect(aValue); #endif SetNeedToCalcBCBorders(true); SetNeedToCalcHasBCBorders(true); // Get the property BCPropertyData* value = GetOrCreateBCProperty(); if (value) { #ifdef DEBUG VerifyNonNegativeDamageRect(value->mDamageArea); #endif // Clamp the old damage area to the current table area in case it shrunk. int32_t cols = GetColCount(); if (value->mDamageArea.EndCol() > cols) { if (value->mDamageArea.StartCol() > cols) { value->mDamageArea.StartCol() = cols; value->mDamageArea.ColCount() = 0; } else { value->mDamageArea.ColCount() = cols - value->mDamageArea.StartCol(); } } int32_t rows = GetRowCount(); if (value->mDamageArea.EndRow() > rows) { if (value->mDamageArea.StartRow() > rows) { value->mDamageArea.StartRow() = rows; value->mDamageArea.RowCount() = 0; } else { value->mDamageArea.RowCount() = rows - value->mDamageArea.StartRow(); } } // Construct a union of the new and old damage areas. value->mDamageArea.UnionArea(value->mDamageArea, aValue); } } void nsTableFrame::SetFullBCDamageArea() { NS_ASSERTION(IsBorderCollapse(), "invalid SetFullBCDamageArea call"); SetNeedToCalcBCBorders(true); SetNeedToCalcHasBCBorders(true); BCPropertyData* value = GetOrCreateBCProperty(); if (value) { value->mDamageArea = TableArea(0, 0, GetColCount(), GetRowCount()); } } /* BCCellBorder represents a border segment which can be either an inline-dir * or a block-dir segment. For each segment we need to know the color, width, * style, who owns it and how long it is in cellmap coordinates. * Ownership of these segments is important to calculate which corners should * be bevelled. This structure has dual use, its used first to compute the * dominant border for inline-dir and block-dir segments and to store the * preliminary computed border results in the BCCellBorders structure. * This temporary storage is not symmetric with respect to inline-dir and * block-dir border segments, its always column oriented. For each column in * the cellmap there is a temporary stored block-dir and inline-dir segment. * XXX_Bernd this asymmetry is the root of those rowspan bc border errors */ struct BCCellBorder { BCCellBorder() { Reset(0, 1); } void Reset(uint32_t aRowIndex, uint32_t aRowSpan); nscolor color; // border segment color BCPixelSize width; // border segment width in pixel coordinates !! StyleBorderStyle style; // border segment style, possible values are defined // in nsStyleConsts.h as StyleBorderStyle::* BCBorderOwner owner; // border segment owner, possible values are defined // in celldata.h. In the cellmap for each border // segment we store the owner and later when // painting we know the owner and can retrieve the // style info from the corresponding frame int32_t rowIndex; // rowIndex of temporary stored inline-dir border // segments relative to the table int32_t rowSpan; // row span of temporary stored inline-dir border // segments }; void BCCellBorder::Reset(uint32_t aRowIndex, uint32_t aRowSpan) { style = StyleBorderStyle::None; color = 0; width = 0; owner = eTableOwner; rowIndex = aRowIndex; rowSpan = aRowSpan; } class BCMapCellIterator; /***************************************************************** * BCMapCellInfo * This structure stores information about the cellmap and all involved * table related frames that are used during the computation of winning borders * in CalcBCBorders so that they do need to be looked up again and again when * iterating over the cells. ****************************************************************/ struct BCMapCellInfo { explicit BCMapCellInfo(nsTableFrame* aTableFrame); void ResetCellInfo(); void SetInfo(nsTableRowFrame* aNewRow, int32_t aColIndex, BCCellData* aCellData, BCMapCellIterator* aIter, nsCellMap* aCellMap = nullptr); // The BCMapCellInfo has functions to set the continous // border widths (see nsTablePainter.cpp for a description of the continous // borders concept). The widths are computed inside these functions based on // the current position inside the table and the cached frames that correspond // to this position. The widths are stored in member variables of the internal // table frames. void SetTableBStartIStartContBCBorder(); void SetRowGroupIStartContBCBorder(); void SetRowGroupIEndContBCBorder(); void SetRowGroupBEndContBCBorder(); void SetRowIStartContBCBorder(); void SetRowIEndContBCBorder(); void SetColumnBStartIEndContBCBorder(); void SetColumnBEndContBCBorder(); void SetColGroupBEndContBCBorder(); void SetInnerRowGroupBEndContBCBorder(const nsIFrame* aNextRowGroup, nsTableRowFrame* aNextRow); // functions to set the border widths on the table related frames, where the // knowledge about the current position in the table is used. void SetTableBStartBorderWidth(BCPixelSize aWidth); void SetTableIStartBorderWidth(int32_t aRowB, BCPixelSize aWidth); void SetTableIEndBorderWidth(int32_t aRowB, BCPixelSize aWidth); void SetTableBEndBorderWidth(BCPixelSize aWidth); void SetIStartBorderWidths(BCPixelSize aWidth); void SetIEndBorderWidths(BCPixelSize aWidth); void SetBStartBorderWidths(BCPixelSize aWidth); void SetBEndBorderWidths(BCPixelSize aWidth); // functions to compute the borders; they depend on the // knowledge about the current position in the table. The edge functions // should be called if a table edge is involved, otherwise the internal // functions should be called. BCCellBorder GetBStartEdgeBorder(); BCCellBorder GetBEndEdgeBorder(); BCCellBorder GetIStartEdgeBorder(); BCCellBorder GetIEndEdgeBorder(); BCCellBorder GetIEndInternalBorder(); BCCellBorder GetIStartInternalBorder(); BCCellBorder GetBStartInternalBorder(); BCCellBorder GetBEndInternalBorder(); // functions to set the internal position information void SetColumn(int32_t aColX); // Increment the row as we loop over the rows of a rowspan void IncrementRow(bool aResetToBStartRowOfCell = false); // Helper functions to get extent of the cell int32_t GetCellEndRowIndex() const; int32_t GetCellEndColIndex() const; // storage of table information nsTableFrame* mTableFrame; nsTableFrame* mTableFirstInFlow; int32_t mNumTableRows; int32_t mNumTableCols; BCPropertyData* mTableBCData; WritingMode mTableWM; // a cell can only belong to one rowgroup nsTableRowGroupFrame* mRowGroup; // a cell with a rowspan has a bstart and a bend row, and rows in between nsTableRowFrame* mStartRow; nsTableRowFrame* mEndRow; nsTableRowFrame* mCurrentRowFrame; // a cell with a colspan has an istart and iend column and columns in between // they can belong to different colgroups nsTableColGroupFrame* mColGroup; nsTableColGroupFrame* mCurrentColGroupFrame; nsTableColFrame* mStartCol; nsTableColFrame* mEndCol; nsTableColFrame* mCurrentColFrame; // cell information BCCellData* mCellData; nsBCTableCellFrame* mCell; int32_t mRowIndex; int32_t mRowSpan; int32_t mColIndex; int32_t mColSpan; // flags to describe the position of the cell with respect to the row- and // colgroups, for instance mRgAtStart documents that the bStart cell border // hits a rowgroup border bool mRgAtStart; bool mRgAtEnd; bool mCgAtStart; bool mCgAtEnd; }; BCMapCellInfo::BCMapCellInfo(nsTableFrame* aTableFrame) : mTableFrame(aTableFrame), mTableFirstInFlow(static_cast(aTableFrame->FirstInFlow())), mNumTableRows(aTableFrame->GetRowCount()), mNumTableCols(aTableFrame->GetColCount()), mTableBCData(mTableFrame->GetProperty(TableBCProperty())), mTableWM(aTableFrame->Style()), mCurrentRowFrame(nullptr), mCurrentColGroupFrame(nullptr), mCurrentColFrame(nullptr) { ResetCellInfo(); } void BCMapCellInfo::ResetCellInfo() { mCellData = nullptr; mRowGroup = nullptr; mStartRow = nullptr; mEndRow = nullptr; mColGroup = nullptr; mStartCol = nullptr; mEndCol = nullptr; mCell = nullptr; mRowIndex = mRowSpan = mColIndex = mColSpan = 0; mRgAtStart = mRgAtEnd = mCgAtStart = mCgAtEnd = false; } inline int32_t BCMapCellInfo::GetCellEndRowIndex() const { return mRowIndex + mRowSpan - 1; } inline int32_t BCMapCellInfo::GetCellEndColIndex() const { return mColIndex + mColSpan - 1; } class BCMapCellIterator { public: BCMapCellIterator(nsTableFrame* aTableFrame, const TableArea& aDamageArea); void First(BCMapCellInfo& aMapCellInfo); void Next(BCMapCellInfo& aMapCellInfo); void PeekIEnd(BCMapCellInfo& aRefInfo, uint32_t aRowIndex, BCMapCellInfo& aAjaInfo); void PeekBEnd(BCMapCellInfo& aRefInfo, uint32_t aColIndex, BCMapCellInfo& aAjaInfo); bool IsNewRow() { return mIsNewRow; } nsTableRowFrame* GetPrevRow() const { return mPrevRow; } nsTableRowFrame* GetCurrentRow() const { return mRow; } nsTableRowGroupFrame* GetCurrentRowGroup() const { return mRowGroup; } int32_t mRowGroupStart; int32_t mRowGroupEnd; bool mAtEnd; nsCellMap* mCellMap; private: bool SetNewRow(nsTableRowFrame* row = nullptr); bool SetNewRowGroup(bool aFindFirstDamagedRow); nsTableFrame* mTableFrame; nsTableCellMap* mTableCellMap; nsTableFrame::RowGroupArray mRowGroups; nsTableRowGroupFrame* mRowGroup; int32_t mRowGroupIndex; uint32_t mNumTableRows; nsTableRowFrame* mRow; nsTableRowFrame* mPrevRow; bool mIsNewRow; int32_t mRowIndex; uint32_t mNumTableCols; int32_t mColIndex; nsPoint mAreaStart; // These are not really points in the usual nsPoint mAreaEnd; // sense; they're column/row coordinates // in the cell map. }; BCMapCellIterator::BCMapCellIterator(nsTableFrame* aTableFrame, const TableArea& aDamageArea) : mRowGroupStart(0), mRowGroupEnd(0), mCellMap(nullptr), mTableFrame(aTableFrame), mRowGroup(nullptr), mPrevRow(nullptr), mIsNewRow(false) { mTableCellMap = aTableFrame->GetCellMap(); mAreaStart.x = aDamageArea.StartCol(); mAreaStart.y = aDamageArea.StartRow(); mAreaEnd.x = aDamageArea.EndCol() - 1; mAreaEnd.y = aDamageArea.EndRow() - 1; mNumTableRows = mTableFrame->GetRowCount(); mRow = nullptr; mRowIndex = 0; mNumTableCols = mTableFrame->GetColCount(); mColIndex = 0; mRowGroupIndex = -1; // Get the ordered row groups aTableFrame->OrderRowGroups(mRowGroups); mAtEnd = true; // gets reset when First() is called } // fill fields that we need for border collapse computation on a given cell void BCMapCellInfo::SetInfo(nsTableRowFrame* aNewRow, int32_t aColIndex, BCCellData* aCellData, BCMapCellIterator* aIter, nsCellMap* aCellMap) { // fill the cell information mCellData = aCellData; mColIndex = aColIndex; // initialize the row information if it was not previously set for cells in // this row mRowIndex = 0; if (aNewRow) { mStartRow = aNewRow; mRowIndex = aNewRow->GetRowIndex(); } // fill cell frame info and row information mCell = nullptr; mRowSpan = 1; mColSpan = 1; if (aCellData) { mCell = static_cast(aCellData->GetCellFrame()); if (mCell) { if (!mStartRow) { mStartRow = mCell->GetTableRowFrame(); if (!mStartRow) ABORT0(); mRowIndex = mStartRow->GetRowIndex(); } mColSpan = mTableFrame->GetEffectiveColSpan(*mCell, aCellMap); mRowSpan = mTableFrame->GetEffectiveRowSpan(*mCell, aCellMap); } } if (!mStartRow) { mStartRow = aIter->GetCurrentRow(); } if (1 == mRowSpan) { mEndRow = mStartRow; } else { mEndRow = mStartRow->GetNextRow(); if (mEndRow) { for (int32_t span = 2; mEndRow && span < mRowSpan; span++) { mEndRow = mEndRow->GetNextRow(); } NS_ASSERTION(mEndRow, "spanned row not found"); } else { NS_ERROR("error in cell map"); mRowSpan = 1; mEndRow = mStartRow; } } // row group frame info // try to reuse the rgStart and rgEnd from the iterator as calls to // GetRowCount() are computationally expensive and should be avoided if // possible uint32_t rgStart = aIter->mRowGroupStart; uint32_t rgEnd = aIter->mRowGroupEnd; mRowGroup = mStartRow->GetTableRowGroupFrame(); if (mRowGroup != aIter->GetCurrentRowGroup()) { rgStart = mRowGroup->GetStartRowIndex(); rgEnd = rgStart + mRowGroup->GetRowCount() - 1; } uint32_t rowIndex = mStartRow->GetRowIndex(); mRgAtStart = rgStart == rowIndex; mRgAtEnd = rgEnd == rowIndex + mRowSpan - 1; // col frame info mStartCol = mTableFirstInFlow->GetColFrame(aColIndex); if (!mStartCol) ABORT0(); mEndCol = mStartCol; if (mColSpan > 1) { nsTableColFrame* colFrame = mTableFirstInFlow->GetColFrame(aColIndex + mColSpan - 1); if (!colFrame) ABORT0(); mEndCol = colFrame; } // col group frame info mColGroup = mStartCol->GetTableColGroupFrame(); int32_t cgStart = mColGroup->GetStartColumnIndex(); int32_t cgEnd = std::max(0, cgStart + mColGroup->GetColCount() - 1); mCgAtStart = cgStart == aColIndex; mCgAtEnd = cgEnd == aColIndex + mColSpan - 1; } bool BCMapCellIterator::SetNewRow(nsTableRowFrame* aRow) { mAtEnd = true; mPrevRow = mRow; if (aRow) { mRow = aRow; } else if (mRow) { mRow = mRow->GetNextRow(); } if (mRow) { mRowIndex = mRow->GetRowIndex(); // get to the first entry with an originating cell int32_t rgRowIndex = mRowIndex - mRowGroupStart; if (uint32_t(rgRowIndex) >= mCellMap->mRows.Length()) ABORT1(false); const nsCellMap::CellDataArray& row = mCellMap->mRows[rgRowIndex]; for (mColIndex = mAreaStart.x; mColIndex <= mAreaEnd.x; mColIndex++) { CellData* cellData = row.SafeElementAt(mColIndex); if (!cellData) { // add a dead cell data TableArea damageArea; cellData = mCellMap->AppendCell(*mTableCellMap, nullptr, rgRowIndex, false, 0, damageArea); if (!cellData) ABORT1(false); } if (cellData && (cellData->IsOrig() || cellData->IsDead())) { break; } } mIsNewRow = true; mAtEnd = false; } else ABORT1(false); return !mAtEnd; } bool BCMapCellIterator::SetNewRowGroup(bool aFindFirstDamagedRow) { mAtEnd = true; int32_t numRowGroups = mRowGroups.Length(); mCellMap = nullptr; for (mRowGroupIndex++; mRowGroupIndex < numRowGroups; mRowGroupIndex++) { mRowGroup = mRowGroups[mRowGroupIndex]; int32_t rowCount = mRowGroup->GetRowCount(); mRowGroupStart = mRowGroup->GetStartRowIndex(); mRowGroupEnd = mRowGroupStart + rowCount - 1; if (rowCount > 0) { mCellMap = mTableCellMap->GetMapFor(mRowGroup, mCellMap); if (!mCellMap) ABORT1(false); nsTableRowFrame* firstRow = mRowGroup->GetFirstRow(); if (aFindFirstDamagedRow) { if ((mAreaStart.y >= mRowGroupStart) && (mAreaStart.y <= mRowGroupEnd)) { // the damage area starts in the row group // find the correct first damaged row int32_t numRows = mAreaStart.y - mRowGroupStart; for (int32_t i = 0; i < numRows; i++) { firstRow = firstRow->GetNextRow(); if (!firstRow) ABORT1(false); } } else { continue; } } if (SetNewRow(firstRow)) { // sets mAtEnd break; } } } return !mAtEnd; } void BCMapCellIterator::First(BCMapCellInfo& aMapInfo) { aMapInfo.ResetCellInfo(); SetNewRowGroup(true); // sets mAtEnd while (!mAtEnd) { if ((mAreaStart.y >= mRowGroupStart) && (mAreaStart.y <= mRowGroupEnd)) { BCCellData* cellData = static_cast( mCellMap->GetDataAt(mAreaStart.y - mRowGroupStart, mAreaStart.x)); if (cellData && (cellData->IsOrig() || cellData->IsDead())) { aMapInfo.SetInfo(mRow, mAreaStart.x, cellData, this); return; } else { NS_ASSERTION(((0 == mAreaStart.x) && (mRowGroupStart == mAreaStart.y)), "damage area expanded incorrectly"); } } SetNewRowGroup(true); // sets mAtEnd } } void BCMapCellIterator::Next(BCMapCellInfo& aMapInfo) { if (mAtEnd) ABORT0(); aMapInfo.ResetCellInfo(); mIsNewRow = false; mColIndex++; while ((mRowIndex <= mAreaEnd.y) && !mAtEnd) { for (; mColIndex <= mAreaEnd.x; mColIndex++) { int32_t rgRowIndex = mRowIndex - mRowGroupStart; BCCellData* cellData = static_cast(mCellMap->GetDataAt(rgRowIndex, mColIndex)); if (!cellData) { // add a dead cell data TableArea damageArea; cellData = static_cast(mCellMap->AppendCell( *mTableCellMap, nullptr, rgRowIndex, false, 0, damageArea)); if (!cellData) ABORT0(); } if (cellData && (cellData->IsOrig() || cellData->IsDead())) { aMapInfo.SetInfo(mRow, mColIndex, cellData, this); return; } } if (mRowIndex >= mRowGroupEnd) { SetNewRowGroup(false); // could set mAtEnd } else { SetNewRow(); // could set mAtEnd } } mAtEnd = true; } void BCMapCellIterator::PeekIEnd(BCMapCellInfo& aRefInfo, uint32_t aRowIndex, BCMapCellInfo& aAjaInfo) { aAjaInfo.ResetCellInfo(); int32_t colIndex = aRefInfo.mColIndex + aRefInfo.mColSpan; uint32_t rgRowIndex = aRowIndex - mRowGroupStart; BCCellData* cellData = static_cast(mCellMap->GetDataAt(rgRowIndex, colIndex)); if (!cellData) { // add a dead cell data NS_ASSERTION(colIndex < mTableCellMap->GetColCount(), "program error"); TableArea damageArea; cellData = static_cast(mCellMap->AppendCell( *mTableCellMap, nullptr, rgRowIndex, false, 0, damageArea)); if (!cellData) ABORT0(); } nsTableRowFrame* row = nullptr; if (cellData->IsRowSpan()) { rgRowIndex -= cellData->GetRowSpanOffset(); cellData = static_cast(mCellMap->GetDataAt(rgRowIndex, colIndex)); if (!cellData) ABORT0(); } else { row = mRow; } aAjaInfo.SetInfo(row, colIndex, cellData, this); } void BCMapCellIterator::PeekBEnd(BCMapCellInfo& aRefInfo, uint32_t aColIndex, BCMapCellInfo& aAjaInfo) { aAjaInfo.ResetCellInfo(); int32_t rowIndex = aRefInfo.mRowIndex + aRefInfo.mRowSpan; int32_t rgRowIndex = rowIndex - mRowGroupStart; nsTableRowGroupFrame* rg = mRowGroup; nsCellMap* cellMap = mCellMap; nsTableRowFrame* nextRow = nullptr; if (rowIndex > mRowGroupEnd) { int32_t nextRgIndex = mRowGroupIndex; do { nextRgIndex++; rg = mRowGroups.SafeElementAt(nextRgIndex); if (rg) { cellMap = mTableCellMap->GetMapFor(rg, cellMap); if (!cellMap) ABORT0(); rgRowIndex = 0; nextRow = rg->GetFirstRow(); } } while (rg && !nextRow); if (!rg) return; } else { // get the row within the same row group nextRow = mRow; for (int32_t i = 0; i < aRefInfo.mRowSpan; i++) { nextRow = nextRow->GetNextRow(); if (!nextRow) ABORT0(); } } BCCellData* cellData = static_cast(cellMap->GetDataAt(rgRowIndex, aColIndex)); if (!cellData) { // add a dead cell data NS_ASSERTION(rgRowIndex < cellMap->GetRowCount(), "program error"); TableArea damageArea; cellData = static_cast(cellMap->AppendCell( *mTableCellMap, nullptr, rgRowIndex, false, 0, damageArea)); if (!cellData) ABORT0(); } if (cellData->IsColSpan()) { aColIndex -= cellData->GetColSpanOffset(); cellData = static_cast(cellMap->GetDataAt(rgRowIndex, aColIndex)); } aAjaInfo.SetInfo(nextRow, aColIndex, cellData, this, cellMap); } #define CELL_CORNER true /** return the border style, border color and optionally the width in * pixel for a given frame and side * @param aFrame - query the info for this frame * @param aTableWM - the writing-mode of the frame * @param aSide - the side of the frame * @param aStyle - the border style * @param aColor - the border color * @param aWidth - the border width in px */ static void GetColorAndStyle(const nsIFrame* aFrame, WritingMode aTableWM, LogicalSide aSide, StyleBorderStyle* aStyle, nscolor* aColor, BCPixelSize* aWidth = nullptr) { MOZ_ASSERT(aFrame, "null frame"); MOZ_ASSERT(aStyle && aColor, "null argument"); // initialize out arg *aColor = 0; if (aWidth) { *aWidth = 0; } const nsStyleBorder* styleData = aFrame->StyleBorder(); mozilla::Side physicalSide = aTableWM.PhysicalSide(aSide); *aStyle = styleData->GetBorderStyle(physicalSide); if ((StyleBorderStyle::None == *aStyle) || (StyleBorderStyle::Hidden == *aStyle)) { return; } *aColor = aFrame->Style()->GetVisitedDependentColor( nsStyleBorder::BorderColorFieldFor(physicalSide)); if (aWidth) { nscoord width = styleData->GetComputedBorderWidth(physicalSide); *aWidth = aFrame->PresContext()->AppUnitsToDevPixels(width); } } /** coerce the paint style as required by CSS2.1 * @param aFrame - query the info for this frame * @param aTableWM - the writing mode of the frame * @param aSide - the side of the frame * @param aStyle - the border style * @param aColor - the border color */ static void GetPaintStyleInfo(const nsIFrame* aFrame, WritingMode aTableWM, LogicalSide aSide, StyleBorderStyle* aStyle, nscolor* aColor) { GetColorAndStyle(aFrame, aTableWM, aSide, aStyle, aColor); if (StyleBorderStyle::Inset == *aStyle) { *aStyle = StyleBorderStyle::Ridge; } else if (StyleBorderStyle::Outset == *aStyle) { *aStyle = StyleBorderStyle::Groove; } } class nsDelayedCalcBCBorders : public Runnable { public: explicit nsDelayedCalcBCBorders(nsIFrame* aFrame) : mozilla::Runnable("nsDelayedCalcBCBorders"), mFrame(aFrame) {} NS_IMETHOD Run() override { if (mFrame) { nsTableFrame* tableFrame = static_cast(mFrame.GetFrame()); if (tableFrame->NeedToCalcBCBorders()) { tableFrame->CalcBCBorders(); } } return NS_OK; } private: WeakFrame mFrame; }; bool nsTableFrame::BCRecalcNeeded(ComputedStyle* aOldComputedStyle, ComputedStyle* aNewComputedStyle) { // Attention: the old ComputedStyle is the one we're forgetting, // and hence possibly completely bogus for GetStyle* purposes. // We use PeekStyleData instead. const nsStyleBorder* oldStyleData = aOldComputedStyle->StyleBorder(); const nsStyleBorder* newStyleData = aNewComputedStyle->StyleBorder(); nsChangeHint change = newStyleData->CalcDifference(*oldStyleData); if (!change) return false; if (change & nsChangeHint_NeedReflow) return true; // the caller only needs to mark the bc damage area if (change & nsChangeHint_RepaintFrame) { // we need to recompute the borders and the caller needs to mark // the bc damage area // XXX In principle this should only be necessary for border style changes // However the bc painting code tries to maximize the drawn border segments // so it stores in the cellmap where a new border segment starts and this // introduces a unwanted cellmap data dependence on color nsCOMPtr evt = new nsDelayedCalcBCBorders(this); nsresult rv = GetContent()->OwnerDoc()->Dispatch(TaskCategory::Other, evt.forget()); return NS_SUCCEEDED(rv); } return false; } // Compare two border segments, this comparison depends whether the two // segments meet at a corner and whether the second segment is inline-dir. // The return value is whichever of aBorder1 or aBorder2 dominates. static const BCCellBorder& CompareBorders( bool aIsCorner, // Pass true for corner calculations const BCCellBorder& aBorder1, const BCCellBorder& aBorder2, bool aSecondIsInlineDir, bool* aFirstDominates = nullptr) { bool firstDominates = true; if (StyleBorderStyle::Hidden == aBorder1.style) { firstDominates = !aIsCorner; } else if (StyleBorderStyle::Hidden == aBorder2.style) { firstDominates = aIsCorner; } else if (aBorder1.width < aBorder2.width) { firstDominates = false; } else if (aBorder1.width == aBorder2.width) { if (static_cast(aBorder1.style) < static_cast(aBorder2.style)) { firstDominates = false; } else if (aBorder1.style == aBorder2.style) { if (aBorder1.owner == aBorder2.owner) { firstDominates = !aSecondIsInlineDir; } else if (aBorder1.owner < aBorder2.owner) { firstDominates = false; } } } if (aFirstDominates) *aFirstDominates = firstDominates; if (firstDominates) return aBorder1; return aBorder2; } /** calc the dominant border by considering the table, row/col group, row/col, * cell. * Depending on whether the side is block-dir or inline-dir and whether * adjacent frames are taken into account the ownership of a single border * segment is defined. The return value is the dominating border * The cellmap stores only bstart and istart borders for each cellmap position. * If the cell border is owned by the cell that is istart-wards of the border * it will be an adjacent owner aka eAjaCellOwner. See celldata.h for the other * scenarios with a adjacent owner. * @param xxxFrame - the frame for style information, might be zero if * it should not be considered * @param aTableWM - the writing mode of the frame * @param aSide - side of the frames that should be considered * @param aAja - the border comparison takes place from the point of * a frame that is adjacent to the cellmap entry, for * when a cell owns its lower border it will be the * adjacent owner as in the cellmap only bstart and * istart borders are stored. */ static BCCellBorder CompareBorders( const nsIFrame* aTableFrame, const nsIFrame* aColGroupFrame, const nsIFrame* aColFrame, const nsIFrame* aRowGroupFrame, const nsIFrame* aRowFrame, const nsIFrame* aCellFrame, WritingMode aTableWM, LogicalSide aSide, bool aAja) { BCCellBorder border, tempBorder; bool inlineAxis = IsBlock(aSide); // start with the table as dominant if present if (aTableFrame) { GetColorAndStyle(aTableFrame, aTableWM, aSide, &border.style, &border.color, &border.width); border.owner = eTableOwner; if (StyleBorderStyle::Hidden == border.style) { return border; } } // see if the colgroup is dominant if (aColGroupFrame) { GetColorAndStyle(aColGroupFrame, aTableWM, aSide, &tempBorder.style, &tempBorder.color, &tempBorder.width); tempBorder.owner = aAja && !inlineAxis ? eAjaColGroupOwner : eColGroupOwner; // pass here and below false for aSecondIsInlineDir as it is only used for // corner calculations. border = CompareBorders(!CELL_CORNER, border, tempBorder, false); if (StyleBorderStyle::Hidden == border.style) { return border; } } // see if the col is dominant if (aColFrame) { GetColorAndStyle(aColFrame, aTableWM, aSide, &tempBorder.style, &tempBorder.color, &tempBorder.width); tempBorder.owner = aAja && !inlineAxis ? eAjaColOwner : eColOwner; border = CompareBorders(!CELL_CORNER, border, tempBorder, false); if (StyleBorderStyle::Hidden == border.style) { return border; } } // see if the rowgroup is dominant if (aRowGroupFrame) { GetColorAndStyle(aRowGroupFrame, aTableWM, aSide, &tempBorder.style, &tempBorder.color, &tempBorder.width); tempBorder.owner = aAja && inlineAxis ? eAjaRowGroupOwner : eRowGroupOwner; border = CompareBorders(!CELL_CORNER, border, tempBorder, false); if (StyleBorderStyle::Hidden == border.style) { return border; } } // see if the row is dominant if (aRowFrame) { GetColorAndStyle(aRowFrame, aTableWM, aSide, &tempBorder.style, &tempBorder.color, &tempBorder.width); tempBorder.owner = aAja && inlineAxis ? eAjaRowOwner : eRowOwner; border = CompareBorders(!CELL_CORNER, border, tempBorder, false); if (StyleBorderStyle::Hidden == border.style) { return border; } } // see if the cell is dominant if (aCellFrame) { GetColorAndStyle(aCellFrame, aTableWM, aSide, &tempBorder.style, &tempBorder.color, &tempBorder.width); tempBorder.owner = aAja ? eAjaCellOwner : eCellOwner; border = CompareBorders(!CELL_CORNER, border, tempBorder, false); } return border; } static bool Perpendicular(mozilla::LogicalSide aSide1, mozilla::LogicalSide aSide2) { return IsInline(aSide1) != IsInline(aSide2); } // Initial value indicating that BCCornerInfo's ownerStyle hasn't been set yet. #define BORDER_STYLE_UNSET static_cast(255) // XXX allocate this as number-of-cols+1 instead of number-of-cols+1 * // number-of-rows+1 struct BCCornerInfo { BCCornerInfo() { ownerColor = 0; ownerWidth = subWidth = ownerElem = subSide = subElem = hasDashDot = numSegs = bevel = 0; ownerSide = eLogicalSideBStart; ownerStyle = BORDER_STYLE_UNSET; subStyle = StyleBorderStyle::Solid; } void Set(mozilla::LogicalSide aSide, BCCellBorder border); void Update(mozilla::LogicalSide aSide, BCCellBorder border); nscolor ownerColor; // color of borderOwner uint16_t ownerWidth; // pixel width of borderOwner uint16_t subWidth; // pixel width of the largest border intersecting the // border perpendicular to ownerSide StyleBorderStyle subStyle; // border style of subElem StyleBorderStyle ownerStyle; // border style of ownerElem uint16_t ownerSide : 2; // LogicalSide (e.g eLogicalSideBStart, etc) of the // border owning the corner relative to the corner uint16_t ownerElem : 4; // elem type (e.g. eTable, eGroup, etc) owning the corner uint16_t subSide : 2; // side of border with subWidth relative to the corner uint16_t subElem : 4; // elem type (e.g. eTable, eGroup, etc) of sub owner uint16_t hasDashDot : 1; // does a dashed, dotted segment enter the corner, // they cannot be beveled uint16_t numSegs : 3; // number of segments entering corner uint16_t bevel : 1; // is the corner beveled (uses the above two fields // together with subWidth) // 7 bits are unused }; void BCCornerInfo::Set(mozilla::LogicalSide aSide, BCCellBorder aBorder) { // FIXME bug 1508921: We mask 4-bit BCBorderOwner enum to 3 bits to preserve // buggy behavior found by the frame_above_rules_all.html mochitest. ownerElem = aBorder.owner & 0x7; ownerStyle = aBorder.style; ownerWidth = aBorder.width; ownerColor = aBorder.color; ownerSide = aSide; hasDashDot = 0; numSegs = 0; if (aBorder.width > 0) { numSegs++; hasDashDot = (StyleBorderStyle::Dashed == aBorder.style) || (StyleBorderStyle::Dotted == aBorder.style); } bevel = 0; subWidth = 0; // the following will get set later subSide = IsInline(aSide) ? eLogicalSideBStart : eLogicalSideIStart; subElem = eTableOwner; subStyle = StyleBorderStyle::Solid; } void BCCornerInfo::Update(mozilla::LogicalSide aSide, BCCellBorder aBorder) { if (ownerStyle == BORDER_STYLE_UNSET) { Set(aSide, aBorder); } else { bool isInline = IsInline(aSide); // relative to the corner BCCellBorder oldBorder, tempBorder; oldBorder.owner = (BCBorderOwner)ownerElem; oldBorder.style = ownerStyle; oldBorder.width = ownerWidth; oldBorder.color = ownerColor; LogicalSide oldSide = LogicalSide(ownerSide); bool existingWins = false; tempBorder = CompareBorders(CELL_CORNER, oldBorder, aBorder, isInline, &existingWins); ownerElem = tempBorder.owner; ownerStyle = tempBorder.style; ownerWidth = tempBorder.width; ownerColor = tempBorder.color; if (existingWins) { // existing corner is dominant if (::Perpendicular(LogicalSide(ownerSide), aSide)) { // see if the new sub info replaces the old BCCellBorder subBorder; subBorder.owner = (BCBorderOwner)subElem; subBorder.style = subStyle; subBorder.width = subWidth; subBorder.color = 0; // we are not interested in subBorder color bool firstWins; tempBorder = CompareBorders(CELL_CORNER, subBorder, aBorder, isInline, &firstWins); subElem = tempBorder.owner; subStyle = tempBorder.style; subWidth = tempBorder.width; if (!firstWins) { subSide = aSide; } } } else { // input args are dominant ownerSide = aSide; if (::Perpendicular(oldSide, LogicalSide(ownerSide))) { subElem = oldBorder.owner; subStyle = oldBorder.style; subWidth = oldBorder.width; subSide = oldSide; } } if (aBorder.width > 0) { numSegs++; if (!hasDashDot && ((StyleBorderStyle::Dashed == aBorder.style) || (StyleBorderStyle::Dotted == aBorder.style))) { hasDashDot = 1; } } // bevel the corner if only two perpendicular non dashed/dotted segments // enter the corner bevel = (2 == numSegs) && (subWidth > 1) && (0 == hasDashDot); } } struct BCCorners { BCCorners(int32_t aNumCorners, int32_t aStartIndex); BCCornerInfo& operator[](int32_t i) const { NS_ASSERTION((i >= startIndex) && (i <= endIndex), "program error"); return corners[clamped(i, startIndex, endIndex) - startIndex]; } int32_t startIndex; int32_t endIndex; UniquePtr corners; }; BCCorners::BCCorners(int32_t aNumCorners, int32_t aStartIndex) { NS_ASSERTION((aNumCorners > 0) && (aStartIndex >= 0), "program error"); startIndex = aStartIndex; endIndex = aStartIndex + aNumCorners - 1; corners = MakeUnique(aNumCorners); } struct BCCellBorders { BCCellBorders(int32_t aNumBorders, int32_t aStartIndex); BCCellBorder& operator[](int32_t i) const { NS_ASSERTION((i >= startIndex) && (i <= endIndex), "program