/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ //! Animated types for transform. // There are still some implementation on Matrix3D in animated_properties.mako.rs // because they still need mako to generate the code. use super::animate_multiplicative_factor; use super::{Animate, Procedure, ToAnimatedZero}; use crate::properties::animated_properties::ListAnimation; use crate::values::computed::transform::Rotate as ComputedRotate; use crate::values::computed::transform::Scale as ComputedScale; use crate::values::computed::transform::Transform as ComputedTransform; use crate::values::computed::transform::TransformOperation as ComputedTransformOperation; use crate::values::computed::transform::Translate as ComputedTranslate; use crate::values::computed::transform::{DirectionVector, Matrix, Matrix3D}; use crate::values::computed::Angle; use crate::values::computed::{Length, LengthPercentage}; use crate::values::computed::{Number, Percentage}; use crate::values::distance::{ComputeSquaredDistance, SquaredDistance}; use crate::values::generics::transform::{self, Transform, TransformOperation}; use crate::values::generics::transform::{Rotate, Scale, Translate}; use crate::values::CSSFloat; use crate::Zero; use std::cmp; // ------------------------------------ // Animations for Matrix/Matrix3D. // ------------------------------------ /// A 2d matrix for interpolation. #[derive(Clone, ComputeSquaredDistance, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] #[allow(missing_docs)] // FIXME: We use custom derive for ComputeSquaredDistance. However, If possible, we should convert // the InnerMatrix2D into types with physical meaning. This custom derive computes the squared // distance from each matrix item, and this makes the result different from that in Gecko if we // have skew factor in the Matrix3D. pub struct InnerMatrix2D { pub m11: CSSFloat, pub m12: CSSFloat, pub m21: CSSFloat, pub m22: CSSFloat, } impl Animate for InnerMatrix2D { fn animate(&self, other: &Self, procedure: Procedure) -> Result { Ok(InnerMatrix2D { m11: animate_multiplicative_factor(self.m11, other.m11, procedure)?, m12: self.m12.animate(&other.m12, procedure)?, m21: self.m21.animate(&other.m21, procedure)?, m22: animate_multiplicative_factor(self.m22, other.m22, procedure)?, }) } } /// A 2d translation function. #[cfg_attr(feature = "servo", derive(MallocSizeOf))] #[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)] pub struct Translate2D(f32, f32); /// A 2d scale function. #[derive(Clone, ComputeSquaredDistance, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct Scale2D(f32, f32); impl Animate for Scale2D { fn animate(&self, other: &Self, procedure: Procedure) -> Result { Ok(Scale2D( animate_multiplicative_factor(self.0, other.0, procedure)?, animate_multiplicative_factor(self.1, other.1, procedure)?, )) } } /// A decomposed 2d matrix. #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct MatrixDecomposed2D { /// The translation function. pub translate: Translate2D, /// The scale function. pub scale: Scale2D, /// The rotation angle. pub angle: f32, /// The inner matrix. pub matrix: InnerMatrix2D, } impl Animate for MatrixDecomposed2D { /// fn animate(&self, other: &Self, procedure: Procedure) -> Result { // If x-axis of one is flipped, and y-axis of the other, // convert to an unflipped rotation. let mut scale = self.scale; let mut angle = self.angle; let mut other_angle = other.angle; if (scale.0 < 0.0 && other.scale.1 < 0.0) || (scale.1 < 0.0 && other.scale.0 < 0.0) { scale.0 = -scale.0; scale.1 = -scale.1; angle += if angle < 0.0 { 180. } else { -180. }; } // Don't rotate the long way around. if angle == 0.0 { angle = 360. } if other_angle == 0.0 { other_angle = 360. } if (angle - other_angle).abs() > 180. { if angle > other_angle { angle -= 360. } else { other_angle -= 360. } } // Interpolate all values. let translate = self.translate.animate(&other.translate, procedure)?; let scale = scale.animate(&other.scale, procedure)?; let angle = angle.animate(&other_angle, procedure)?; let matrix = self.matrix.animate(&other.matrix, procedure)?; Ok(MatrixDecomposed2D { translate, scale, angle, matrix, }) } } impl ComputeSquaredDistance for MatrixDecomposed2D { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { // Use Radian to compute the distance. const RAD_PER_DEG: f64 = std::f64::consts::PI / 180.0; let angle1 = self.angle as f64 * RAD_PER_DEG; let angle2 = other.angle as f64 * RAD_PER_DEG; Ok(self.translate.compute_squared_distance(&other.translate)? + self.scale.compute_squared_distance(&other.scale)? + angle1.compute_squared_distance(&angle2)? + self.matrix.compute_squared_distance(&other.matrix)?) } } impl From for MatrixDecomposed2D { /// Decompose a 2D matrix. /// fn from(matrix: Matrix3D) -> MatrixDecomposed2D { let mut row0x = matrix.m11; let mut row0y = matrix.m12; let mut row1x = matrix.m21; let mut row1y = matrix.m22; let translate = Translate2D(matrix.m41, matrix.m42); let mut scale = Scale2D( (row0x * row0x + row0y * row0y).sqrt(), (row1x * row1x + row1y * row1y).sqrt(), ); // If determinant is negative, one axis was flipped. let determinant = row0x * row1y - row0y * row1x; if determinant < 0. { if row0x < row1y { scale.0 = -scale.0; } else { scale.1 = -scale.1; } } // Renormalize matrix to remove scale. if scale.0 != 0.0 { row0x *= 1. / scale.0; row0y *= 1. / scale.0; } if scale.1 != 0.0 { row1x *= 1. / scale.1; row1y *= 1. / scale.1; } // Compute rotation and renormalize matrix. let mut angle = row0y.atan2(row0x); if angle != 0.0 { let sn = -row0y; let cs = row0x; let m11 = row0x; let m12 = row0y; let m21 = row1x; let m22 = row1y; row0x = cs * m11 + sn * m21; row0y = cs * m12 + sn * m22; row1x = -sn * m11 + cs * m21; row1y = -sn * m12 + cs * m22; } let m = InnerMatrix2D { m11: row0x, m12: row0y, m21: row1x, m22: row1y, }; // Convert into degrees because our rotation functions expect it. angle = angle.to_degrees(); MatrixDecomposed2D { translate: translate, scale: scale, angle: angle, matrix: m, } } } impl From for Matrix3D { /// Recompose a 2D matrix. /// fn from(decomposed: MatrixDecomposed2D) -> Matrix3D { let mut computed_matrix = Matrix3D::identity(); computed_matrix.m11 = decomposed.matrix.m11; computed_matrix.m12 = decomposed.matrix.m12; computed_matrix.m21 = decomposed.matrix.m21; computed_matrix.m22 = decomposed.matrix.m22; // Translate matrix. computed_matrix.m41 = decomposed.translate.0; computed_matrix.m42 = decomposed.translate.1; // Rotate matrix. let angle = decomposed.angle.to_radians(); let cos_angle = angle.cos(); let sin_angle = angle.sin(); let mut rotate_matrix = Matrix3D::identity(); rotate_matrix.m11 = cos_angle; rotate_matrix.m12 = sin_angle; rotate_matrix.m21 = -sin_angle; rotate_matrix.m22 = cos_angle; // Multiplication of computed_matrix and rotate_matrix computed_matrix = rotate_matrix.multiply(&computed_matrix); // Scale matrix. computed_matrix.m11 *= decomposed.scale.0; computed_matrix.m12 *= decomposed.scale.0; computed_matrix.m21 *= decomposed.scale.1; computed_matrix.m22 *= decomposed.scale.1; computed_matrix } } impl Animate for Matrix { #[cfg(feature = "servo")] fn animate(&self, other: &Self, procedure: Procedure) -> Result { let this = Matrix3D::from(*self); let other = Matrix3D::from(*other); let this = MatrixDecomposed2D::from(this); let other = MatrixDecomposed2D::from(other); Ok(Matrix3D::from(this.animate(&other, procedure)?).into_2d()?) } #[cfg(feature = "gecko")] // Gecko doesn't exactly follow the spec here; we use a different procedure // to match it fn animate(&self, other: &Self, procedure: Procedure) -> Result { let from = decompose_2d_matrix(&(*self).into()); let to = decompose_2d_matrix(&(*other).into()); match (from, to) { (Ok(from), Ok(to)) => Matrix3D::from(from.animate(&to, procedure)?).into_2d(), // Matrices can be undecomposable due to couple reasons, e.g., // non-invertible matrices. In this case, we should report Err here, // and let the caller do the fallback procedure. _ => Err(()), } } } /// A 3d translation. #[cfg_attr(feature = "servo", derive(MallocSizeOf))] #[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)] pub struct Translate3D(pub f32, pub f32, pub f32); /// A 3d scale function. #[derive(Clone, ComputeSquaredDistance, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct Scale3D(pub f32, pub f32, pub f32); impl Scale3D { /// Negate self. fn negate(&mut self) { self.0 *= -1.0; self.1 *= -1.0; self.2 *= -1.0; } } impl Animate for Scale3D { fn animate(&self, other: &Self, procedure: Procedure) -> Result { Ok(Scale3D( animate_multiplicative_factor(self.0, other.0, procedure)?, animate_multiplicative_factor(self.1, other.1, procedure)?, animate_multiplicative_factor(self.2, other.2, procedure)?, )) } } /// A 3d skew function. #[cfg_attr(feature = "servo", derive(MallocSizeOf))] #[derive(Animate, Clone, Copy, Debug)] pub struct Skew(f32, f32, f32); impl ComputeSquaredDistance for Skew { // We have to use atan() to convert the skew factors into skew angles, so implement // ComputeSquaredDistance manually. #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { Ok(self.0.atan().compute_squared_distance(&other.0.atan())? + self.1.atan().compute_squared_distance(&other.1.atan())? + self.2.atan().compute_squared_distance(&other.2.atan())?) } } /// A 3d perspective transformation. #[derive(Clone, ComputeSquaredDistance, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct Perspective(pub f32, pub f32, pub f32, pub f32); impl Animate for Perspective { fn animate(&self, other: &Self, procedure: Procedure) -> Result { Ok(Perspective( self.0.animate(&other.0, procedure)?, self.1.animate(&other.1, procedure)?, self.2.animate(&other.2, procedure)?, animate_multiplicative_factor(self.3, other.3, procedure)?, )) } } /// A quaternion used to represent a rotation. #[derive(Clone, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct Quaternion(f64, f64, f64, f64); impl Quaternion { /// Return a quaternion from a unit direction vector and angle (unit: radian). #[inline] fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self { debug_assert!