/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_TimeStamp_h #define mozilla_TimeStamp_h #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/FloatingPoint.h" #include "mozilla/Types.h" #include // for std::min, std::max #include #include #include namespace IPC { template struct ParamTraits; } // namespace IPC #ifdef XP_WIN // defines TimeStampValue as a complex value keeping both // GetTickCount and QueryPerformanceCounter values # include "TimeStamp_windows.h" #endif namespace mozilla { #ifndef XP_WIN typedef uint64_t TimeStampValue; #endif class TimeStamp; /** * Platform-specific implementation details of BaseTimeDuration. */ class BaseTimeDurationPlatformUtils { public: static MFBT_API double ToSeconds(int64_t aTicks); static MFBT_API double ToSecondsSigDigits(int64_t aTicks); static MFBT_API int64_t TicksFromMilliseconds(double aMilliseconds); static MFBT_API int64_t ResolutionInTicks(); }; /** * Instances of this class represent the length of an interval of time. * Negative durations are allowed, meaning the end is before the start. * * Internally the duration is stored as a int64_t in units of * PR_TicksPerSecond() when building with NSPR interval timers, or a * system-dependent unit when building with system clocks. The * system-dependent unit must be constant, otherwise the semantics of * this class would be broken. * * The ValueCalculator template parameter determines how arithmetic * operations are performed on the integer count of ticks (mValue). */ template class BaseTimeDuration { public: // The default duration is 0. constexpr BaseTimeDuration() : mValue(0) {} // Allow construction using '0' as the initial value, for readability, // but no other numbers (so we don't have any implicit unit conversions). struct _SomethingVeryRandomHere; MOZ_IMPLICIT BaseTimeDuration(_SomethingVeryRandomHere* aZero) : mValue(0) { MOZ_ASSERT(!aZero, "Who's playing funny games here?"); } // Default copy-constructor and assignment are OK // Converting copy-constructor and assignment operator template explicit BaseTimeDuration(const BaseTimeDuration& aOther) : mValue(aOther.mValue) {} template BaseTimeDuration& operator=(const BaseTimeDuration& aOther) { mValue = aOther.mValue; return *this; } double ToSeconds() const { if (mValue == INT64_MAX) { return PositiveInfinity(); } if (mValue == INT64_MIN) { return NegativeInfinity(); } return BaseTimeDurationPlatformUtils::ToSeconds(mValue); } // Return a duration value that includes digits of time we think to // be significant. This method should be used when displaying a // time to humans. double ToSecondsSigDigits() const { if (mValue == INT64_MAX) { return PositiveInfinity(); } if (mValue == INT64_MIN) { return NegativeInfinity(); } return BaseTimeDurationPlatformUtils::ToSecondsSigDigits(mValue); } double ToMilliseconds() const { return ToSeconds() * 1000.0; } double ToMicroseconds() const { return ToMilliseconds() * 1000.0; } // Using a double here is safe enough; with 53 bits we can represent // durations up to over 280,000 years exactly. If the units of // mValue do not allow us to represent durations of that length, // long durations are clamped to the max/min representable value // instead of overflowing. static inline BaseTimeDuration FromSeconds(double aSeconds) { return FromMilliseconds(aSeconds * 1000.0); } static BaseTimeDuration FromMilliseconds(double aMilliseconds) { if (aMilliseconds == PositiveInfinity()) { return Forever(); } if (aMilliseconds == NegativeInfinity()) { return FromTicks(INT64_MIN); } return FromTicks( BaseTimeDurationPlatformUtils::TicksFromMilliseconds(aMilliseconds)); } static inline BaseTimeDuration FromMicroseconds(double aMicroseconds) { return FromMilliseconds(aMicroseconds / 1000.0); } static constexpr BaseTimeDuration Forever() { return FromTicks(INT64_MAX); } BaseTimeDuration operator+(const BaseTimeDuration& aOther) const { return FromTicks(ValueCalculator::Add(mValue, aOther.mValue)); } BaseTimeDuration operator-(const BaseTimeDuration& aOther) const { return FromTicks(ValueCalculator::Subtract(mValue, aOther.mValue)); } BaseTimeDuration& operator+=(const BaseTimeDuration& aOther) { mValue = ValueCalculator::Add(mValue, aOther.mValue); return *this; } BaseTimeDuration& operator-=(const BaseTimeDuration& aOther) { mValue = ValueCalculator::Subtract(mValue, aOther.mValue); return *this; } BaseTimeDuration operator-() const { // We don't just use FromTicks(ValueCalculator::Subtract(0, mValue)) // since that won't give the correct result for -TimeDuration::Forever(). int64_t ticks; if (mValue == INT64_MAX) { ticks = INT64_MIN; } else if (mValue == INT64_MIN) { ticks = INT64_MAX; } else { ticks = -mValue; } return FromTicks(ticks); } static BaseTimeDuration Max(const BaseTimeDuration& aA, const BaseTimeDuration& aB) { return FromTicks(std::max(aA.mValue, aB.mValue)); } static BaseTimeDuration Min(const BaseTimeDuration& aA, const BaseTimeDuration& aB) { return FromTicks(std::min(aA.mValue, aB.mValue)); } private: // Block double multiplier (slower, imprecise if long duration) - Bug 853398. // If required, use MultDouble explicitly and with care. BaseTimeDuration operator*(const double aMultiplier) const = delete; // Block double divisor (for the same reason, and because dividing by // fractional values would otherwise invoke the int64_t variant, and rounding // the passed argument can then cause divide-by-zero) - Bug 1147491. BaseTimeDuration operator/(const double aDivisor) const = delete; public: BaseTimeDuration MultDouble(double aMultiplier) const { return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier)); } BaseTimeDuration operator*(const int32_t aMultiplier) const { return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier)); } BaseTimeDuration operator*(const uint32_t aMultiplier) const { return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier)); } BaseTimeDuration operator*(const int64_t aMultiplier) const { return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier)); } BaseTimeDuration operator*(const uint64_t aMultiplier) const { if (aMultiplier > INT64_MAX) { return Forever(); } return FromTicks(ValueCalculator::Multiply(mValue, aMultiplier)); } BaseTimeDuration operator/(const int64_t aDivisor) const { MOZ_ASSERT(aDivisor != 0, "Division by zero"); return FromTicks(ValueCalculator::Divide(mValue, aDivisor)); } double operator/(const BaseTimeDuration& aOther) const { MOZ_ASSERT(aOther.mValue != 0, "Division by zero"); return ValueCalculator::DivideDouble(mValue, aOther.mValue); } BaseTimeDuration operator%(const BaseTimeDuration& aOther) const { MOZ_ASSERT(aOther.mValue != 0, "Division by zero"); return FromTicks(ValueCalculator::Modulo(mValue, aOther.mValue)); } template bool operator<(const BaseTimeDuration& aOther) const { return mValue < aOther.mValue; } template bool operator<=(const BaseTimeDuration& aOther) const { return mValue <= aOther.mValue; } template bool operator>=(const BaseTimeDuration& aOther) const { return mValue >= aOther.mValue; } template bool operator>(const BaseTimeDuration& aOther) const { return mValue > aOther.mValue; } template bool operator==(const BaseTimeDuration& aOther) const { return mValue == aOther.mValue; } template bool operator!=(const BaseTimeDuration& aOther) const { return mValue != aOther.mValue; } bool IsZero() const { return mValue == 0; } explicit operator bool() const { return mValue != 0; } friend std::ostream& operator<<(std::ostream& aStream, const BaseTimeDuration& aDuration) { return aStream << aDuration.ToMilliseconds() << " ms"; } // Return a best guess at the system's current timing resolution, // which might be variable. BaseTimeDurations below this order of // magnitude are meaningless, and those at the same order of // magnitude or just above are suspect. static BaseTimeDuration Resolution() { return FromTicks(BaseTimeDurationPlatformUtils::ResolutionInTicks()); } // We could define additional operators here: // -- convert to/from other time units // -- scale duration by a float // but let's do that on demand. // Comparing durations for equality will only lead to bugs on // platforms with high-resolution timers. private: friend class TimeStamp; friend struct IPC::ParamTraits>; template friend class BaseTimeDuration; static BaseTimeDuration FromTicks(int64_t aTicks) { BaseTimeDuration t; t.mValue = aTicks; return t; } static BaseTimeDuration FromTicks(double aTicks) { // NOTE: this MUST be a >= test, because int64_t(double(INT64_MAX)) // overflows and gives INT64_MIN. if (aTicks >= double(INT64_MAX)) { return FromTicks(INT64_MAX); } // This MUST be a <= test. if (aTicks <= double(INT64_MIN)) { return FromTicks(INT64_MIN); } return FromTicks(int64_t(aTicks)); } // Duration, result is implementation-specific difference of two TimeStamps int64_t mValue; }; /** * Perform arithmetic operations on the value of a BaseTimeDuration without * doing strict checks on the range of values. */ class TimeDurationValueCalculator { public: static int64_t Add(int64_t aA, int64_t aB) { return aA + aB; } static int64_t