error"); return borders[clamped(i, startIndex, endIndex) - startIndex]; } int32_t startIndex; int32_t endIndex; UniquePtr borders; }; BCCellBorders::BCCellBorders(int32_t aNumBorders, int32_t aStartIndex) { NS_ASSERTION((aNumBorders > 0) && (aStartIndex >= 0), "program error"); startIndex = aStartIndex; endIndex = aStartIndex + aNumBorders - 1; borders = MakeUnique(aNumBorders); } // this function sets the new border properties and returns true if the border // segment will start a new segment and not be accumulated into the previous // segment. static bool SetBorder(const BCCellBorder& aNewBorder, BCCellBorder& aBorder) { bool changed = (aNewBorder.style != aBorder.style) || (aNewBorder.width != aBorder.width) || (aNewBorder.color != aBorder.color); aBorder.color = aNewBorder.color; aBorder.width = aNewBorder.width; aBorder.style = aNewBorder.style; aBorder.owner = aNewBorder.owner; return changed; } // this function will set the inline-dir border. It will return true if the // existing segment will not be continued. Having a block-dir owner of a corner // should also start a new segment. static bool SetInlineDirBorder(const BCCellBorder& aNewBorder, const BCCornerInfo& aCorner, BCCellBorder& aBorder) { bool startSeg = ::SetBorder(aNewBorder, aBorder); if (!startSeg) { startSeg = !IsInline(LogicalSide(aCorner.ownerSide)); } return startSeg; } // Make the damage area larger on the top and bottom by at least one row and on // the left and right at least one column. This is done so that adjacent // elements are part of the border calculations. The extra segments and borders // outside the actual damage area will not be updated in the cell map, because // they in turn would need info from adjacent segments outside the damage area // to be accurate. void nsTableFrame::ExpandBCDamageArea(TableArea& aArea) const { int32_t numRows = GetRowCount(); int32_t numCols = GetColCount(); int32_t dStartX = aArea.StartCol(); int32_t dEndX = aArea.EndCol() - 1; int32_t dStartY = aArea.StartRow(); int32_t dEndY = aArea.EndRow() - 1; // expand the damage area in each direction if (dStartX > 0) { dStartX--; } if (dEndX < (numCols - 1)) { dEndX++; } if (dStartY > 0) { dStartY--; } if (dEndY < (numRows - 1)) { dEndY++; } // Check the damage area so that there are no cells spanning in or out. If // there are any then make the damage area as big as the table, similarly to // the way the cell map decides whether to rebuild versus expand. This could // be optimized to expand to the smallest area that contains no spanners, but // it may not be worth the effort in general, and it would need to be done in // the cell map as well. bool haveSpanner = false; if ((dStartX > 0) || (dEndX < (numCols - 1)) || (dStartY > 0) || (dEndY < (numRows - 1))) { nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT0(); // Get the ordered row groups RowGroupArray rowGroups; OrderRowGroups(rowGroups); // Scope outside loop to be used as hint. nsCellMap* cellMap = nullptr; for (uint32_t rgIdx = 0; rgIdx < rowGroups.Length(); rgIdx++) { nsTableRowGroupFrame* rgFrame = rowGroups[rgIdx]; int32_t rgStartY = rgFrame->GetStartRowIndex(); int32_t rgEndY = rgStartY + rgFrame->GetRowCount() - 1; if (dEndY < rgStartY) break; cellMap = tableCellMap->GetMapFor(rgFrame, cellMap); if (!cellMap) ABORT0(); // check for spanners from above and below if ((dStartY > 0) && (dStartY >= rgStartY) && (dStartY <= rgEndY)) { if (uint32_t(dStartY - rgStartY) >= cellMap->mRows.Length()) ABORT0(); const nsCellMap::CellDataArray& row = cellMap->mRows[dStartY - rgStartY]; for (int32_t x = dStartX; x <= dEndX; x++) { CellData* cellData = row.SafeElementAt(x); if (cellData && (cellData->IsRowSpan())) { haveSpanner = true; break; } } if (dEndY < rgEndY) { if (uint32_t(dEndY + 1 - rgStartY) >= cellMap->mRows.Length()) ABORT0(); const nsCellMap::CellDataArray& row2 = cellMap->mRows[dEndY + 1 - rgStartY]; for (int32_t x = dStartX; x <= dEndX; x++) { CellData* cellData = row2.SafeElementAt(x); if (cellData && (cellData->IsRowSpan())) { haveSpanner = true; break; } } } } // check for spanners on the left and right int32_t iterStartY; int32_t iterEndY; if ((dStartY >= rgStartY) && (dStartY <= rgEndY)) { // the damage area starts in the row group iterStartY = dStartY; iterEndY = std::min(dEndY, rgEndY); } else if ((dEndY >= rgStartY) && (dEndY <= rgEndY)) { // the damage area ends in the row group iterStartY = rgStartY; iterEndY = dEndY; } else if ((rgStartY >= dStartY) && (rgEndY <= dEndY)) { // the damage area contains the row group iterStartY = rgStartY; iterEndY = rgEndY; } else { // the damage area does not overlap the row group continue; } NS_ASSERTION(iterStartY >= 0 && iterEndY >= 0, "table index values are expected to be nonnegative"); for (int32_t y = iterStartY; y <= iterEndY; y++) { if (uint32_t(y - rgStartY) >= cellMap->mRows.Length()) ABORT0(); const nsCellMap::CellDataArray& row = cellMap->mRows[y - rgStartY]; CellData* cellData = row.SafeElementAt(dStartX); if (cellData && (cellData->IsColSpan())) { haveSpanner = true; break; } if (dEndX < (numCols - 1)) { cellData = row.SafeElementAt(dEndX + 1); if (cellData && (cellData->IsColSpan())) { haveSpanner = true; break; } } } } } if (haveSpanner) { // make the damage area the whole table aArea.StartCol() = 0; aArea.StartRow() = 0; aArea.ColCount() = numCols; aArea.RowCount() = numRows; } else { aArea.StartCol() = dStartX; aArea.StartRow() = dStartY; aArea.ColCount() = 1 + dEndX - dStartX; aArea.RowCount() = 1 + dEndY - dStartY; } } #define ADJACENT true #define INLINE_DIR true void BCMapCellInfo::SetTableBStartIStartContBCBorder() { BCCellBorder currentBorder; // calculate continuous top first row & rowgroup border: special case // because it must include the table in the collapse if (mStartRow) { currentBorder = CompareBorders(mTableFrame, nullptr, nullptr, mRowGroup, mStartRow, nullptr, mTableWM, eLogicalSideBStart, !ADJACENT); mStartRow->SetContinuousBCBorderWidth(eLogicalSideBStart, currentBorder.width); } if (mCgAtEnd && mColGroup) { // calculate continuous top colgroup border once per colgroup currentBorder = CompareBorders(mTableFrame, mColGroup, nullptr, mRowGroup, mStartRow, nullptr, mTableWM, eLogicalSideBStart, !ADJACENT); mColGroup->SetContinuousBCBorderWidth(eLogicalSideBStart, currentBorder.width); } if (0 == mColIndex) { currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol, nullptr, nullptr, nullptr, mTableWM, eLogicalSideIStart, !ADJACENT); mTableFrame->SetContinuousIStartBCBorderWidth(currentBorder.width); } } void BCMapCellInfo::SetRowGroupIStartContBCBorder() { BCCellBorder currentBorder; // get row group continuous borders if (mRgAtEnd && mRowGroup) { // once per row group, so check for bottom currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol, mRowGroup, nullptr, nullptr, mTableWM, eLogicalSideIStart, !ADJACENT); mRowGroup->SetContinuousBCBorderWidth(eLogicalSideIStart, currentBorder.width); } } void BCMapCellInfo::SetRowGroupIEndContBCBorder() { BCCellBorder currentBorder; // get row group continuous borders if (mRgAtEnd && mRowGroup) { // once per mRowGroup, so check for bottom currentBorder = CompareBorders(mTableFrame, mColGroup, mEndCol, mRowGroup, nullptr, nullptr, mTableWM, eLogicalSideIEnd, ADJACENT); mRowGroup->SetContinuousBCBorderWidth(eLogicalSideIEnd, currentBorder.width); } } void BCMapCellInfo::SetColumnBStartIEndContBCBorder() { BCCellBorder currentBorder; // calculate column continuous borders // we only need to do this once, so we'll do it only on the first row currentBorder = CompareBorders( mTableFrame, mCurrentColGroupFrame, mCurrentColFrame, mRowGroup, mStartRow, nullptr, mTableWM, eLogicalSideBStart, !ADJACENT); mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideBStart, currentBorder.width); if (mNumTableCols == GetCellEndColIndex() + 1) { currentBorder = CompareBorders(mTableFrame, mCurrentColGroupFrame, mCurrentColFrame, nullptr, nullptr, nullptr, mTableWM, eLogicalSideIEnd, !ADJACENT); } else { currentBorder = CompareBorders(nullptr, mCurrentColGroupFrame, mCurrentColFrame, nullptr, nullptr, nullptr, mTableWM, eLogicalSideIEnd, !ADJACENT); } mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideIEnd, currentBorder.width); } void BCMapCellInfo::SetColumnBEndContBCBorder() { BCCellBorder currentBorder; // get col continuous border currentBorder = CompareBorders(mTableFrame, mCurrentColGroupFrame, mCurrentColFrame, mRowGroup, mEndRow, nullptr, mTableWM, eLogicalSideBEnd, ADJACENT); mCurrentColFrame->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width); } void BCMapCellInfo::SetColGroupBEndContBCBorder() { BCCellBorder currentBorder; if (mColGroup) { currentBorder = CompareBorders(mTableFrame, mColGroup, nullptr, mRowGroup, mEndRow, nullptr, mTableWM, eLogicalSideBEnd, ADJACENT); mColGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width); } } void BCMapCellInfo::SetRowGroupBEndContBCBorder() { BCCellBorder currentBorder; if (mRowGroup) { currentBorder = CompareBorders(mTableFrame, nullptr, nullptr, mRowGroup, mEndRow, nullptr, mTableWM, eLogicalSideBEnd, ADJACENT); mRowGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width); } } void BCMapCellInfo::SetInnerRowGroupBEndContBCBorder( const nsIFrame* aNextRowGroup, nsTableRowFrame* aNextRow) { BCCellBorder currentBorder, adjacentBorder; const nsIFrame* rowgroup = mRgAtEnd ? mRowGroup : nullptr; currentBorder = CompareBorders(nullptr, nullptr, nullptr, rowgroup, mEndRow, nullptr, mTableWM, eLogicalSideBEnd, ADJACENT); adjacentBorder = CompareBorders(nullptr, nullptr, nullptr, aNextRowGroup, aNextRow, nullptr, mTableWM, eLogicalSideBStart, !ADJACENT); currentBorder = CompareBorders(false, currentBorder, adjacentBorder, INLINE_DIR); if (aNextRow) { aNextRow->SetContinuousBCBorderWidth(eLogicalSideBStart, currentBorder.width); } if (mRgAtEnd && mRowGroup) { mRowGroup->SetContinuousBCBorderWidth(eLogicalSideBEnd, currentBorder.width); } } void BCMapCellInfo::SetRowIStartContBCBorder() { // get row continuous borders if (mCurrentRowFrame) { BCCellBorder currentBorder; currentBorder = CompareBorders(mTableFrame, mColGroup, mStartCol, mRowGroup, mCurrentRowFrame, nullptr, mTableWM, eLogicalSideIStart, !ADJACENT); mCurrentRowFrame->SetContinuousBCBorderWidth(eLogicalSideIStart, currentBorder.width); } } void BCMapCellInfo::SetRowIEndContBCBorder() { if (mCurrentRowFrame) { BCCellBorder currentBorder; currentBorder = CompareBorders(mTableFrame, mColGroup, mEndCol, mRowGroup, mCurrentRowFrame, nullptr, mTableWM, eLogicalSideIEnd, ADJACENT); mCurrentRowFrame->SetContinuousBCBorderWidth(eLogicalSideIEnd, currentBorder.width); } } void BCMapCellInfo::SetTableBStartBorderWidth(BCPixelSize aWidth) { mTableBCData->mBStartBorderWidth = std::max(mTableBCData->mBStartBorderWidth, aWidth); } void BCMapCellInfo::SetTableIStartBorderWidth(int32_t aRowB, BCPixelSize aWidth) { // update the iStart first cell border if (aRowB == 0) { mTableBCData->mIStartCellBorderWidth = aWidth; } mTableBCData->mIStartBorderWidth = std::max(mTableBCData->mIStartBorderWidth, aWidth); } void BCMapCellInfo::SetTableIEndBorderWidth(int32_t aRowB, BCPixelSize aWidth) { // update the iEnd first cell border if (aRowB == 0) { mTableBCData->mIEndCellBorderWidth = aWidth; } mTableBCData->mIEndBorderWidth = std::max(mTableBCData->mIEndBorderWidth, aWidth); } void BCMapCellInfo::SetIEndBorderWidths(BCPixelSize aWidth) { // update the borders of the cells and cols affected if (mCell) { mCell->SetBorderWidth( eLogicalSideIEnd, std::max(aWidth, mCell->GetBorderWidth(eLogicalSideIEnd))); } if (mEndCol) { BCPixelSize half = BC_BORDER_START_HALF(aWidth); mEndCol->SetIEndBorderWidth(std::max(half, mEndCol->GetIEndBorderWidth())); } } void BCMapCellInfo::SetBEndBorderWidths(BCPixelSize aWidth) { // update the borders of the affected cells and rows if (mCell) { mCell->SetBorderWidth( eLogicalSideBEnd, std::max(aWidth, mCell->GetBorderWidth(eLogicalSideBEnd))); } if (mEndRow) { BCPixelSize half = BC_BORDER_START_HALF(aWidth); mEndRow->SetBEndBCBorderWidth( std::max(half, mEndRow->GetBEndBCBorderWidth())); } } void BCMapCellInfo::SetBStartBorderWidths(BCPixelSize aWidth) { if (mCell) { mCell->SetBorderWidth( eLogicalSideBStart, std::max(aWidth, mCell->GetBorderWidth(eLogicalSideBStart))); } if (mStartRow) { BCPixelSize half = BC_BORDER_END_HALF(aWidth); mStartRow->SetBStartBCBorderWidth( std::max(half, mStartRow->GetBStartBCBorderWidth())); } } void BCMapCellInfo::SetIStartBorderWidths(BCPixelSize aWidth) { if (mCell) { mCell->SetBorderWidth( eLogicalSideIStart, std::max(aWidth, mCell->GetBorderWidth(eLogicalSideIStart))); } if (mStartCol) { BCPixelSize half = BC_BORDER_END_HALF(aWidth); mStartCol->SetIStartBorderWidth( std::max(half, mStartCol->GetIStartBorderWidth())); } } void BCMapCellInfo::SetTableBEndBorderWidth(BCPixelSize aWidth) { mTableBCData->mBEndBorderWidth = std::max(mTableBCData->mBEndBorderWidth, aWidth); } void BCMapCellInfo::SetColumn(int32_t aColX) { mCurrentColFrame = mTableFirstInFlow->GetColFrame(aColX); mCurrentColGroupFrame = static_cast(mCurrentColFrame->GetParent()); if (!mCurrentColGroupFrame) { NS_ERROR("null mCurrentColGroupFrame"); } } void BCMapCellInfo::IncrementRow(bool aResetToBStartRowOfCell) { mCurrentRowFrame = aResetToBStartRowOfCell ? mStartRow : mCurrentRowFrame->GetNextRow(); } BCCellBorder BCMapCellInfo::GetBStartEdgeBorder() { return CompareBorders(mTableFrame, mCurrentColGroupFrame, mCurrentColFrame, mRowGroup, mStartRow, mCell, mTableWM, eLogicalSideBStart, !ADJACENT); } BCCellBorder BCMapCellInfo::GetBEndEdgeBorder() { return CompareBorders(mTableFrame, mCurrentColGroupFrame, mCurrentColFrame, mRowGroup, mEndRow, mCell, mTableWM, eLogicalSideBEnd, ADJACENT); } BCCellBorder BCMapCellInfo::GetIStartEdgeBorder() { return CompareBorders(mTableFrame, mColGroup, mStartCol, mRowGroup, mCurrentRowFrame, mCell, mTableWM, eLogicalSideIStart, !ADJACENT); } BCCellBorder BCMapCellInfo::GetIEndEdgeBorder() { return CompareBorders(mTableFrame, mColGroup, mEndCol, mRowGroup, mCurrentRowFrame, mCell, mTableWM, eLogicalSideIEnd, ADJACENT); } BCCellBorder BCMapCellInfo::GetIEndInternalBorder() { const nsIFrame* cg = mCgAtEnd ? mColGroup : nullptr; return CompareBorders(nullptr, cg, mEndCol, nullptr, nullptr, mCell, mTableWM, eLogicalSideIEnd, ADJACENT); } BCCellBorder BCMapCellInfo::GetIStartInternalBorder() { const nsIFrame* cg = mCgAtStart ? mColGroup : nullptr; return CompareBorders(nullptr, cg, mStartCol, nullptr, nullptr, mCell, mTableWM, eLogicalSideIStart, !ADJACENT); } BCCellBorder BCMapCellInfo::GetBEndInternalBorder() { const nsIFrame* rg = mRgAtEnd ? mRowGroup : nullptr; return CompareBorders(nullptr, nullptr, nullptr, rg, mEndRow, mCell, mTableWM, eLogicalSideBEnd, ADJACENT); } BCCellBorder BCMapCellInfo::GetBStartInternalBorder() { const nsIFrame* rg = mRgAtStart ? mRowGroup : nullptr; return CompareBorders(nullptr, nullptr, nullptr, rg, mStartRow, mCell, mTableWM, eLogicalSideBStart, !ADJACENT); } /* XXX This comment is still written in physical (horizontal-tb) terms. Here is the order for storing border edges in the cell map as a cell is processed. There are n=colspan top and bottom border edges per cell and n=rowspan left and right border edges per cell. 1) On the top edge of the table, store the top edge. Never store the top edge otherwise, since a bottom edge from a cell above will take care of it. 2) On the left edge of the table, store the left edge. Never store the left edge othewise, since a right edge from a cell to the left will take care of it. 3) Store the right edge (or edges if a row span) 4) Store the bottom edge (or edges if a col span) Since corners are computed with only an array of BCCornerInfo indexed by the number-of-cols, corner calculations are somewhat complicated. Using an array with number-of-rows * number-of-col entries would simplify this, but at an extra in memory cost of nearly 12 bytes per cell map entry. Collapsing borders already have about an extra 8 byte per cell map entry overhead (this could be reduced to 4 bytes if we are willing to not store border widths in nsTableCellFrame), Here are the rules in priority order for storing cornes in the cell map as a cell is processed. top-left means the left endpoint of the border edge on the top of the cell. There are n=colspan top and bottom border edges per cell and n=rowspan left and right border edges per cell. 1) On the top edge of the table, store the top-left corner, unless on the left edge of the table. Never store the top-right corner, since it will get stored as a right-top corner. 