( (vector.length() - 1.).abs() < 0.0001, "Only accept an unit direction vector to create a quaternion" ); // Reference: // https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation // // if the direction axis is (x, y, z) = xi + yj + zk, // and the angle is |theta|, this formula can be done using // an extension of Euler's formula: // q = cos(theta/2) + (xi + yj + zk)(sin(theta/2)) // = cos(theta/2) + // x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k Quaternion( vector.x as f64 * (angle / 2.).sin(), vector.y as f64 * (angle / 2.).sin(), vector.z as f64 * (angle / 2.).sin(), (angle / 2.).cos(), ) } /// Calculate the dot product. #[inline] fn dot(&self, other: &Self) -> f64 { self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3 } /// Return the scaled quaternion by a factor. #[inline] fn scale(&self, factor: f64) -> Self { Quaternion( self.0 * factor, self.1 * factor, self.2 * factor, self.3 * factor, ) } } impl Animate for Quaternion { fn animate(&self, other: &Self, procedure: Procedure) -> Result { use std::f64; let (this_weight, other_weight) = procedure.weights(); debug_assert!( // Doule EPSILON since both this_weight and other_weght have calculation errors // which are approximately equal to EPSILON. (this_weight + other_weight - 1.0f64).abs() <= f64::EPSILON * 2.0 || other_weight == 1.0f64 || other_weight == 0.0f64, "animate should only be used for interpolating or accumulating transforms" ); // We take a specialized code path for accumulation (where other_weight // is 1). if let Procedure::Accumulate { .. } = procedure { debug_assert_eq!(other_weight, 1.0); if this_weight == 0.0 { return Ok(*other); } let clamped_w = self.3.min(1.0).max(-1.0); // Determine the scale factor. let mut theta = clamped_w.acos(); let mut scale = if theta == 0.0 { 0.0 } else { 1.0 / theta.sin() }; theta *= this_weight; scale *= theta.sin(); // Scale the self matrix by this_weight. let mut scaled_self = *self; scaled_self.0 *= scale; scaled_self.1 *= scale; scaled_self.2 *= scale; scaled_self.3 = theta.cos(); // Multiply scaled-self by other. let a = &scaled_self; let b = other; return Ok(Quaternion( a.3 * b.0 + a.0 * b.3 + a.1 * b.2 - a.2 * b.1, a.3 * b.1 - a.0 * b.2 + a.1 * b.3 + a.2 * b.0, a.3 * b.2 + a.0 * b.1 - a.1 * b.0 + a.2 * b.3, a.3 * b.3 - a.0 * b.0 - a.1 * b.1 - a.2 * b.2, )); } // Straight from gfxQuaternion::Slerp. // // Dot product, clamped between -1 and 1. let dot = (self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3) .min(1.0) .max(-1.0); if dot.abs() == 1.0 { return Ok(*self); } let theta = dot.acos(); let rsintheta = 1.0 / (1.0 - dot * dot).sqrt(); let right_weight = (other_weight * theta).sin() * rsintheta; let left_weight = (other_weight * theta).cos() - dot * right_weight; let left = self.scale(left_weight); let right = other.scale(right_weight); Ok(Quaternion( left.0 + right.0, left.1 + right.1, left.2 + right.2, left.3 + right.3, )) } } impl ComputeSquaredDistance for Quaternion { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { // Use quaternion vectors to get the angle difference. Both q1 and q2 are unit vectors, // so we can get their angle difference by: // cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2. let distance = self.dot(other).max(-1.0).min(1.0).acos() * 2.0; Ok(SquaredDistance::from_sqrt(distance)) } } /// A decomposed 3d matrix. #[derive(Animate, Clone, ComputeSquaredDistance, Copy, Debug)] #[cfg_attr(feature = "servo", derive(MallocSizeOf))] pub struct MatrixDecomposed3D { /// A translation function. pub translate: Translate3D, /// A scale function. pub scale: Scale3D, /// The skew component of the transformation. pub skew: Skew, /// The perspective component of the transformation. pub perspective: Perspective, /// The quaternion used to represent the rotation. pub quaternion: Quaternion, } impl From for Matrix3D { /// Recompose a 3D matrix. /// fn from(decomposed: MatrixDecomposed3D) -> Matrix3D { let mut matrix = Matrix3D::identity(); // Apply perspective