Subtract(int64_t aA, int64_t aB) { return aA - aB; } template static int64_t Multiply(int64_t aA, T aB) { static_assert(std::is_integral_v, "Using integer multiplication routine with non-integer type." " Further specialization required"); return aA * static_cast(aB); } static int64_t Divide(int64_t aA, int64_t aB) { return aA / aB; } static double DivideDouble(int64_t aA, int64_t aB) { return static_cast(aA) / aB; } static int64_t Modulo(int64_t aA, int64_t aB) { return aA % aB; } }; template <> inline int64_t TimeDurationValueCalculator::Multiply(int64_t aA, double aB) { return static_cast(aA * aB); } /** * Specialization of BaseTimeDuration that uses TimeDurationValueCalculator for * arithmetic on the mValue member. * * Use this class for time durations that are *not* expected to hold values of * Forever (or the negative equivalent) or when such time duration are *not* * expected to be used in arithmetic operations. */ typedef BaseTimeDuration TimeDuration; /** * Instances of this class represent moments in time, or a special * "null" moment. We do not use the non-monotonic system clock or * local time, since they can be reset, causing apparent backward * travel in time, which can confuse algorithms. Instead we measure * elapsed time according to the system. This time can never go * backwards (i.e. it never wraps around, at least not in less than * five million years of system elapsed time). It might not advance * while the system is sleeping. If TimeStamp::SetNow() is not called * at all for hours or days, we might not notice the passage of some * of that time. * * We deliberately do not expose a way to convert TimeStamps to some * particular unit. All you can do is compute a difference between two * TimeStamps to get a TimeDuration. You can also add a TimeDuration * to a TimeStamp to get a new TimeStamp. You can't do something * meaningless like add two TimeStamps. * * Internally this is implemented as either a wrapper around * - high-resolution, monotonic, system clocks if they exist on this * platform * - PRIntervalTime otherwise. We detect wraparounds of * PRIntervalTime and work around them. * * This class is similar to C++11's time_point, however it is * explicitly nullable and provides an IsNull() method. time_point * is initialized to the clock's epoch and provides a * time_since_epoch() method that functions similiarly. i.e. * t.IsNull() is equivalent to t.time_since_epoch() == * decltype(t)::duration::zero(); * * Note that, since TimeStamp objects are small, prefer to pass them by value * unless there is a specific reason not to do so. */ class TimeStamp { public: /** * Initialize to the "null" moment */ constexpr TimeStamp() : mValue(0) {} // Default copy-constructor and assignment are OK /** * The system timestamps are the same as the TimeStamp * retrieved by mozilla::TimeStamp. Since we need this for * vsync timestamps, we enable the creation of mozilla::TimeStamps * on platforms that support vsync aligned refresh drivers / compositors * Verified true as of Jan 31, 2015: B2G and OS X * False on Windows 7 * Android's event time uses CLOCK_MONOTONIC via SystemClock.uptimeMilles. * So it is same value of TimeStamp posix implementation. * Wayland/GTK event time also uses CLOCK_MONOTONIC on Weston/Mutter * compositors. * UNTESTED ON OTHER PLATFORMS */ #if defined(XP_DARWIN) || defined(MOZ_WIDGET_ANDROID) || defined(MOZ_WIDGET_GTK) static TimeStamp FromSystemTime(int64_t aSystemTime) { static_assert(sizeof(aSystemTime) == sizeof(TimeStampValue), "System timestamp should be same units as TimeStampValue"); return TimeStamp(aSystemTime); } #endif /** * Return true if this is the "null" moment */ bool IsNull() const { return mValue == 0; } /** * Return true if this is not the "null" moment, may be used in tests, e.g.: * |if (timestamp) { ... }| */ explicit operator bool() const { return mValue != 0; } /** * Return a timestamp reflecting the current elapsed system time. This * is monotonically increasing (i.e., does not decrease) over the * lifetime of this process' XPCOM session. * * Now() is trying to ensure the best possible precision on each platform, * at least one millisecond. * * NowLoRes() has been introduced to workaround performance problems of * QueryPerformanceCounter on the Windows platform. NowLoRes() is giving * lower precision, usually 15.6 ms, but with very good performance benefit. * Use it for measurements of longer times, like >200ms timeouts. */ static TimeStamp Now() { return Now(true); } static TimeStamp