2) On the left edge of the table, store the left-top corner. Never store the left-bottom corner, since it will get stored as a bottom-left corner. 3) Store the right-top corner if (a) it is the top right corner of the table or (b) it is not on the top edge of the table. Never store the right-bottom corner since it will get stored as a bottom-right corner. 4) Store the bottom-right corner, if it is the bottom right corner of the table. Never store it otherwise, since it will get stored as either a right-top corner by a cell below or a bottom-left corner from a cell to the right. 5) Store the bottom-left corner, if (a) on the bottom edge of the table or (b) if the left edge hits the top side of a colspan in its interior. Never store the corner otherwise, since it will get stored as a right-top corner by a cell from below. XXX the BC-RTL hack - The correct fix would be a rewrite as described in bug 203686. In order to draw borders in rtl conditions somehow correct, the existing structure which relies heavily on the assumption that the next cell sibling will be on the right side, has been modified. We flip the border during painting and during style lookup. Look for tableIsLTR for places where the flipping is done. */ // Calc the dominant border at every cell edge and corner within the current // damage area void nsTableFrame::CalcBCBorders() { NS_ASSERTION(IsBorderCollapse(), "calling CalcBCBorders on separated-border table"); nsTableCellMap* tableCellMap = GetCellMap(); if (!tableCellMap) ABORT0(); int32_t numRows = GetRowCount(); int32_t numCols = GetColCount(); if (!numRows || !numCols) return; // nothing to do // Get the property holding the table damage area and border widths BCPropertyData* propData = GetBCProperty(); if (!propData) ABORT0(); // calculate an expanded damage area TableArea damageArea(propData->mDamageArea); ExpandBCDamageArea(damageArea); // segments that are on the table border edges need // to be initialized only once bool tableBorderReset[4]; for (uint32_t sideX = 0; sideX < ArrayLength(tableBorderReset); sideX++) { tableBorderReset[sideX] = false; } // block-dir borders indexed in inline-direction (cols) BCCellBorders lastBlockDirBorders(damageArea.ColCount() + 1, damageArea.StartCol()); if (!lastBlockDirBorders.borders) ABORT0(); BCCellBorder lastBStartBorder, lastBEndBorder; // inline-dir borders indexed in inline-direction (cols) BCCellBorders lastBEndBorders(damageArea.ColCount() + 1, damageArea.StartCol()); if (!lastBEndBorders.borders) ABORT0(); bool startSeg; bool gotRowBorder = false; BCMapCellInfo info(this), ajaInfo(this); BCCellBorder currentBorder, adjacentBorder; BCCorners bStartCorners(damageArea.ColCount() + 1, damageArea.StartCol()); if (!bStartCorners.corners) ABORT0(); BCCorners bEndCorners(damageArea.ColCount() + 1, damageArea.StartCol()); if (!bEndCorners.corners) ABORT0(); BCMapCellIterator iter(this, damageArea); for (iter.First(info); !iter.mAtEnd; iter.Next(info)) { // see if lastBStartBorder, lastBEndBorder need to be reset if (iter.IsNewRow()) { gotRowBorder = false; lastBStartBorder.Reset(info.mRowIndex, info.mRowSpan); lastBEndBorder.Reset(info.GetCellEndRowIndex() + 1, info.mRowSpan); } else if (info.mColIndex > damageArea.StartCol()) { lastBEndBorder = lastBEndBorders[info.mColIndex - 1]; if (info.mRowIndex > (lastBEndBorder.rowIndex - lastBEndBorder.rowSpan)) { // the bStart border's iStart edge butts against the middle of a rowspan lastBStartBorder.Reset(info.mRowIndex, info.mRowSpan); } if (lastBEndBorder.rowIndex > (info.GetCellEndRowIndex() + 1)) { // the bEnd border's iStart edge butts against the middle of a rowspan lastBEndBorder.Reset(info.GetCellEndRowIndex() + 1, info.mRowSpan); } } // find the dominant border considering the cell's bStart border and the // table, row group, row if the border is at the bStart of the table, // otherwise it was processed in a previous row if (0 == info.mRowIndex) { if (!tableBorderReset[eLogicalSideBStart]) { propData->mBStartBorderWidth = 0; tableBorderReset[eLogicalSideBStart] = true; } for (int32_t colIdx = info.mColIndex; colIdx <= info.GetCellEndColIndex(); colIdx++) { info.SetColumn(colIdx); currentBorder = info.GetBStartEdgeBorder(); // update/store the bStart-iStart & bStart-iEnd corners of the seg BCCornerInfo& tlCorner = bStartCorners[colIdx]; // bStart-iStart if (0 == colIdx) { // we are on the iEnd side of the corner tlCorner.Set(eLogicalSideIEnd, currentBorder); } else { tlCorner.Update(eLogicalSideIEnd, currentBorder); tableCellMap->SetBCBorderCorner(eLogicalCornerBStartIStart, *iter.mCellMap, 0, 0, colIdx, LogicalSide(tlCorner.ownerSide), tlCorner.subWidth, tlCorner.bevel); } bStartCorners[colIdx + 1].Set(eLogicalSideIStart, currentBorder); // bStart-iEnd // update lastBStartBorder and see if a new segment starts startSeg = SetInlineDirBorder(currentBorder, tlCorner, lastBStartBorder); // store the border segment in the cell map tableCellMap->SetBCBorderEdge(eLogicalSideBStart, *iter.mCellMap, 0, 0, colIdx, 1, currentBorder.owner, currentBorder.width, startSeg); info.SetTableBStartBorderWidth(currentBorder.width); info.SetBStartBorderWidths(currentBorder.width); info.SetColumnBStartIEndContBCBorder(); } info.SetTableBStartIStartContBCBorder(); } else { // see if the bStart border needs to be the start of a segment due to a // block-dir border owning the corner if (info.mColIndex > 0) { BCData& data = info.mCellData->mData; if (!data.IsBStartStart()) { LogicalSide cornerSide; bool bevel; data.GetCorner(cornerSide, bevel); if (IsBlock(cornerSide)) { data.SetBStartStart(true); } } } } // find the dominant border considering the cell's iStart border and the // table, col group, col if the border is at the iStart of the table, // otherwise it was processed in a previous col if (0 == info.mColIndex) { if (!tableBorderReset[eLogicalSideIStart]) { propData->mIStartBorderWidth = 0; tableBorderReset[eLogicalSideIStart] = true; } info.mCurrentRowFrame = nullptr; for (int32_t rowB = info.mRowIndex; rowB <= info.GetCellEndRowIndex(); rowB++) { info.IncrementRow(rowB == info.mRowIndex); currentBorder = info.GetIStartEdgeBorder(); BCCornerInfo& tlCorner = (0 == rowB) ? bStartCorners[0] : bEndCorners[0]; tlCorner.Update(eLogicalSideBEnd, currentBorder); tableCellMap->SetBCBorderCorner( eLogicalCornerBStartIStart, *iter.mCellMap, iter.mRowGroupStart, rowB, 0, LogicalSide(tlCorner.ownerSide), tlCorner.subWidth, tlCorner.bevel); bEndCorners[0].Set(eLogicalSideBStart, currentBorder); // bEnd-iStart // update lastBlockDirBorders and see if a new segment starts startSeg = SetBorder(currentBorder, lastBlockDirBorders[0]); // store the border segment in the cell map tableCellMap->SetBCBorderEdge(eLogicalSideIStart, *iter.mCellMap, iter.mRowGroupStart, rowB, info.mColIndex, 1, currentBorder.owner, currentBorder.width, startSeg); info.SetTableIStartBorderWidth(rowB, currentBorder.width); info.SetIStartBorderWidths(currentBorder.width); info.SetRowIStartContBCBorder(); } info.SetRowGroupIStartContBCBorder(); } // find the dominant border considering the cell's iEnd border, adjacent // cells and the table, row group, row if (info.mNumTableCols == info.GetCellEndColIndex() + 1) { // touches iEnd edge of table if (!tableBorderReset[eLogicalSideIEnd]) { propData->mIEndBorderWidth = 0; tableBorderReset[eLogicalSideIEnd] = true; } info.mCurrentRowFrame = nullptr; for (int32_t rowB = info.mRowIndex; rowB <= info.GetCellEndRowIndex(); rowB++) { info.IncrementRow(rowB == info.mRowIndex); currentBorder = info.GetIEndEdgeBorder(); // update/store the bStart-iEnd & bEnd-iEnd corners BCCornerInfo& trCorner = (0 == rowB) ? bStartCorners[info.GetCellEndColIndex() + 1] : bEndCorners[info.GetCellEndColIndex() + 1]; trCorner.Update(eLogicalSideBEnd, currentBorder); // bStart-iEnd tableCellMap->SetBCBorderCorner( eLogicalCornerBStartIEnd, *iter.mCellMap, iter.mRowGroupStart, rowB, info.GetCellEndColIndex(), LogicalSide(trCorner.ownerSide), trCorner.subWidth, trCorner.bevel); BCCornerInfo& brCorner = bEndCorners[info.GetCellEndColIndex() + 1]; brCorner.Set(eLogicalSideBStart, currentBorder); // bEnd-iEnd tableCellMap->SetBCBorderCorner( eLogicalCornerBEndIEnd, *iter.mCellMap, iter.mRowGroupStart, rowB, info.GetCellEndColIndex(), LogicalSide(brCorner.ownerSide), brCorner.subWidth, brCorner.bevel); // update lastBlockDirBorders and see if a new segment starts startSeg = SetBorder( currentBorder, lastBlockDirBorders[info.GetCellEndColIndex() + 1]); // store the border segment in the cell map and update cellBorders tableCellMap->SetBCBorderEdge( eLogicalSideIEnd, *iter.mCellMap, iter.mRowGroupStart, rowB, info.GetCellEndColIndex(), 1, currentBorder.owner, currentBorder.width, startSeg); info.SetTableIEndBorderWidth(rowB, currentBorder.width); info.SetIEndBorderWidths(currentBorder.width); info.SetRowIEndContBCBorder(); } info.SetRowGroupIEndContBCBorder(); } else { int32_t segLength = 0; BCMapCellInfo priorAjaInfo(this); for (int32_t rowB = info.mRowIndex; rowB <= info.GetCellEndRowIndex(); rowB += segLength) { iter.PeekIEnd(info, rowB, ajaInfo); currentBorder = info.GetIEndInternalBorder(); adjacentBorder = ajaInfo.GetIStartInternalBorder(); currentBorder = CompareBorders(!CELL_CORNER, currentBorder, adjacentBorder, !INLINE_DIR); segLength = std::max(1, ajaInfo.mRowIndex + ajaInfo.mRowSpan - rowB); segLength = std::min(segLength, info.mRowIndex + info.mRowSpan - rowB); // update lastBlockDirBorders and see if a new segment starts startSeg = SetBorder( currentBorder, lastBlockDirBorders[info.GetCellEndColIndex() + 1]); // store the border segment in the cell map and update cellBorders if (info.GetCellEndColIndex() < damageArea.EndCol() && rowB >= damageArea.StartRow() && rowB < damageArea.EndRow()) { tableCellMap->SetBCBorderEdge( eLogicalSideIEnd, *iter.mCellMap, iter.mRowGroupStart, rowB, info.GetCellEndColIndex(), segLength, currentBorder.owner, currentBorder.width, startSeg); info.SetIEndBorderWidths(currentBorder.width); ajaInfo.SetIStartBorderWidths(currentBorder.width); } // update the bStart-iEnd corner bool hitsSpanOnIEnd = (rowB > ajaInfo.mRowIndex) && (rowB < ajaInfo.mRowIndex + ajaInfo.mRowSpan); BCCornerInfo* trCorner = ((0 == rowB) || hitsSpanOnIEnd) ? &bStartCorners[info.GetCellEndColIndex() + 1] : &bEndCorners[info.GetCellEndColIndex() + 1]; trCorner->Update(eLogicalSideBEnd, currentBorder); // if this is not the first time through, // consider the segment to the iEnd side if (rowB != info.mRowIndex) { currentBorder = priorAjaInfo.GetBEndInternalBorder(); adjacentBorder = ajaInfo.GetBStartInternalBorder(); currentBorder = CompareBorders(!CELL_CORNER, currentBorder, adjacentBorder, INLINE_DIR); trCorner->Update(eLogicalSideIEnd, currentBorder); } // store the bStart-iEnd corner in the cell map if (info.GetCellEndColIndex() < damageArea.EndCol() && rowB >= damageArea.StartRow()) { if (0 != rowB) { tableCellMap->SetBCBorderCorner( eLogicalCornerBStartIEnd, *iter.mCellMap, iter.mRowGroupStart, rowB, info.GetCellEndColIndex(), LogicalSide(trCorner->ownerSide), trCorner->subWidth, trCorner->bevel); } // store any corners this cell spans together with the aja cell for (int32_t rX = rowB + 1; rX < rowB + segLength; rX++) { tableCellMap->SetBCBorderCorner( eLogicalCornerBEndIEnd, *iter.mCellMap, iter.mRowGroupStart, rX, info.GetCellEndColIndex(), LogicalSide(trCorner->ownerSide), trCorner->subWidth, false); } } // update bEnd-iEnd corner, bStartCorners, bEndCorners hitsSpanOnIEnd = (rowB + segLength < ajaInfo.mRowIndex + ajaInfo.mRowSpan); BCCornerInfo& brCorner = (hitsSpanOnIEnd) ? bStartCorners[info.GetCellEndColIndex() + 1] : bEndCorners[info.GetCellEndColIndex() + 1]; brCorner.Set(eLogicalSideBStart, currentBorder); priorAjaInfo = ajaInfo; } } for (int32_t colIdx = info.mColIndex + 1; colIdx <= info.GetCellEndColIndex(); colIdx++) { lastBlockDirBorders[colIdx].Reset(0, 1); } // find the dominant border considering the cell's bEnd border, adjacent // cells and the table, row group, row if (info.mNumTableRows == info.GetCellEndRowIndex() + 1) { // touches bEnd edge of table if (!tableBorderReset[eLogicalSideBEnd]) { propData->mBEndBorderWidth = 0; tableBorderReset[eLogicalSideBEnd] = true; } for (int32_t colIdx = info.mColIndex; colIdx <= info.GetCellEndColIndex(); colIdx++) { info.SetColumn(colIdx); currentBorder = info.GetBEndEdgeBorder(); // update/store the bEnd-iStart & bEnd-IEnd corners BCCornerInfo& blCorner = bEndCorners[colIdx]; // bEnd-iStart blCorner.Update(eLogicalSideIEnd, currentBorder); tableCellMap->SetBCBorderCorner( eLogicalCornerBEndIStart, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), colIdx, LogicalSide(blCorner.ownerSide), blCorner.subWidth, blCorner.bevel); BCCornerInfo& brCorner = bEndCorners[colIdx + 1]; // bEnd-iEnd brCorner.Update(eLogicalSideIStart, currentBorder); if (info.mNumTableCols == colIdx + 1) { // bEnd-IEnd corner of the table tableCellMap->SetBCBorderCorner( eLogicalCornerBEndIEnd, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), colIdx, LogicalSide(brCorner.ownerSide), brCorner.subWidth, brCorner.bevel, true); } // update lastBEndBorder and see if a new segment starts startSeg = SetInlineDirBorder(currentBorder, blCorner, lastBEndBorder); if (!startSeg) { // make sure that we did not compare apples to oranges i.e. the // current border should be a continuation of the lastBEndBorder, // as it is a bEnd border // add 1 to the info.GetCellEndRowIndex() startSeg = (lastBEndBorder.rowIndex != (info.GetCellEndRowIndex() + 1)); } // store the border segment in the cell map and update cellBorders tableCellMap->SetBCBorderEdge( eLogicalSideBEnd, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), colIdx, 1, currentBorder.owner, currentBorder.width, startSeg); // update lastBEndBorders lastBEndBorder.rowIndex = info.GetCellEndRowIndex() + 1; lastBEndBorder.rowSpan = info.mRowSpan; lastBEndBorders[colIdx] = lastBEndBorder; info.SetBEndBorderWidths(currentBorder.width); info.SetTableBEndBorderWidth(currentBorder.width); info.SetColumnBEndContBCBorder(); } info.SetRowGroupBEndContBCBorder(); info.SetColGroupBEndContBCBorder(); } else { int32_t segLength = 0; for (int32_t colIdx = info.mColIndex; colIdx <= info.GetCellEndColIndex(); colIdx += segLength) { iter.PeekBEnd(info, colIdx, ajaInfo); currentBorder = info.GetBEndInternalBorder(); adjacentBorder = ajaInfo.GetBStartInternalBorder(); currentBorder = CompareBorders(!CELL_CORNER, currentBorder, adjacentBorder, INLINE_DIR); segLength = std::max(1, ajaInfo.mColIndex + ajaInfo.mColSpan - colIdx); segLength = std::min(segLength, info.mColIndex + info.mColSpan - colIdx); // update, store the bEnd-iStart corner BCCornerInfo& blCorner = bEndCorners[colIdx]; // bEnd-iStart bool hitsSpanBelow = (colIdx > ajaInfo.mColIndex) && (colIdx < ajaInfo.mColIndex + ajaInfo.mColSpan); bool update = true; if (colIdx == info.mColIndex && colIdx > damageArea.StartCol()) { int32_t prevRowIndex = lastBEndBorders[colIdx - 1].rowIndex; if (prevRowIndex > info.GetCellEndRowIndex() + 1) { // hits a rowspan on the iEnd side update = false; // the corner was taken care of during the cell on the iStart side } else if (prevRowIndex < info.GetCellEndRowIndex() + 1) { // spans below the cell to the iStart side bStartCorners[colIdx] = blCorner; blCorner.Set(eLogicalSideIEnd, currentBorder); update = false; } } if (update) { blCorner.Update(eLogicalSideIEnd, currentBorder); } if (info.GetCellEndRowIndex() < damageArea.EndRow() && colIdx >= damageArea.StartCol()) { if (hitsSpanBelow) { tableCellMap->SetBCBorderCorner(eLogicalCornerBEndIStart, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), colIdx, LogicalSide(blCorner.ownerSide), blCorner.subWidth, blCorner.bevel); } // store any corners this cell spans together with the aja cell for (int32_t c = colIdx + 1; c < colIdx + segLength; c++) { BCCornerInfo& corner = bEndCorners[c]; corner.Set(eLogicalSideIEnd, currentBorder); tableCellMap->SetBCBorderCorner( eLogicalCornerBEndIStart, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), c, LogicalSide(corner.ownerSide), corner.subWidth, false); } } // update lastBEndBorders and see if a new segment starts startSeg = SetInlineDirBorder(currentBorder, blCorner, lastBEndBorder); if (!startSeg) { // make sure that we did not compare apples to oranges i.e. the // current border should be a continuation of the lastBEndBorder, // as it is a bEnd border // add 1 to the info.GetCellEndRowIndex() startSeg = (lastBEndBorder.rowIndex != info.GetCellEndRowIndex() + 1); } lastBEndBorder.rowIndex = info.GetCellEndRowIndex() + 1; lastBEndBorder.rowSpan = info.mRowSpan; for (int32_t c = colIdx; c < colIdx + segLength; c++) { lastBEndBorders[c] = lastBEndBorder; } // store the border segment the cell map and update cellBorders if (info.GetCellEndRowIndex() < damageArea.EndRow() && colIdx >= damageArea.StartCol() && colIdx < damageArea.EndCol()) { tableCellMap->SetBCBorderEdge( eLogicalSideBEnd, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), colIdx, segLength, currentBorder.owner, currentBorder.width, startSeg); info.SetBEndBorderWidths(currentBorder.width); ajaInfo.SetBStartBorderWidths(currentBorder.width); } // update bEnd-iEnd corner BCCornerInfo& brCorner = bEndCorners[colIdx + segLength]; brCorner.Update(eLogicalSideIStart, currentBorder); } if (!gotRowBorder && 1 == info.mRowSpan && (ajaInfo.mStartRow || info.mRgAtEnd)) { // get continuous row/row group border // we need to check the row group's bEnd border if this is // the last row in the row group, but only a cell with rowspan=1 // will know whether *this* row is at the bEnd const nsIFrame* nextRowGroup = ajaInfo.mRgAtStart ? ajaInfo.mRowGroup : nullptr; info.SetInnerRowGroupBEndContBCBorder(nextRowGroup, ajaInfo.mStartRow); gotRowBorder = true; } } // In the function, we try to join two cells' BEnd. // We normally do this work when processing the cell on the iEnd side, // but when the cell on the iEnd side has a rowspan, the cell on the // iStart side gets processed later (now), so we have to do this work now. const auto nextColIndex = info.GetCellEndColIndex() + 1; if ((info.mNumTableCols != nextColIndex) && (lastBEndBorders[nextColIndex].rowSpan > 1) && (lastBEndBorders[nextColIndex].rowIndex == info.GetCellEndRowIndex() + 1)) { BCCornerInfo& corner = bEndCorners[nextColIndex]; if (!IsBlock(LogicalSide(corner.ownerSide))) { // not a block-dir owner BCCellBorder& thisBorder = lastBEndBorder; BCCellBorder& nextBorder = lastBEndBorders[info.mColIndex + 1]; if ((thisBorder.color == nextBorder.color) && (thisBorder.width == nextBorder.width) && (thisBorder.style == nextBorder.style)) { // set the flag on the next border indicating it is not the start of a // new segment if (iter.mCellMap) { tableCellMap->ResetBStartStart( eLogicalSideBEnd, *iter.mCellMap, iter.mRowGroupStart, info.GetCellEndRowIndex(), nextColIndex); } } } } } // for (iter.First(info); info.mCell; iter.Next(info)) { // reset the bc flag and damage area SetNeedToCalcBCBorders(false); propData->mDamageArea = TableArea(0, 0, 0, 0); #ifdef DEBUG_TABLE_CELLMAP mCellMap->Dump(); #endif } class BCPaintBorderIterator; struct BCBorderParameters { StyleBorderStyle mBorderStyle; nscolor mBorderColor; nsRect mBorderRect; int32_t mAppUnitsPerDevPixel; mozilla::Side mStartBevelSide; nscoord mStartBevelOffset; mozilla::Side mEndBevelSide; nscoord mEndBevelOffset; bool mBackfaceIsVisible; bool NeedToBevel() const { if (!mStartBevelOffset && !mEndBevelOffset) { return false; } if (mBorderStyle == StyleBorderStyle::Dashed || mBorderStyle == StyleBorderStyle::Dotted) { return false; } return true; } }; struct BCBlockDirSeg { BCBlockDirSeg(); void Start(BCPaintBorderIterator& aIter, BCBorderOwner aBorderOwner, BCPixelSize aBlockSegISize, BCPixelSize aInlineSegBSize); void Initialize(BCPaintBorderIterator& aIter); void GetBEndCorner(BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize); Maybe BuildBorderParameters(BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize); void Paint(BCPaintBorderIterator& aIter, DrawTarget& aDrawTarget, BCPixelSize aInlineSegBSize); void CreateWebRenderCommands(BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aPt); void AdvanceOffsetB(); void IncludeCurrentBorder(BCPaintBorderIterator& aIter); union { nsTableColFrame* mCol; int32_t mColWidth; }; nscoord mOffsetI; // i-offset with respect to the table edge nscoord mOffsetB; // b-offset with respect to the table edge nscoord mLength; // block-dir length including corners BCPixelSize mWidth; // thickness in pixels nsTableCellFrame* mAjaCell; // previous sibling to the first cell // where the segment starts, it can be // the owner of a segment nsTableCellFrame* mFirstCell; // cell at the start of the segment nsTableRowGroupFrame* mFirstRowGroup; // row group at the start of the segment nsTableRowFrame* mFirstRow; // row at the start of the segment nsTableCellFrame* mLastCell; // cell at the current end of the // segment uint8_t mOwner; // owner of the border, defines the // style LogicalSide mBStartBevelSide; // direction to bevel at the bStart nscoord mBStartBevelOffset; // how much to bevel at the bStart BCPixelSize mBEndInlineSegBSize; // bSize of the crossing // inline-dir border nscoord mBEndOffset; // how much longer is the segment due // to the inline-dir border, by this // amount the next segment needs to be // shifted. bool mIsBEndBevel; // should we bevel at the bEnd }; struct BCInlineDirSeg { BCInlineDirSeg(); void Start(BCPaintBorderIterator& aIter, BCBorderOwner aBorderOwner, BCPixelSize aBEndBlockSegISize, BCPixelSize aInlineSegBSize); void GetIEndCorner(BCPaintBorderIterator& aIter, BCPixelSize aIStartSegISize); void AdvanceOffsetI(); void IncludeCurrentBorder(BCPaintBorderIterator& aIter); Maybe BuildBorderParameters(BCPaintBorderIterator& aIter); void Paint(BCPaintBorderIterator& aIter, DrawTarget& aDrawTarget); void CreateWebRenderCommands(BCPaintBorderIterator& aIter, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aPt); nscoord mOffsetI; // i-offset with respect to the table edge nscoord mOffsetB; // b-offset with respect to the table edge nscoord mLength; // inline-dir length including corners BCPixelSize mWidth; // border thickness in pixels nscoord mIStartBevelOffset; // how much to bevel at the iStart LogicalSide mIStartBevelSide; // direction to bevel at the iStart bool mIsIEndBevel; // should we bevel at the iEnd end nscoord mIEndBevelOffset; // how much to bevel at the iEnd LogicalSide mIEndBevelSide; // direction to bevel at the iEnd nscoord mEndOffset; // how much longer is the segment due // to the block-dir border, by this // amount the next segment needs to be // shifted. uint8_t mOwner; // owner of the border, defines the // style nsTableCellFrame* mFirstCell; // cell at the start of the segment nsTableCellFrame* mAjaCell; // neighboring cell to the first cell // where the segment starts, it can be // the owner of a segment }; struct BCPaintData { explicit BCPaintData(DrawTarget& aDrawTarget) : mDrawTarget(aDrawTarget) {} DrawTarget& mDrawTarget; }; struct BCCreateWebRenderCommandsData { BCCreateWebRenderCommandsData(wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aOffsetToReferenceFrame) : mBuilder(aBuilder), mSc(aSc), mOffsetToReferenceFrame(aOffsetToReferenceFrame) {} wr::DisplayListBuilder& mBuilder; const layers::StackingContextHelper& mSc; const nsPoint& mOffsetToReferenceFrame; }; struct BCPaintBorderAction { explicit BCPaintBorderAction(DrawTarget& aDrawTarget) : mMode(Mode::Paint), mPaintData(aDrawTarget) {} BCPaintBorderAction(wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aOffsetToReferenceFrame) : mMode(Mode::CreateWebRenderCommands), mCreateWebRenderCommandsData(aBuilder, aSc, aOffsetToReferenceFrame) {} ~BCPaintBorderAction() { // mCreateWebRenderCommandsData is in a union which means the destructor // wouldn't be called when BCPaintBorderAction get destroyed. So call the // destructor here explicitly. if (mMode == Mode::CreateWebRenderCommands) { mCreateWebRenderCommandsData.~BCCreateWebRenderCommandsData(); } } enum class Mode { Paint, CreateWebRenderCommands, }; Mode mMode; union { BCPaintData mPaintData; BCCreateWebRenderCommandsData mCreateWebRenderCommandsData; }; }; // Iterates over borders (iStart border, corner, bStart border) in the cell map // within a damage area from iStart to iEnd, bStart to bEnd. All members are in // terms of the 1st in flow frames, except where suffixed by InFlow. class BCPaintBorderIterator { public: explicit BCPaintBorderIterator(nsTableFrame* aTable); void Reset(); /** * Determine the damage area in terms of rows and columns and finalize * mInitialOffsetI and mInitialOffsetB. * @param aDirtyRect - dirty rect in table coordinates * @return - true if we need to paint something given dirty rect */ bool SetDamageArea(const nsRect& aDamageRect); void First(); void Next(); void AccumulateOrDoActionInlineDirSegment(BCPaintBorderAction& aAction); void AccumulateOrDoActionBlockDirSegment(BCPaintBorderAction& aAction); void ResetVerInfo(); void StoreColumnWidth(int32_t aIndex); bool BlockDirSegmentOwnsCorner(); nsTableFrame* mTable; nsTableFrame* mTableFirstInFlow; nsTableCellMap* mTableCellMap; nsCellMap* mCellMap; WritingMode mTableWM; nsTableFrame::RowGroupArray mRowGroups; nsTableRowGroupFrame* mPrevRg; nsTableRowGroupFrame* mRg; bool mIsRepeatedHeader; bool mIsRepeatedFooter; nsTableRowGroupFrame* mStartRg; // first row group in the damagearea int32_t mRgIndex; // current row group index in the // mRowgroups array int32_t mFifRgFirstRowIndex; // start row index of the first in // flow of the row group int32_t mRgFirstRowIndex; // row index of the first row in the // row group int32_t mRgLastRowIndex; // row index of the last row in the row // group int32_t mNumTableRows; // number of rows in the table and all // continuations int32_t mNumTableCols; // number of columns in the table int32_t mColIndex; // with respect to the table int32_t mRowIndex; // with respect to the table int32_t mRepeatedHeaderRowIndex; // row index in a repeated // header, it's equivalent to // mRowIndex when we're in a repeated // header, and set to the last row // index of a repeated header when // we're not bool mIsNewRow; bool mAtEnd; // the iterator cycled over all // borders nsTableRowFrame* mPrevRow; nsTableRowFrame* mRow; nsTableRowFrame* mStartRow; // first row in a inside the damagearea // cell properties nsTableCellFrame* mPrevCell; nsTableCellFrame* mCell; BCCellData* mPrevCellData; BCCellData* mCellData; BCData* mBCData; bool IsTableBStartMost() { return (mRowIndex == 0) && !mTable->GetPrevInFlow(); } bool IsTableIEndMost() { return (mColIndex >= mNumTableCols); } bool IsTableBEndMost() { return (mRowIndex >= mNumTableRows) && !mTable->GetNextInFlow(); } bool IsTableIStartMost() { return (mColIndex == 0); } bool IsDamageAreaBStartMost() const { return mRowIndex == mDamageArea.StartRow(); } bool IsDamageAreaIEndMost() const { return mColIndex >= mDamageArea.EndCol(); } bool IsDamageAreaBEndMost() const { return mRowIndex >= mDamageArea.EndRow(); } bool IsDamageAreaIStartMost() const { return mColIndex == mDamageArea.StartCol(); } int32_t GetRelativeColIndex() const { return mColIndex - mDamageArea.StartCol(); } TableArea mDamageArea; // damageArea in cellmap coordinates bool IsAfterRepeatedHeader() { return !mIsRepeatedHeader && (mRowIndex == (mRepeatedHeaderRowIndex + 1)); } bool StartRepeatedFooter() const { return mIsRepeatedFooter && mRowIndex == mRgFirstRowIndex && mRowIndex != mDamageArea.StartRow(); } nscoord mInitialOffsetI; // offsetI of the first border with // respect to the table nscoord mInitialOffsetB; // offsetB of the first border with // respect to the table nscoord mNextOffsetB; // offsetB of the next segment // this array is used differently when // inline-dir and block-dir borders are drawn // When inline-dir border are drawn we cache // the column widths and the width of the // block-dir borders that arrive from bStart // When we draw block-dir borders we store // lengths and width for block-dir borders // before they are drawn while we move over // the columns in the damage area // It has one more elements than columns are // in the table. UniquePtr mBlockDirInfo; BCInlineDirSeg mInlineSeg; // the inline-dir segment while we // move over the colums BCPixelSize mPrevInlineSegBSize; // the bSize of the previous // inline-dir border private: bool SetNewRow(nsTableRowFrame* aRow = nullptr); bool SetNewRowGroup(); void SetNewData(int32_t aRowIndex, int32_t aColIndex); }; BCPaintBorderIterator::BCPaintBorderIterator(nsTableFrame* aTable) : mTable(aTable), mTableFirstInFlow(static_cast(aTable->FirstInFlow())), mTableCellMap(aTable->GetCellMap()), mCellMap(nullptr), mTableWM(aTable->Style()), mPrevRg(nullptr), mRg(nullptr), mIsRepeatedHeader(false), mIsRepeatedFooter(false), mStartRg(nullptr), mRgIndex(0), mFifRgFirstRowIndex(0), mRgFirstRowIndex(0), mRgLastRowIndex(0), mColIndex(0), mRowIndex(0), mIsNewRow(false), mAtEnd(false), mPrevRow(nullptr), mRow(nullptr), mStartRow(nullptr), mPrevCell(nullptr), mCell(nullptr), mPrevCellData(nullptr), mCellData(nullptr), mBCData(nullptr), mInitialOffsetI(0), mNextOffsetB(0), mPrevInlineSegBSize(0) { LogicalMargin childAreaOffset = mTable->GetChildAreaOffset(mTableWM, nullptr); // y position of first row in damage area mInitialOffsetB = mTable->GetPrevInFlow() ? 