matrix.set_perspective(&decomposed.perspective); // Apply translation matrix.apply_translate(&decomposed.translate); // Apply rotation { let x = decomposed.quaternion.0; let y = decomposed.quaternion.1; let z = decomposed.quaternion.2; let w = decomposed.quaternion.3; // Construct a composite rotation matrix from the quaternion values // rotationMatrix is a identity 4x4 matrix initially let mut rotation_matrix = Matrix3D::identity(); rotation_matrix.m11 = 1.0 - 2.0 * (y * y + z * z) as f32; rotation_matrix.m12 = 2.0 * (x * y + z * w) as f32; rotation_matrix.m13 = 2.0 * (x * z - y * w) as f32; rotation_matrix.m21 = 2.0 * (x * y - z * w) as f32; rotation_matrix.m22 = 1.0 - 2.0 * (x * x + z * z) as f32; rotation_matrix.m23 = 2.0 * (y * z + x * w) as f32; rotation_matrix.m31 = 2.0 * (x * z + y * w) as f32; rotation_matrix.m32 = 2.0 * (y * z - x * w) as f32; rotation_matrix.m33 = 1.0 - 2.0 * (x * x + y * y) as f32; matrix = rotation_matrix.multiply(&matrix); } // Apply skew { let mut temp = Matrix3D::identity(); if decomposed.skew.2 != 0.0 { temp.m32 = decomposed.skew.2; matrix = temp.multiply(&matrix); temp.m32 = 0.0; } if decomposed.skew.1 != 0.0 { temp.m31 = decomposed.skew.1; matrix = temp.multiply(&matrix); temp.m31 = 0.0; } if decomposed.skew.0 != 0.0 { temp.m21 = decomposed.skew.0; matrix = temp.multiply(&matrix); } } // Apply scale matrix.apply_scale(&decomposed.scale); matrix } } /// Decompose a 3D matrix. /// https://drafts.csswg.org/css-transforms-2/#decomposing-a-3d-matrix /// http://www.realtimerendering.com/resources/GraphicsGems/gemsii/unmatrix.c fn decompose_3d_matrix(mut matrix: Matrix3D) -> Result { // Combine 2 point. let combine = |a: [f32; 3], b: [f32; 3], ascl: f32, bscl: f32| { [ (ascl * a[0]) + (bscl * b[0]), (ascl * a[1]) + (bscl * b[1]), (ascl * a[2]) + (bscl * b[2]), ] }; // Dot product. let dot = |a: [f32; 3], b: [f32; 3]| a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; // Cross product. let cross = |row1: [f32; 3], row2: [f32; 3]| { [ row1[1] * row2[2] - row1[2] * row2[1], row1[2] * row2[0] - row1[0] * row2[2], row1[0] * row2[1] - row1[1] * row2[0], ] }; if matrix.m44 == 0.0 { return Err(()); } let scaling_factor = matrix.m44; // Normalize the matrix. matrix.scale_by_factor(1.0 / scaling_factor); // perspective_matrix is used to solve for perspective, but it also provides // an easy way to test for singularity of the upper 3x3 component. let mut perspective_matrix = matrix; perspective_matrix.m14 = 0.0; perspective_matrix.m24 = 0.0; perspective_matrix.m34 = 0.0; perspective_matrix.m44 = 1.0; if perspective_matrix.determinant() == 0.0 { return Err(()); } // First, isolate perspective. let perspective = if matrix.m14 != 0.0 || matrix.m24 != 0.0 || matrix.m34 != 0.0 { let right_hand_side: [f32; 4] = [matrix.m14, matrix.m24, matrix.m34, matrix.m44]; perspective_matrix = perspective_matrix.inverse().unwrap().transpose(); let perspective = perspective_matrix.pre_mul_point4(&right_hand_side); // NOTE(emilio): Even though the reference algorithm clears the // fourth column here (matrix.m14..matrix.m44), they're not used below // so it's not really needed. Perspective( perspective[0], perspective[1], perspective[2], perspective[3], ) } else { Perspective(0.0, 0.0, 0.0, 1.0) }; // Next take care of translation (easy). let translate = Translate3D(matrix.m41, matrix.m42, matrix.m43); // Now get scale and shear. 