NowLoRes() { return Now(false); } /** * Return a timestamp representing the time when the current process was * created which will be comparable with other timestamps taken with this * class. * * @returns A timestamp representing the time when the process was created */ static MFBT_API TimeStamp ProcessCreation(); /** * Return the very first timestamp that was taken. This can be used instead * of TimeStamp::ProcessCreation() by code that might not allow running the * complex logic required to compute the real process creation. This will * necessarily have been recorded sometimes after TimeStamp::ProcessCreation() * or at best should be equal to it. * * @returns The first tiemstamp that was taken by this process */ static MFBT_API TimeStamp FirstTimeStamp(); /** * Records a process restart. After this call ProcessCreation() will return * the time when the browser was restarted instead of the actual time when * the process was created. */ static MFBT_API void RecordProcessRestart(); /** * Compute the difference between two timestamps. Both must be non-null. */ TimeDuration operator-(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); static_assert(-INT64_MAX > INT64_MIN, "int64_t sanity check"); int64_t ticks = int64_t(mValue - aOther.mValue); // Check for overflow. if (mValue > aOther.mValue) { if (ticks < 0) { ticks = INT64_MAX; } } else { if (ticks > 0) { ticks = INT64_MIN; } } return TimeDuration::FromTicks(ticks); } TimeStamp operator+(const TimeDuration& aOther) const { TimeStamp result = *this; result += aOther; return result; } TimeStamp operator-(const TimeDuration& aOther) const { TimeStamp result = *this; result -= aOther; return result; } TimeStamp& operator+=(const TimeDuration& aOther) { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); TimeStampValue value = mValue + aOther.mValue; // Check for underflow. // (We don't check for overflow because it's not obvious what the error // behavior should be in that case.) if (aOther.mValue < 0 && value > mValue) { value = 0; } mValue = value; return *this; } TimeStamp& operator-=(const TimeDuration& aOther) { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); TimeStampValue value = mValue - aOther.mValue; // Check for underflow. // (We don't check for overflow because it's not obvious what the error // behavior should be in that case.) if (aOther.mValue > 0 && value > mValue) { value = 0; } mValue = value; return *this; } bool operator<(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue < aOther.mValue; } bool operator<=(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue <= aOther.mValue; } bool operator>=(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue >= aOther.mValue; } bool operator>(const TimeStamp& aOther) const { MOZ_ASSERT(!IsNull(), "Cannot compute with a null value"); MOZ_ASSERT(!aOther.IsNull(), "Cannot compute with aOther null value"); return mValue > aOther.mValue; } bool operator==(const TimeStamp& aOther) const { return IsNull() ? aOther.IsNull() : !aOther.IsNull() && mValue == aOther.mValue; } bool operator!=(const TimeStamp& aOther) const { return !(*this == aOther); } // Comparing TimeStamps for equality should be discouraged. Adding // two TimeStamps, or scaling TimeStamps, is nonsense and must never // be allowed. static MFBT_API void Startup(); static MFBT_API void Shutdown(); private: friend struct IPC::ParamTraits; friend struct TimeStampInitialization; MOZ_IMPLICIT TimeStamp(TimeStampValue aValue) : mValue(aValue) {} static MFBT_API TimeStamp Now(bool aHighResolution); /** * Computes the uptime of the current process in microseconds. The result * is platform-dependent and needs to be checked against existing timestamps * for consistency. * * @returns The number of microseconds since the calling process was started * or 0 if an error was encountered while computing the uptime */ static MFBT_API uint64_t ComputeProcessUptime(); /** * When built with PRIntervalTime, a value of 0 means this instance * is "null". Otherwise, the low 32 bits represent a PRIntervalTime, * and the high 32 bits represent a counter of the number of * rollovers of PRIntervalTime that we've seen. This counter starts * at 1 to avoid a real time colliding with the "null" value. * * PR_INTERVAL_MAX is set at 100,000 ticks per second. So the minimum * time to wrap around is about 2^64/100000 seconds, i.e. about * 5,849,424 years. * * When using a system clock, a value is system dependent. */ TimeStampValue mValue; }; } // namespace mozilla #endif /* mozilla_TimeStamp_h */