0 : childAreaOffset.BStart(mTableWM); mNumTableRows = mTable->GetRowCount(); mNumTableCols = mTable->GetColCount(); // Get the ordered row groups mTable->OrderRowGroups(mRowGroups); // initialize to a non existing index mRepeatedHeaderRowIndex = -99; } bool BCPaintBorderIterator::SetDamageArea(const nsRect& aDirtyRect) { nsSize containerSize = mTable->GetSize(); LogicalRect dirtyRect(mTableWM, aDirtyRect, containerSize); uint32_t startRowIndex, endRowIndex, startColIndex, endColIndex; startRowIndex = endRowIndex = startColIndex = endColIndex = 0; bool done = false; bool haveIntersect = false; // find startRowIndex, endRowIndex nscoord rowB = mInitialOffsetB; nsPresContext* presContext = mTable->PresContext(); for (uint32_t rgIdx = 0; rgIdx < mRowGroups.Length() && !done; rgIdx++) { nsTableRowGroupFrame* rgFrame = mRowGroups[rgIdx]; for (nsTableRowFrame* rowFrame = rgFrame->GetFirstRow(); rowFrame; rowFrame = rowFrame->GetNextRow()) { // get the row rect relative to the table rather than the row group nscoord rowBSize = rowFrame->BSize(mTableWM); if (haveIntersect) { // conservatively estimate the half border widths outside the row nscoord borderHalf = mTable->GetPrevInFlow() ? 0 : presContext->DevPixelsToAppUnits( rowFrame->GetBStartBCBorderWidth() + 1); if (dirtyRect.BEnd(mTableWM) >= rowB - borderHalf) { nsTableRowFrame* fifRow = static_cast(rowFrame->FirstInFlow()); endRowIndex = fifRow->GetRowIndex(); } else done = true; } else { // conservatively estimate the half border widths outside the row nscoord borderHalf = mTable->GetNextInFlow() ? 0 : presContext->DevPixelsToAppUnits( rowFrame->GetBEndBCBorderWidth() + 1); if (rowB + rowBSize + borderHalf >= dirtyRect.BStart(mTableWM)) { mStartRg = rgFrame; mStartRow = rowFrame; nsTableRowFrame* fifRow = static_cast(rowFrame->FirstInFlow()); startRowIndex = endRowIndex = fifRow->GetRowIndex(); haveIntersect = true; } else { mInitialOffsetB += rowBSize; } } rowB += rowBSize; } } mNextOffsetB = mInitialOffsetB; // XXX comment refers to the obsolete NS_FRAME_OUTSIDE_CHILDREN flag // XXX but I don't understand it, so not changing it for now // table wrapper borders overflow the table, so the table might be // target to other areas as the NS_FRAME_OUTSIDE_CHILDREN is set // on the table if (!haveIntersect) return false; // find startColIndex, endColIndex, startColX haveIntersect = false; if (0 == mNumTableCols) return false; LogicalMargin childAreaOffset = mTable->GetChildAreaOffset(mTableWM, nullptr); // inline position of first col in damage area mInitialOffsetI = childAreaOffset.IStart(mTableWM); nscoord x = 0; int32_t colIdx; for (colIdx = 0; colIdx != mNumTableCols; colIdx++) { nsTableColFrame* colFrame = mTableFirstInFlow->GetColFrame(colIdx); if (!colFrame) ABORT1(false); // get the col rect relative to the table rather than the col group nscoord colISize = colFrame->ISize(mTableWM); if (haveIntersect) { // conservatively estimate the iStart half border width outside the col nscoord iStartBorderHalf = presContext->DevPixelsToAppUnits( colFrame->GetIStartBorderWidth() + 1); if (dirtyRect.IEnd(mTableWM) >= x - iStartBorderHalf) { endColIndex = colIdx; } else break; } else { // conservatively estimate the iEnd half border width outside the col nscoord iEndBorderHalf = presContext->DevPixelsToAppUnits(colFrame->GetIEndBorderWidth() + 1); if (x + colISize + iEndBorderHalf >= dirtyRect.IStart(mTableWM)) { startColIndex = endColIndex = colIdx; haveIntersect = true; } else { mInitialOffsetI += colISize; } } x += colISize; } if (!haveIntersect) return false; mDamageArea = TableArea(startColIndex, startRowIndex, 1 + DeprecatedAbs(endColIndex - startColIndex), 1 + endRowIndex - startRowIndex); Reset(); mBlockDirInfo = MakeUnique(mDamageArea.ColCount() + 1); return true; } void BCPaintBorderIterator::Reset() { mAtEnd = true; // gets reset when First() is called mRg = mStartRg; mPrevRow = nullptr; mRow = mStartRow; mRowIndex = 0; mColIndex = 0; mRgIndex = -1; mPrevCell = nullptr; mCell = nullptr; mPrevCellData = nullptr; mCellData = nullptr; mBCData = nullptr; ResetVerInfo(); } /** * Set the iterator data to a new cellmap coordinate * @param aRowIndex - the row index * @param aColIndex - the col index */ void BCPaintBorderIterator::SetNewData(int32_t aY, int32_t aX) { if (!mTableCellMap || !mTableCellMap->mBCInfo) ABORT0(); mColIndex = aX; mRowIndex = aY; mPrevCellData = mCellData; if (IsTableIEndMost() && IsTableBEndMost()) { mCell = nullptr; mBCData = &mTableCellMap->mBCInfo->mBEndIEndCorner; } else if (IsTableIEndMost()) { mCellData = nullptr; mBCData = &mTableCellMap->mBCInfo->mIEndBorders.ElementAt(aY); } else if (IsTableBEndMost()) { mCellData = nullptr; mBCData = &mTableCellMap->mBCInfo->mBEndBorders.ElementAt(aX); } else { if (uint32_t(mRowIndex - mFifRgFirstRowIndex) < mCellMap->mRows.Length()) { mBCData = nullptr; mCellData = (BCCellData*)mCellMap->mRows[mRowIndex - mFifRgFirstRowIndex] .SafeElementAt(mColIndex); if (mCellData) { mBCData = &mCellData->mData; if (!mCellData->IsOrig()) { if (mCellData->IsRowSpan()) { aY -= mCellData->GetRowSpanOffset(); } if (mCellData->IsColSpan()) { aX -= mCellData->GetColSpanOffset(); } if ((aX >= 0) && (aY >= 0)) { mCellData = (BCCellData*)mCellMap->mRows[aY - mFifRgFirstRowIndex][aX]; } } if (mCellData->IsOrig()) { mPrevCell = mCell; mCell = mCellData->GetCellFrame(); } } } } } /** * Set the iterator to a new row * @param aRow - the new row frame, if null the iterator will advance to the * next row */ bool BCPaintBorderIterator::SetNewRow(nsTableRowFrame* aRow) { mPrevRow = mRow; mRow = (aRow) ? aRow : mRow->GetNextRow(); if (mRow) { mIsNewRow = true; mRowIndex = mRow->GetRowIndex(); mColIndex = mDamageArea.StartCol(); mPrevInlineSegBSize = 0; if (mIsRepeatedHeader) { mRepeatedHeaderRowIndex = mRowIndex; } } else { mAtEnd = true; } return !mAtEnd; } /** * Advance the iterator to the next row group */ bool BCPaintBorderIterator::SetNewRowGroup() { mRgIndex++; mIsRepeatedHeader = false; mIsRepeatedFooter = false; NS_ASSERTION(mRgIndex >= 0, "mRgIndex out of bounds"); if (uint32_t(mRgIndex) < mRowGroups.Length()) { mPrevRg = mRg; mRg = mRowGroups[mRgIndex]; nsTableRowGroupFrame* fifRg = static_cast(mRg->FirstInFlow()); mFifRgFirstRowIndex = fifRg->GetStartRowIndex(); mRgFirstRowIndex = mRg->GetStartRowIndex(); mRgLastRowIndex = mRgFirstRowIndex + mRg->GetRowCount() - 1; if (SetNewRow(mRg->GetFirstRow())) { mCellMap = mTableCellMap->GetMapFor(fifRg, nullptr); if (!mCellMap) ABORT1(false); } if (mTable->GetPrevInFlow() && !mRg->GetPrevInFlow()) { // if mRowGroup doesn't have a prev in flow, then it may be a repeated // header or footer const nsStyleDisplay* display = mRg->StyleDisplay(); if (mRowIndex == mDamageArea.StartRow()) { mIsRepeatedHeader = (mozilla::StyleDisplay::TableHeaderGroup == display->mDisplay); } else { mIsRepeatedFooter = (mozilla::StyleDisplay::TableFooterGroup == display->mDisplay); } } } else { mAtEnd = true; } return !mAtEnd; } /** * Move the iterator to the first position in the damageArea */ void BCPaintBorderIterator::First() { if (!mTable || mDamageArea.StartCol() >= mNumTableCols || mDamageArea.StartRow() >= mNumTableRows) ABORT0(); mAtEnd = false; uint32_t numRowGroups = mRowGroups.Length(); for (uint32_t rgY = 0; rgY < numRowGroups; rgY++) { nsTableRowGroupFrame* rowG = mRowGroups[rgY]; int32_t start = rowG->GetStartRowIndex(); int32_t end = start + rowG->GetRowCount() - 1; if (mDamageArea.StartRow() >= start && mDamageArea.StartRow() <= end) { mRgIndex = rgY - 1; // SetNewRowGroup increments rowGroupIndex if (SetNewRowGroup()) { while (mRowIndex < mDamageArea.StartRow() && !mAtEnd) { SetNewRow(); } if (!mAtEnd) { SetNewData(mDamageArea.StartRow(), mDamageArea.StartCol()); } } return; } } mAtEnd = true; } /** * Advance the iterator to the next position */ void BCPaintBorderIterator::Next() { if (mAtEnd) ABORT0(); mIsNewRow = false; mColIndex++; if (mColIndex > mDamageArea.EndCol()) { mRowIndex++; if (mRowIndex == mDamageArea.EndRow()) { mColIndex = mDamageArea.StartCol(); } else if (mRowIndex < mDamageArea.EndRow()) { if (mRowIndex <= mRgLastRowIndex) { SetNewRow(); } else { SetNewRowGroup(); } } else { mAtEnd = true; } } if (!mAtEnd) { SetNewData(mRowIndex, mColIndex); } } // XXX if CalcVerCornerOffset and CalcHorCornerOffset remain similar, combine // them // XXX Update terminology from physical to logical /** Compute the vertical offset of a vertical border segment * @param aCornerOwnerSide - which side owns the corner * @param aCornerSubWidth - how wide is the nonwinning side of the corner * @param aHorWidth - how wide is the horizontal edge of the corner * @param aIsStartOfSeg - does this corner start a new segment * @param aIsBevel - is this corner beveled * @return - offset in twips */ static nscoord CalcVerCornerOffset(nsPresContext* aPresContext, LogicalSide aCornerOwnerSide, BCPixelSize aCornerSubWidth, BCPixelSize aHorWidth, bool aIsStartOfSeg, bool aIsBevel) { nscoord offset = 0; // XXX These should be replaced with appropriate side-specific macros (which?) BCPixelSize smallHalf, largeHalf; if (IsBlock(aCornerOwnerSide)) { DivideBCBorderSize(aCornerSubWidth, smallHalf, largeHalf); if (aIsBevel) { offset = (aIsStartOfSeg) ? -largeHalf : smallHalf; } else { offset = (eLogicalSideBStart == aCornerOwnerSide) ? smallHalf : -largeHalf; } } else { DivideBCBorderSize(aHorWidth, smallHalf, largeHalf); if (aIsBevel) { offset = (aIsStartOfSeg) ? -largeHalf : smallHalf; } else { offset = (aIsStartOfSeg) ? smallHalf : -largeHalf; } } return aPresContext->DevPixelsToAppUnits(offset); } /** Compute the horizontal offset of a horizontal border segment * @param aCornerOwnerSide - which side owns the corner * @param aCornerSubWidth - how wide is the nonwinning side of the corner * @param aVerWidth - how wide is the vertical edge of the corner * @param aIsStartOfSeg - does this corner start a new segment * @param aIsBevel - is this corner beveled * @return - offset in twips */ static nscoord CalcHorCornerOffset(nsPresContext* aPresContext, LogicalSide aCornerOwnerSide, BCPixelSize aCornerSubWidth, BCPixelSize aVerWidth, bool aIsStartOfSeg, bool aIsBevel) { nscoord offset = 0; // XXX These should be replaced with appropriate side-specific macros (which?) BCPixelSize smallHalf, largeHalf; if (IsInline(aCornerOwnerSide)) { DivideBCBorderSize(aCornerSubWidth, smallHalf, largeHalf); if (aIsBevel) { offset = (aIsStartOfSeg) ? -largeHalf : smallHalf; } else { offset = (eLogicalSideIStart == aCornerOwnerSide) ? smallHalf : -largeHalf; } } else { DivideBCBorderSize(aVerWidth, smallHalf, largeHalf); if (aIsBevel) { offset = (aIsStartOfSeg) ? -largeHalf : smallHalf; } else { offset = (aIsStartOfSeg) ? smallHalf : -largeHalf; } } return aPresContext->DevPixelsToAppUnits(offset); } BCBlockDirSeg::BCBlockDirSeg() : mFirstRowGroup(nullptr), mFirstRow(nullptr), mBEndInlineSegBSize(0), mBEndOffset(0), mIsBEndBevel(false) { mCol = nullptr; mFirstCell = mLastCell = mAjaCell = nullptr; mOffsetI = mOffsetB = mLength = mWidth = mBStartBevelOffset = 0; mBStartBevelSide = eLogicalSideBStart; mOwner = eCellOwner; } /** * Start a new block-direction segment * @param aIter - iterator containing the structural information * @param aBorderOwner - determines the border style * @param aBlockSegISize - the width of segment in pixel * @param aInlineSegBSize - the width of the inline-dir segment joining the * corner at the start */ void BCBlockDirSeg::Start(BCPaintBorderIterator& aIter, BCBorderOwner aBorderOwner, BCPixelSize aBlockSegISize, BCPixelSize aInlineSegBSize) { LogicalSide ownerSide = eLogicalSideBStart; bool bevel = false; nscoord cornerSubWidth = (aIter.mBCData) ? aIter.mBCData->GetCorner(ownerSide, bevel) : 0; bool bStartBevel = (aBlockSegISize > 0) ? bevel : false; BCPixelSize maxInlineSegBSize = std::max(aIter.mPrevInlineSegBSize, aInlineSegBSize); nsPresContext* presContext = aIter.mTable->PresContext(); nscoord offset = CalcVerCornerOffset(presContext, ownerSide, cornerSubWidth, maxInlineSegBSize, true, bStartBevel); mBStartBevelOffset = bStartBevel ? presContext->DevPixelsToAppUnits(maxInlineSegBSize) : 0; // XXX this assumes that only corners where 2 segments join can be beveled mBStartBevelSide = (aInlineSegBSize > 0) ? eLogicalSideIEnd : eLogicalSideIStart; mOffsetB += offset; mLength = -offset; mWidth = aBlockSegISize; mOwner = aBorderOwner; mFirstCell = aIter.mCell; mFirstRowGroup = aIter.mRg; mFirstRow = aIter.mRow; if (aIter.GetRelativeColIndex() > 0) { mAjaCell = aIter.mBlockDirInfo[aIter.GetRelativeColIndex() - 1].mLastCell; } } /** * Initialize the block-dir segments with information that will persist for any * block-dir segment in this column * @param aIter - iterator containing the structural information */ void BCBlockDirSeg::Initialize(BCPaintBorderIterator& aIter) { int32_t relColIndex = aIter.GetRelativeColIndex(); mCol = aIter.IsTableIEndMost() ? aIter.mBlockDirInfo[relColIndex - 1].mCol : aIter.mTableFirstInFlow->GetColFrame(aIter.mColIndex); if (!mCol) ABORT0(); if (0 == relColIndex) { mOffsetI = aIter.mInitialOffsetI; } // set mOffsetI for the next column if (!aIter.IsDamageAreaIEndMost()) { aIter.mBlockDirInfo[relColIndex + 1].mOffsetI = mOffsetI + mCol->ISize(aIter.mTableWM); } mOffsetB = aIter.mInitialOffsetB; mLastCell = aIter.mCell; } /** * Compute the offsets for the bEnd corner of a block-dir segment * @param aIter - iterator containing the structural information * @param aInlineSegBSize - the width of the inline-dir segment joining the * corner at the start */ void BCBlockDirSeg::GetBEndCorner(BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize) { LogicalSide ownerSide = eLogicalSideBStart; nscoord cornerSubWidth = 0; bool bevel = false; if (aIter.mBCData) { cornerSubWidth = aIter.mBCData->GetCorner(ownerSide, bevel); } mIsBEndBevel = (mWidth > 0) ? bevel : false; mBEndInlineSegBSize = std::max(aIter.mPrevInlineSegBSize, aInlineSegBSize); mBEndOffset = CalcVerCornerOffset(aIter.mTable->PresContext(), ownerSide, cornerSubWidth, mBEndInlineSegBSize, false, mIsBEndBevel); mLength += mBEndOffset; } Maybe BCBlockDirSeg::BuildBorderParameters( BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize) { BCBorderParameters result; // get the border style, color and paint the segment LogicalSide side = aIter.IsDamageAreaIEndMost() ? eLogicalSideIEnd : eLogicalSideIStart; int32_t relColIndex = aIter.GetRelativeColIndex(); nsTableColFrame* col = mCol; if (!col) ABORT1(Nothing()); nsTableCellFrame* cell = mFirstCell; // ??? nsIFrame* owner = nullptr; result.mBorderStyle = StyleBorderStyle::Solid; result.mBorderColor = 0xFFFFFFFF; result.mBackfaceIsVisible = true; // All the tables frames have the same presContext, so we just use any one // that exists here: nsPresContext* presContext = aIter.mTable->PresContext(); result.mAppUnitsPerDevPixel = presContext->AppUnitsPerDevPixel(); switch (mOwner) { case eTableOwner: owner = aIter.mTable; break; case eAjaColGroupOwner: side = eLogicalSideIEnd; if (!aIter.IsTableIEndMost() && (relColIndex > 0)) { col = aIter.mBlockDirInfo[relColIndex - 1].mCol; } [[fallthrough]]; case eColGroupOwner: if (col) { owner = col->GetParent(); } break; case eAjaColOwner: side = eLogicalSideIEnd; if (!aIter.IsTableIEndMost() && (relColIndex > 0)) { col = aIter.mBlockDirInfo[relColIndex - 1].mCol; } [[fallthrough]]; case eColOwner: owner = col; break; case eAjaRowGroupOwner: NS_ERROR("a neighboring rowgroup can never own a vertical border"); [[fallthrough]]; case eRowGroupOwner: NS_ASSERTION(aIter.IsTableIStartMost() || aIter.IsTableIEndMost(), "row group can own border only at table edge"); owner = mFirstRowGroup; break; case eAjaRowOwner: NS_ERROR("program error"); [[fallthrough]]; case eRowOwner: NS_ASSERTION(aIter.IsTableIStartMost() || aIter.IsTableIEndMost(), "row can own border only at table edge"); owner = mFirstRow; break; case eAjaCellOwner: side = eLogicalSideIEnd; cell = mAjaCell; [[fallthrough]]; case eCellOwner: owner = cell; break; } if (owner) { ::GetPaintStyleInfo(owner, aIter.mTableWM, side, &result.mBorderStyle, &result.mBorderColor); result.mBackfaceIsVisible = !owner->BackfaceIsHidden(); } BCPixelSize smallHalf, largeHalf; DivideBCBorderSize(mWidth, smallHalf, largeHalf); LogicalRect segRect( aIter.mTableWM, mOffsetI - presContext->DevPixelsToAppUnits(largeHalf), mOffsetB, presContext->DevPixelsToAppUnits(mWidth), mLength); nscoord bEndBevelOffset = (mIsBEndBevel) ? presContext->DevPixelsToAppUnits(mBEndInlineSegBSize) : 0; LogicalSide bEndBevelSide = (aInlineSegBSize > 0) ? eLogicalSideIEnd : eLogicalSideIStart; // Convert logical to physical sides/coordinates for DrawTableBorderSegment. result.mBorderRect = segRect.GetPhysicalRect(aIter.mTableWM, aIter.mTable->GetSize()); // XXX For reversed vertical writing-modes (with direction:rtl), we need to // invert physicalRect's y-position here, with respect to the table. // However, it's not worth fixing the border positions here until the // ordering of the table columns themselves is also fixed (bug 1180528). result.mStartBevelSide = aIter.mTableWM.PhysicalSide(mBStartBevelSide); result.mEndBevelSide = aIter.mTableWM.PhysicalSide(bEndBevelSide); result.mStartBevelOffset = mBStartBevelOffset; result.mEndBevelOffset = bEndBevelOffset; // In vertical-rl mode, the 'start' and 'end' of the block-dir (horizontal) // border segment need to be swapped because DrawTableBorderSegment will // apply the 'start' bevel at the left edge, and 'end' at the right. // (Note: In this case, startBevelSide/endBevelSide will usually both be // "top" or "bottom". DrawTableBorderSegment works purely with physical // coordinates, so it expects startBevelOffset to be the indentation-from- // the-left for the "start" (left) end of the border-segment, and // endBevelOffset is the indentation-from-the-right for the "end" (right) // end of the border-segment. We've got them reversed, since our block dir // is RTL, so we have to swap them here.) if (aIter.mTableWM.IsVerticalRL()) { std::swap(result.mStartBevelSide, result.mEndBevelSide); std::swap(result.mStartBevelOffset, result.mEndBevelOffset); } return Some(result); } /** * Paint the block-dir segment * @param aIter - iterator containing the structural information * @param aDrawTarget - the draw target * @param aInlineSegBSize - the width of the inline-dir segment joining the * corner at the start */ void BCBlockDirSeg::Paint(BCPaintBorderIterator& aIter, DrawTarget& aDrawTarget, BCPixelSize aInlineSegBSize) { Maybe param = BuildBorderParameters(aIter, aInlineSegBSize); if (param.isNothing()) { return; } nsCSSRendering::DrawTableBorderSegment( aDrawTarget, param->mBorderStyle, param->mBorderColor, param->mBorderRect, param->mAppUnitsPerDevPixel, param->mStartBevelSide, param->mStartBevelOffset, param->mEndBevelSide, param->mEndBevelOffset); } // Pushes a border bevel triangle and substracts the relevant rectangle from // aRect, which, after all the bevels, will end up being a solid segment rect. static void AdjustAndPushBevel(wr::DisplayListBuilder& aBuilder, wr::LayoutRect& aRect, nscolor aColor, const nsCSSRendering::Bevel& aBevel, int32_t aAppUnitsPerDevPixel, bool aBackfaceIsVisible, bool aIsStart) { if (!aBevel.mOffset) { return; } const auto kTransparent = wr::ToColorF(gfx::DeviceColor(0., 0., 0., 0.)); const bool horizontal = aBevel.mSide == eSideTop || aBevel.mSide == eSideBottom; // Crappy CSS triangle as known by every web developer ever :) Float offset = NSAppUnitsToFloatPixels(aBevel.mOffset, aAppUnitsPerDevPixel); wr::LayoutRect bevelRect = aRect; wr::BorderSide bevelBorder[4]; for (const auto i : mozilla::AllPhysicalSides()) { bevelBorder[i] = wr::ToBorderSide(ToDeviceColor(aColor), StyleBorderStyle::Solid); } // We're creating a half-transparent triangle using the border primitive. // // Classic web-dev trick, with a gotcha: we use a single corner to avoid // seams and rounding errors. // // Classic web-dev trick :P auto borderWidths = wr::ToBorderWidths(0, 0, 0, 0); bevelBorder[aBevel.mSide].color = kTransparent; if (aIsStart) { if (horizontal) { bevelBorder[eSideLeft].color = kTransparent; borderWidths.left = offset; } else { bevelBorder[eSideTop].color = kTransparent; borderWidths.top = offset; } } else { if (horizontal) { bevelBorder[eSideRight].color = kTransparent; borderWidths.right = offset; } else { bevelBorder[eSideBottom].color = kTransparent; borderWidths.bottom = offset; } } if (horizontal) { if (aIsStart) { aRect.min.x += offset; aRect.max.x += offset; } else { bevelRect.min.x += aRect.width() - offset; bevelRect.max.x += aRect.width() - offset; } aRect.max.x -= offset; bevelRect.max.y = bevelRect.min.y + aRect.height(); bevelRect.max.x = bevelRect.min.x + offset; if (aBevel.mSide == eSideTop) { borderWidths.bottom = aRect.height(); } else { borderWidths.top = aRect.height(); } } else { if (aIsStart) { aRect.min.y += offset; aRect.max.y += offset; } else { bevelRect.min.y += aRect.height() - offset; bevelRect.max.y += aRect.height() - offset; } aRect.max.y -= offset; bevelRect.max.x = bevelRect.min.x + aRect.width(); bevelRect.max.y = bevelRect.min.y + offset; if (aBevel.mSide == eSideLeft) { borderWidths.right = aRect.width(); } else { borderWidths.left = aRect.width(); } } Range wrsides(bevelBorder, 4); // It's important to _not_ anti-alias the bevel, because otherwise we wouldn't // be able bevel to sides of the same color without bleeding in the middle. aBuilder.PushBorder(bevelRect, bevelRect, aBackfaceIsVisible, borderWidths, wrsides, wr::EmptyBorderRadius(), wr::AntialiasBorder::No); } static void CreateWRCommandsForBeveledBorder( const BCBorderParameters& aBorderParams, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aOffset) { MOZ_ASSERT(aBorderParams.NeedToBevel()); AutoTArray segments; nsCSSRendering::GetTableBorderSolidSegments( segments, aBorderParams.mBorderStyle, aBorderParams.mBorderColor, aBorderParams.mBorderRect, aBorderParams.mAppUnitsPerDevPixel, aBorderParams.mStartBevelSide, aBorderParams.mStartBevelOffset, aBorderParams.mEndBevelSide, aBorderParams.mEndBevelOffset); for (const auto& segment : segments) { auto rect = LayoutDeviceRect::FromUnknownRect(NSRectToRect( segment.mRect + aOffset, aBorderParams.mAppUnitsPerDevPixel)); auto r = wr::ToLayoutRect(rect); auto color = wr::ToColorF(ToDeviceColor(segment.mColor)); // Adjust for the start bevel if needed. AdjustAndPushBevel(aBuilder, r, segment.mColor, segment.mStartBevel, aBorderParams.mAppUnitsPerDevPixel, aBorderParams.mBackfaceIsVisible, true); AdjustAndPushBevel(aBuilder, r, segment.mColor, segment.mEndBevel, aBorderParams.mAppUnitsPerDevPixel, aBorderParams.mBackfaceIsVisible, false); aBuilder.PushRect(r, r, aBorderParams.mBackfaceIsVisible, false, false, color); } } static void CreateWRCommandsForBorderSegment( const BCBorderParameters& aBorderParams, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aOffset) { if (aBorderParams.NeedToBevel()) { CreateWRCommandsForBeveledBorder(aBorderParams, aBuilder, aSc, aOffset); return; } auto borderRect = LayoutDeviceRect::FromUnknownRect(NSRectToRect( aBorderParams.mBorderRect + aOffset, aBorderParams.mAppUnitsPerDevPixel)); wr::LayoutRect r = wr::ToLayoutRect(borderRect); wr::BorderSide wrSide[4]; for (const auto i : mozilla::AllPhysicalSides()) { wrSide[i] = wr::ToBorderSide(ToDeviceColor(aBorderParams.mBorderColor), StyleBorderStyle::None); } const bool horizontal = aBorderParams.mStartBevelSide == eSideTop || aBorderParams.mStartBevelSide == eSideBottom; auto borderWidth = horizontal ? r.height() : r.width(); // All border style is set to none except left side. So setting the widths of // each side to width of rect is fine. auto borderWidths = wr::ToBorderWidths(0, 0, 0, 0); wrSide[horizontal ? eSideTop : eSideLeft] = wr::ToBorderSide( ToDeviceColor(aBorderParams.mBorderColor), aBorderParams.mBorderStyle); if (horizontal) { borderWidths.top = borderWidth; } else { borderWidths.left = borderWidth; } Range wrsides(wrSide, 4); aBuilder.PushBorder(r, r, aBorderParams.mBackfaceIsVisible, borderWidths, wrsides, wr::EmptyBorderRadius()); } void BCBlockDirSeg::CreateWebRenderCommands( BCPaintBorderIterator& aIter, BCPixelSize aInlineSegBSize, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aOffset) { Maybe param = BuildBorderParameters(aIter, aInlineSegBSize); if (param.isNothing()) { return; } CreateWRCommandsForBorderSegment(*param, aBuilder, aSc, aOffset); } /** * Advance the start point of a segment */ void BCBlockDirSeg::AdvanceOffsetB() { mOffsetB += mLength - mBEndOffset; } /** * Accumulate the current segment */ void BCBlockDirSeg::IncludeCurrentBorder(BCPaintBorderIterator& aIter) { mLastCell = aIter.mCell; mLength += aIter.mRow->BSize(aIter.mTableWM); } BCInlineDirSeg::BCInlineDirSeg() : mIsIEndBevel(false), mIEndBevelOffset(0), mIEndBevelSide(eLogicalSideBStart), mEndOffset(0), mOwner(eTableOwner) { mOffsetI = mOffsetB = mLength = mWidth = mIStartBevelOffset = 0; mIStartBevelSide = eLogicalSideBStart; mFirstCell = mAjaCell = nullptr; } /** Initialize an inline-dir border segment for painting * @param aIter - iterator storing the current and adjacent frames * @param aBorderOwner - which frame owns the border * @param aBEndBlockSegISize - block-dir segment width coming from up * @param aInlineSegBSize - the thickness of the segment + */ void BCInlineDirSeg::Start(BCPaintBorderIterator& aIter, BCBorderOwner aBorderOwner, BCPixelSize aBEndBlockSegISize, BCPixelSize aInlineSegBSize) { LogicalSide cornerOwnerSide = eLogicalSideBStart; bool bevel = false; mOwner = aBorderOwner; nscoord cornerSubWidth = (aIter.mBCData) ? aIter.mBCData->GetCorner(cornerOwnerSide, bevel) : 0; bool iStartBevel = (aInlineSegBSize > 0) ? bevel : false; int32_t relColIndex = aIter.GetRelativeColIndex(); nscoord maxBlockSegISize = std::max(aIter.mBlockDirInfo[relColIndex].mWidth, aBEndBlockSegISize); nscoord offset = CalcHorCornerOffset(aIter.mTable->PresContext(), cornerOwnerSide, cornerSubWidth, maxBlockSegISize, true, iStartBevel); mIStartBevelOffset = (iStartBevel && (aInlineSegBSize > 0)) ? maxBlockSegISize : 0; // XXX this assumes that only corners where 2 segments join can be beveled mIStartBevelSide = (aBEndBlockSegISize > 0) ? eLogicalSideBEnd : eLogicalSideBStart; mOffsetI += offset; mLength = -offset; mWidth = aInlineSegBSize; mFirstCell = aIter.mCell; mAjaCell = (aIter.IsDamageAreaBStartMost()) ? nullptr : aIter.mBlockDirInfo[relColIndex].mLastCell; } /** * Compute the offsets for the iEnd corner of an inline-dir segment * @param aIter - iterator containing the structural information * @param aIStartSegISize - the iSize of the block-dir segment joining the * corner at the start */ void BCInlineDirSeg::GetIEndCorner(BCPaintBorderIterator& aIter, BCPixelSize aIStartSegISize) { LogicalSide ownerSide = eLogicalSideBStart; nscoord cornerSubWidth = 0; bool bevel = false; if (aIter.mBCData) { cornerSubWidth = aIter.mBCData->GetCorner(ownerSide, bevel); } mIsIEndBevel = (mWidth > 0) ? bevel : 0; int32_t relColIndex = aIter.GetRelativeColIndex(); nscoord verWidth = std::max(aIter.mBlockDirInfo[relColIndex].mWidth, aIStartSegISize); nsPresContext* presContext = aIter.mTable->PresContext(); mEndOffset = CalcHorCornerOffset(presContext, ownerSide, cornerSubWidth, verWidth, false, mIsIEndBevel); mLength += mEndOffset; mIEndBevelOffset = (mIsIEndBevel) ? presContext->DevPixelsToAppUnits(verWidth) : 0; mIEndBevelSide = (aIStartSegISize > 0) ? eLogicalSideBEnd : eLogicalSideBStart; } Maybe BCInlineDirSeg::BuildBorderParameters( BCPaintBorderIterator& aIter) { BCBorderParameters result; // get the border style, color and paint the segment LogicalSide side = aIter.IsDamageAreaBEndMost() ? eLogicalSideBEnd : eLogicalSideBStart; nsIFrame* rg = aIter.mRg; if (!rg) ABORT1(Nothing()); nsIFrame* row = aIter.mRow; if (!row) ABORT1(Nothing()); nsIFrame* cell = mFirstCell; nsIFrame* col; nsIFrame* owner = nullptr; result.mBackfaceIsVisible = true; // All the tables frames have the same presContext, so we just use any one // that exists here: nsPresContext* presContext = aIter.mTable->PresContext(); result.mAppUnitsPerDevPixel = presContext->AppUnitsPerDevPixel(); result.mBorderStyle = StyleBorderStyle::Solid; result.mBorderColor = 0xFFFFFFFF; switch (mOwner) { case eTableOwner: owner = aIter.mTable; break; case eAjaColGroupOwner: NS_ERROR("neighboring colgroups can never own an inline-dir border"); [[fallthrough]]; case eColGroupOwner: NS_ASSERTION(aIter.IsTableBStartMost() || aIter.IsTableBEndMost(), "col group can own border only at the table edge"); col = aIter.mTableFirstInFlow->GetColFrame(aIter.mColIndex - 1); if (!col) ABORT1(Nothing()); owner = col->GetParent(); break; case eAjaColOwner: NS_ERROR("neighboring column can never own an inline-dir border"); [[fallthrough]]; case eColOwner: NS_ASSERTION(aIter.IsTableBStartMost() || aIter.IsTableBEndMost(), "col can own border only at the table edge"); owner = aIter.mTableFirstInFlow->GetColFrame(aIter.mColIndex - 1); break; case eAjaRowGroupOwner: side = eLogicalSideBEnd; rg = (aIter.IsTableBEndMost()) ? aIter.mRg : aIter.mPrevRg; [[fallthrough]]; case eRowGroupOwner: owner = rg; break; case eAjaRowOwner: side = eLogicalSideBEnd; row = (aIter.IsTableBEndMost()) ? aIter.mRow : aIter.mPrevRow; [[fallthrough]]; case eRowOwner: owner = row; break; case eAjaCellOwner: side = eLogicalSideBEnd; // if this is null due to the damage area origin-y > 0, then the border // won't show up anyway cell = mAjaCell; [[fallthrough]]; case eCellOwner: owner = cell; break; } if (owner) { ::GetPaintStyleInfo(owner, aIter.mTableWM, side, &result.mBorderStyle, &result.mBorderColor); result.mBackfaceIsVisible = !owner->BackfaceIsHidden(); } BCPixelSize smallHalf, largeHalf; DivideBCBorderSize(mWidth, smallHalf, largeHalf); LogicalRect segRect(aIter.mTableWM, mOffsetI, mOffsetB - presContext->DevPixelsToAppUnits(largeHalf), mLength, presContext->DevPixelsToAppUnits(mWidth)); // Convert logical to physical sides/coordinates for DrawTableBorderSegment. result.mBorderRect = segRect.GetPhysicalRect(aIter.mTableWM, aIter.mTable->GetSize()); result.mStartBevelSide = aIter.mTableWM.PhysicalSide(mIStartBevelSide); result.mEndBevelSide = aIter.mTableWM.PhysicalSide(mIEndBevelSide); result.mStartBevelOffset = presContext->DevPixelsToAppUnits(mIStartBevelOffset); result.mEndBevelOffset = mIEndBevelOffset; // With inline-RTL directionality, the 'start' and 'end' of the inline-dir // border segment need to be swapped because DrawTableBorderSegment will // apply the 'start' bevel physically at the left or top edge, and 'end' at // the right or bottom. // (Note: startBevelSide/endBevelSide will be "top" or "bottom" in horizontal // writing mode, or "left" or "right" in vertical mode. // DrawTableBorderSegment works purely with physical coordinates, so it // expects startBevelOffset to be the indentation-from-the-left or top end // of the border-segment, and endBevelOffset is the indentation-from-the- // right or bottom end. If the writing mode is inline-RTL, our "start" and // "end" will be reversed from this physical-coord view, so we have to swap // them here. if (aIter.mTableWM.IsBidiRTL()) { std::swap(result.mStartBevelSide, result.mEndBevelSide); std::swap(result.mStartBevelOffset, result.mEndBevelOffset); } return Some(result); } /** * Paint the inline-dir segment * @param aIter - iterator containing the structural information * @param aDrawTarget - the draw target */ void BCInlineDirSeg::Paint(BCPaintBorderIterator& aIter, DrawTarget& aDrawTarget) { Maybe param = BuildBorderParameters(aIter); if (param.isNothing()) { return; } nsCSSRendering::DrawTableBorderSegment( aDrawTarget, param->mBorderStyle, param->mBorderColor, param->mBorderRect, param->mAppUnitsPerDevPixel, param->mStartBevelSide, param->mStartBevelOffset, param->mEndBevelSide, param->mEndBevelOffset); } void BCInlineDirSeg::CreateWebRenderCommands( BCPaintBorderIterator& aIter, wr::DisplayListBuilder& aBuilder, const layers::StackingContextHelper& aSc, const nsPoint& aPt) { Maybe param = BuildBorderParameters(aIter); if (param.isNothing()) { return; } CreateWRCommandsForBorderSegment(*param, aBuilder, aSc, aPt); } /** * Advance the start point of a segment */ void BCInlineDirSeg::AdvanceOffsetI() { mOffsetI += (mLength - mEndOffset); } /** * Accumulate the current segment */ void BCInlineDirSeg::IncludeCurrentBorder(BCPaintBorderIterator& aIter) { mLength += aIter.mBlockDirInfo[aIter.GetRelativeColIndex()].mColWidth; } /** * store the column width information while painting inline-dir segment */ void BCPaintBorderIterator::StoreColumnWidth(int32_t aIndex) { if (IsTableIEndMost()) { mBlockDirInfo[aIndex].mColWidth = mBlockDirInfo[aIndex - 1].mColWidth; } else { nsTableColFrame* col = mTableFirstInFlow->GetColFrame(mColIndex); if (!col) ABORT0(); mBlockDirInfo[aIndex].mColWidth = col->ISize(mTableWM); } } /** * Determine if a block-dir segment owns the corner */ bool BCPaintBorderIterator::BlockDirSegmentOwnsCorner() { LogicalSide cornerOwnerSide = eLogicalSideBStart; bool bevel = false; if (mBCData) { mBCData->GetCorner(cornerOwnerSide, bevel); } // unitialized ownerside, bevel return (eLogicalSideBStart == cornerOwnerSide) || (eLogicalSideBEnd == cornerOwnerSide); } /** * Paint if necessary an inline-dir segment, otherwise accumulate it * @param aDrawTarget - the draw target */ void BCPaintBorderIterator::AccumulateOrDoActionInlineDirSegment( BCPaintBorderAction& aAction) { int32_t relColIndex = GetRelativeColIndex(); // store the current col width if it hasn't been already if (mBlockDirInfo[relColIndex].mColWidth < 0) { StoreColumnWidth(relColIndex); } BCBorderOwner borderOwner = eCellOwner; BCBorderOwner ignoreBorderOwner; bool isSegStart = true; bool ignoreSegStart; nscoord iStartSegISize = mBCData ? mBCData->GetIStartEdge(ignoreBorderOwner, ignoreSegStart) : 0; nscoord bStartSegBSize = mBCData ? mBCData->GetBStartEdge(borderOwner, isSegStart) : 0; if (mIsNewRow || (IsDamageAreaIStartMost() && IsDamageAreaBEndMost())) { // reset for every new row and on the bottom of the last row mInlineSeg.mOffsetB = mNextOffsetB; mNextOffsetB = mNextOffsetB + mRow->BSize(mTableWM); mInlineSeg.mOffsetI = mInitialOffsetI; mInlineSeg.Start(*this, borderOwner, iStartSegISize, bStartSegBSize); } if (!IsDamageAreaIStartMost() && (isSegStart || IsDamageAreaIEndMost() || BlockDirSegmentOwnsCorner())) { // paint the previous seg or the current one if IsDamageAreaIEndMost() if (mInlineSeg.mLength > 0) { mInlineSeg.GetIEndCorner(*this, iStartSegISize); if (mInlineSeg.mWidth > 0) { if (aAction.mMode == BCPaintBorderAction::Mode::Paint) { mInlineSeg.Paint(*this, aAction.mPaintData.mDrawTarget); } else { MOZ_ASSERT(aAction.mMode == BCPaintBorderAction::Mode::CreateWebRenderCommands); mInlineSeg.CreateWebRenderCommands( *this, aAction.mCreateWebRenderCommandsData.mBuilder, aAction.mCreateWebRenderCommandsData.mSc, aAction.mCreateWebRenderCommandsData.mOffsetToReferenceFrame); } } mInlineSeg.AdvanceOffsetI(); } mInlineSeg.Start(*this, borderOwner, iStartSegISize, bStartSegBSize); } mInlineSeg.IncludeCurrentBorder(*this); mBlockDirInfo[relColIndex].mWidth = iStartSegISize; mBlockDirInfo[relColIndex].mLastCell = mCell; } /** * Paint if necessary a block-dir segment, otherwise accumulate it * @param aDrawTarget - the draw target */ void BCPaintBorderIterator::AccumulateOrDoActionBlockDirSegment( BCPaintBorderAction& aAction) { BCBorderOwner borderOwner = eCellOwner; BCBorderOwner ignoreBorderOwner; bool isSegStart = true; bool ignoreSegStart; nscoord blockSegISize = mBCData ? mBCData->GetIStartEdge(borderOwner, isSegStart) : 0; nscoord inlineSegBSize = mBCData ? mBCData->GetBStartEdge(ignoreBorderOwner, ignoreSegStart) : 0; int32_t relColIndex = GetRelativeColIndex(); BCBlockDirSeg& blockDirSeg = mBlockDirInfo[relColIndex]; if (!blockDirSeg.mCol) { // on the first damaged row and the first segment in // the col blockDirSeg.Initialize(*this); blockDirSeg.Start(*this, borderOwner, blockSegISize, inlineSegBSize); } if (!IsDamageAreaBStartMost() && (isSegStart || IsDamageAreaBEndMost() || IsAfterRepeatedHeader() || StartRepeatedFooter())) { // paint the previous seg or the current one if IsDamageAreaBEndMost() if (blockDirSeg.mLength > 0) { blockDirSeg.GetBEndCorner(*this, inlineSegBSize); if (blockDirSeg.mWidth > 0) { if (aAction.mMode == BCPaintBorderAction::Mode::Paint) { blockDirSeg.Paint(*this, aAction.mPaintData.mDrawTarget, inlineSegBSize); } else { MOZ_ASSERT(aAction.mMode == BCPaintBorderAction::Mode::CreateWebRenderCommands); blockDirSeg.CreateWebRenderCommands( *this, inlineSegBSize, aAction.mCreateWebRenderCommandsData.mBuilder, aAction.mCreateWebRenderCommandsData.mSc, aAction.mCreateWebRenderCommandsData.mOffsetToReferenceFrame); } } blockDirSeg.AdvanceOffsetB(); } blockDirSeg.Start(*this, borderOwner, blockSegISize, inlineSegBSize); } blockDirSeg.IncludeCurrentBorder(*this); mPrevInlineSegBSize = inlineSegBSize; } /** * Reset the block-dir information cache */ void BCPaintBorderIterator::ResetVerInfo() { if (mBlockDirInfo) { memset(mBlockDirInfo.get(), 0, mDamageArea.ColCount() * sizeof(BCBlockDirSeg)); // XXX reinitialize properly for (auto xIndex : IntegerRange(mDamageArea.ColCount())) { mBlockDirInfo[xIndex].mColWidth = -1; } } } void nsTableFrame::IterateBCBorders(BCPaintBorderAction& aAction, const nsRect& aDirtyRect) { // We first transfer the aDirtyRect into cellmap coordinates to compute which // cell borders need to be painted BCPaintBorderIterator iter(this); if (!iter.SetDamageArea(aDirtyRect)) return; // XXX comment still has physical terminology // First, paint all of the vertical borders from top to bottom and left to // right as they become complete. They are painted first, since they are less // efficient to paint than horizontal segments. They were stored with as few // segments as possible (since horizontal borders are painted last and // possibly over them). For every cell in a row that fails in the damage are // we look up if the current border would start a new segment, if so we paint // the previously stored vertical segment and start a new segment. After // this we the now active segment with the current border. These // segments are stored in mBlockDirInfo to be used on the next row for (iter.First(); !iter.mAtEnd; iter.Next()) { iter.AccumulateOrDoActionBlockDirSegment(aAction); } // Next, paint all of the inline-dir border segments from bStart to bEnd reuse // the mBlockDirInfo array to keep track of col widths and block-dir segments // for corner calculations iter.Reset(); for (iter.First(); !iter.mAtEnd; iter.Next()) { iter.AccumulateOrDoActionInlineDirSegment(aAction); } } /** * Method to paint BCBorders, this does not use currently display lists although * it will do this in future * @param aDrawTarget - the rendering context * @param aDirtyRect - inside this rectangle the BC Borders will redrawn */ void nsTableFrame::PaintBCBorders(DrawTarget& aDrawTarget, const nsRect& aDirtyRect) { BCPaintBorderAction action(aDrawTarget); IterateBCBorders(action, aDirtyRect); } void nsTableFrame::CreateWebRenderCommandsForBCBorders( wr::DisplayListBuilder& aBuilder, const mozilla::layers::StackingContextHelper& aSc, const nsRect& aVisibleRect, const nsPoint& aOffsetToReferenceFrame) { BCPaintBorderAction action(aBuilder, aSc, aOffsetToReferenceFrame); // We always draw whole table border for webrender. Passing the visible rect // dirty rect. IterateBCBorders(action, aVisibleRect - aOffsetToReferenceFrame); } bool nsTableFrame::RowHasSpanningCells(int32_t aRowIndex, int32_t aNumEffCols) { bool result = false; nsTableCellMap* cellMap = GetCellMap(); MOZ_ASSERT(cellMap, "bad call, cellMap not yet allocated."); if (cellMap) { result = cellMap->RowHasSpanningCells(aRowIndex, aNumEffCols); } return result; } bool nsTableFrame::RowIsSpannedInto(int32_t aRowIndex, int32_t aNumEffCols) { bool result = false; nsTableCellMap* cellMap = GetCellMap(); MOZ_ASSERT(cellMap, "bad call, cellMap not yet allocated."); if (cellMap) { result = cellMap->RowIsSpannedInto(aRowIndex, aNumEffCols); } return result; } /* static */ void nsTableFrame::InvalidateTableFrame(nsIFrame* aFrame, const nsRect& aOrigRect, const nsRect& aOrigInkOverflow, bool aIsFirstReflow) { nsIFrame* parent = aFrame->GetParent(); NS_ASSERTION(parent, "What happened here?"); if (parent->HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) { // Don't bother; we'll invalidate the parent's overflow rect when // we finish reflowing it. return; } // The part that looks at both the rect and the overflow rect is a // bit of a hack. See nsBlockFrame::ReflowLine for an eloquent // description of its hackishness. // // This doesn't really make sense now that we have DLBI. // This code can probably be simplified a fair bit. nsRect inkOverflow = aFrame->InkOverflowRect(); if (aIsFirstReflow || aOrigRect.TopLeft() != aFrame->GetPosition() || aOrigInkOverflow.TopLeft() != inkOverflow.TopLeft()) { // Invalidate the old and new overflow rects. Note that if the // frame moved, we can't just use aOrigInkOverflow, since it's in // coordinates relative to the old position. So invalidate via // aFrame's parent, and reposition that overflow rect to the right // place. // XXXbz this doesn't handle outlines, does it? aFrame->InvalidateFrame(); parent->InvalidateFrameWithRect(aOrigInkOverflow + aOrigRect.TopLeft()); } else if (aOrigRect.Size() != aFrame->GetSize() || aOrigInkOverflow.Size() != inkOverflow.Size()) { aFrame->InvalidateFrameWithRect(aOrigInkOverflow); aFrame->InvalidateFrame(); } } void nsTableFrame::AppendDirectlyOwnedAnonBoxes( nsTArray& aResult) { nsIFrame* wrapper = GetParent(); MOZ_ASSERT(wrapper->Style()->GetPseudoType() == PseudoStyleType::tableWrapper, "What happened to our parent?"); aResult.AppendElement( OwnedAnonBox(wrapper, &UpdateStyleOfOwnedAnonBoxesForTableWrapper)); } /* static */ void nsTableFrame::UpdateStyleOfOwnedAnonBoxesForTableWrapper( nsIFrame* aOwningFrame, nsIFrame* aWrapperFrame, ServoRestyleState& aRestyleState) { MOZ_ASSERT( aWrapperFrame->Style()->GetPseudoType() == PseudoStyleType::tableWrapper, "What happened to our parent?"); RefPtr newStyle = aRestyleState.StyleSet().ResolveInheritingAnonymousBoxStyle( PseudoStyleType::tableWrapper, aOwningFrame->Style()); // Figure out whether we have an actual change. It's important that we do // this, even though all the wrapper's changes are due to properties it // inherits from us, because it's possible that no one ever asked us for those // style structs and hence changes to them aren't reflected in // the handled changes at all. // // Also note that extensions can add/remove stylesheets that change the styles // of anonymous boxes directly, so we need to handle that potential change // here. // // NOTE(emilio): We can't use the ChangesHandledFor optimization (and we // assert against that), because the table wrapper is up in the frame tree // compared to the owner frame. uint32_t equalStructs; // Not used, actually. nsChangeHint wrapperHint = aWrapperFrame->Style()->CalcStyleDifference(*newStyle, &equalStructs); if (wrapperHint) { aRestyleState.ChangeList().AppendChange( aWrapperFrame, aWrapperFrame->GetContent(), wrapperHint); } for (nsIFrame* cur = aWrapperFrame; cur; cur = cur->GetNextContinuation()) { cur->SetComputedStyle(newStyle); } MOZ_ASSERT(!aWrapperFrame->HasAnyStateBits(NS_FRAME_OWNS_ANON_BOXES), "Wrapper frame doesn't have any anon boxes of its own!"); } namespace mozilla { nsRect nsDisplayTableItem::GetBounds(nsDisplayListBuilder* aBuilder, bool* aSnap) const { *aSnap = false; return mFrame->InkOverflowRectRelativeToSelf() + ToReferenceFrame(); } nsDisplayTableBackgroundSet::nsDisplayTableBackgroundSet( nsDisplayListBuilder* aBuilder, nsIFrame* aTable) : mBuilder(aBuilder), mColGroupBackgrounds(aBuilder), mColBackgrounds(aBuilder), mCurrentScrollParentId(aBuilder->GetCurrentScrollParentId()) { mPrevTableBackgroundSet = mBuilder->SetTableBackgroundSet(this); mozilla::DebugOnly reference = mBuilder->FindReferenceFrameFor(aTable, &mToReferenceFrame); MOZ_ASSERT(nsLayoutUtils::FindNearestCommonAncestorFrame(reference, aTable)); mDirtyRect = mBuilder->GetDirtyRect(); mCombinedTableClipChain = mBuilder->ClipState().GetCurrentCombinedClipChain(aBuilder); mTableASR = mBuilder->CurrentActiveScrolledRoot(); } // A display item that draws all collapsed borders for a table. // At some point, we may want to find a nicer partitioning for dividing // border-collapse segments into their own display items. class nsDisplayTableBorderCollapse final : public nsDisplayTableItem { public: nsDisplayTableBorderCollapse(nsDisplayListBuilder* aBuilder, nsTableFrame* aFrame) : nsDisplayTableItem(aBuilder, aFrame) { MOZ_COUNT_CTOR(nsDisplayTableBorderCollapse); } MOZ_COUNTED_DTOR_OVERRIDE(nsDisplayTableBorderCollapse) void Paint(nsDisplayListBuilder* aBuilder, gfxContext* aCtx) override; bool CreateWebRenderCommands( wr::DisplayListBuilder& aBuilder, wr::IpcResourceUpdateQueue& aResources, const StackingContextHelper& aSc, layers::RenderRootStateManager* aManager, nsDisplayListBuilder* aDisplayListBuilder) override; NS_DISPLAY_DECL_NAME("TableBorderCollapse", TYPE_TABLE_BORDER_COLLAPSE) }; void nsDisplayTableBorderCollapse::Paint(nsDisplayListBuilder* aBuilder, gfxContext* aCtx) { nsPoint pt = ToReferenceFrame(); DrawTarget* drawTarget = aCtx->GetDrawTarget(); gfxPoint devPixelOffset = nsLayoutUtils::PointToGfxPoint( pt, mFrame->PresContext()->AppUnitsPerDevPixel()); // XXX we should probably get rid of this translation at some stage // But that would mean modifying PaintBCBorders, ugh AutoRestoreTransform autoRestoreTransform(drawTarget); drawTarget->SetTransform( drawTarget->GetTransform().PreTranslate(ToPoint(devPixelOffset))); static_cast(mFrame)->PaintBCBorders( *drawTarget, GetPaintRect(aBuilder, aCtx) - pt); } bool nsDisplayTableBorderCollapse::CreateWebRenderCommands( wr::DisplayListBuilder& aBuilder, wr::IpcResourceUpdateQueue& aResources, const StackingContextHelper& aSc, mozilla::layers::RenderRootStateManager* aManager, nsDisplayListBuilder* aDisplayListBuilder) { bool dummy; static_cast(mFrame)->CreateWebRenderCommandsForBCBorders( aBuilder, aSc, GetBounds(aDisplayListBuilder, &dummy), ToReferenceFrame()); return true; } } // namespace mozilla