'row' is a 3 element array of 3 component vectors let mut row = matrix.get_matrix_3x3_part(); // Compute X scale factor and normalize first row. let row0len = (row[0][0] * row[0][0] + row[0][1] * row[0][1] + row[0][2] * row[0][2]).sqrt(); let mut scale = Scale3D(row0len, 0.0, 0.0); row[0] = [ row[0][0] / row0len, row[0][1] / row0len, row[0][2] / row0len, ]; // Compute XY shear factor and make 2nd row orthogonal to 1st. let mut skew = Skew(dot(row[0], row[1]), 0.0, 0.0); row[1] = combine(row[1], row[0], 1.0, -skew.0); // Now, compute Y scale and normalize 2nd row. let row1len = (row[1][0] * row[1][0] + row[1][1] * row[1][1] + row[1][2] * row[1][2]).sqrt(); scale.1 = row1len; row[1] = [ row[1][0] / row1len, row[1][1] / row1len, row[1][2] / row1len, ]; skew.0 /= scale.1; // Compute XZ and YZ shears, orthogonalize 3rd row skew.1 = dot(row[0], row[2]); row[2] = combine(row[2], row[0], 1.0, -skew.1); skew.2 = dot(row[1], row[2]); row[2] = combine(row[2], row[1], 1.0, -skew.2); // Next, get Z scale and normalize 3rd row. let row2len = (row[2][0] * row[2][0] + row[2][1] * row[2][1] + row[2][2] * row[2][2]).sqrt(); scale.2 = row2len; row[2] = [ row[2][0] / row2len, row[2][1] / row2len, row[2][2] / row2len, ]; skew.1 /= scale.2; skew.2 /= scale.2; // At this point, the matrix (in rows) is orthonormal. // Check for a coordinate system flip. If the determinant // is -1, then negate the matrix and the scaling factors. if dot(row[0], cross(row[1], row[2])) < 0.0 { scale.negate(); for i in 0..3 { row[i][0] *= -1.0; row[i][1] *= -1.0; row[i][2] *= -1.0; } } // Now, get the rotations out. let mut quaternion = Quaternion( 0.5 * ((1.0 + row[0][0] - row[1][1] - row[2][2]).max(0.0) as f64).sqrt(), 0.5 * ((1.0 - row[0][0] + row[1][1] - row[2][2]).max(0.0) as f64).sqrt(), 0.5 * ((1.0 - row[0][0] - row[1][1] + row[2][2]).max(0.0) as f64).sqrt(), 0.5 * ((1.0 + row[0][0] + row[1][1] + row[2][2]).max(0.0) as f64).sqrt(), ); if row[2][1] > row[1][2] { quaternion.0 = -quaternion.0 } if row[0][2] > row[2][0] { quaternion.1 = -quaternion.1 } if row[1][0] > row[0][1] { quaternion.2 = -quaternion.2 } Ok(MatrixDecomposed3D { translate, scale, skew, perspective, quaternion, }) } /// Decompose a 2D matrix for Gecko. // Use the algorithm from nsStyleTransformMatrix::Decompose2DMatrix() in Gecko. #[cfg(feature = "gecko")] fn decompose_2d_matrix(matrix: &Matrix3D) -> Result { // The index is column-major, so the equivalent transform matrix is: // | m11 m21 0 m41 | => | m11 m21 | and translate(m41, m42) // | m12 m22 0 m42 | | m12 m22 | // | 0 0 1 0 | // | 0 0 0 1 | let (mut m11, mut m12) = (matrix.m11, matrix.m12); let (mut m21, mut m22) = (matrix.m21, matrix.m22); // Check if this is a singular matrix. if m11 * m22 == m12 * m21 { return Err(()); } let mut scale_x = (m11 * m11 + m12 * m12).sqrt(); m11 /= scale_x; m12 /= scale_x; let mut shear_xy = m11 * m21 + m12 * m22; m21 -= m11 * shear_xy; m22 -= m12 * shear_xy; let scale_y = (m21 * m21 + m22 * m22).sqrt(); m21 /= scale_y; m22 /= scale_y; shear_xy /= scale_y; let determinant = m11 * m22 - m12 * m21; // Determinant should now be 1 or -1. if 0.99 > determinant.abs() || determinant.abs() > 1.01 { return Err(()); } if determinant < 0. { m11 = -m11; m12 = -m12; shear_xy = -shear_xy; scale_x = -scale_x; } Ok(MatrixDecomposed3D { translate: Translate3D(matrix.m41, matrix.m42, 0.), scale: Scale3D(scale_x, scale_y, 1.), skew: Skew(shear_xy, 0., 0.), perspective: Perspective(0., 0., 0., 1.), quaternion: Quaternion::from_direction_and_angle( &DirectionVector::new(0., 0., 1.), m12.atan2(m11) as f64, ), }) } impl Animate for Matrix3D { #[cfg(feature = "servo")] fn animate(&self, other: &Self, procedure: Procedure) -> Result { if self.is_3d() || other.is_3d() { let decomposed_from = decompose_3d_matrix(*self); let decomposed_to = decompose_3d_matrix(*other); match (decomposed_from, decomposed_to) { (Ok(this), Ok(other)) => Ok(Matrix3D::from(this.animate(&other, procedure)?)), // Matrices can be undecomposable due to couple reasons, e.g., // non-invertible matrices. In this case, we should report Err // here, and let the caller do the fallback procedure. _ => Err(()), } } else { let this = MatrixDecomposed2D::from(*self); let other = MatrixDecomposed2D::from(*other); Ok(Matrix3D::from(this.animate(&other, procedure)?)) } } #[cfg(feature = "gecko")] // Gecko doesn't exactly follow the spec here; we use a different procedure // to match it fn animate(&self, other: &Self, procedure: Procedure) -> Result { let (from, to) = if self.is_3d() || other.is_3d() { (decompose_3d_matrix(*self), decompose_3d_matrix(*other)) } else { (decompose_2d_matrix(self), decompose_2d_matrix(other)) }; match (from, to) { (Ok(from), Ok(to)) => Ok(Matrix3D::from(from.animate(&to, procedure)?)), // Matrices can be undecomposable due to couple reasons, e.g., // non-invertible matrices. In this case, we should report Err here, // and let the caller do the fallback procedure. _ => Err(()), } } } impl ComputeSquaredDistance for Matrix3D { #[inline] #[cfg(feature = "servo")] fn compute_squared_distance(&self, other: &Self) -> Result { if self.is_3d() || other.is_3d() { let from = decompose_3d_matrix(*self)?; let to = decompose_3d_matrix(*other)?; from.compute_squared_distance(&to) } else { let from = MatrixDecomposed2D::from(*self); let to = MatrixDecomposed2D::from(*other); from.compute_squared_distance(&to) } } #[inline] #[cfg(feature = "gecko")] fn compute_squared_distance(&self, other: &Self) -> Result { let (from, to) = if self.is_3d() || other.is_3d() { (decompose_3d_matrix(*self)?, decompose_3d_matrix(*other)?) } else { (decompose_2d_matrix(self)?, decompose_2d_matrix(other)?) }; from.compute_squared_distance(&to) } } // ------------------------------------ // Animation for Transform list. // ------------------------------------ fn is_matched_operation( first: &ComputedTransformOperation, second: &ComputedTransformOperation, ) -> bool { match (first, second) { (&TransformOperation::Matrix(..), &TransformOperation::Matrix(..)) | (&TransformOperation::Matrix3D(..), &TransformOperation::Matrix3D(..)) | (&TransformOperation::Skew(..), &TransformOperation::Skew(..)) | (&TransformOperation::SkewX(..), &TransformOperation::SkewX(..)) | (&TransformOperation::SkewY(..), &TransformOperation::SkewY(..)) | (&TransformOperation::Rotate(..), &TransformOperation::Rotate(..)) | (&TransformOperation::Rotate3D(..), &TransformOperation::Rotate3D(..)) | (&TransformOperation::RotateX(..), &TransformOperation::RotateX(..)) | (&TransformOperation::RotateY(..), &TransformOperation::RotateY(..)) | (&TransformOperation::RotateZ(..), &TransformOperation::RotateZ(..)) | (&TransformOperation::Perspective(..), &TransformOperation::Perspective(..)) => true, // Match functions that have the same primitive transform function (a, b) if a.is_translate() && b.is_translate() => true, (a, b) if a.is_scale() && b.is_scale() => true, (a, b) if a.is_rotate() && b.is_rotate() => true, // InterpolateMatrix and AccumulateMatrix are for mismatched transforms _ => false, } } /// impl Animate for ComputedTransform { #[inline] fn animate(&self, other: &Self, procedure: Procedure) -> Result { use std::borrow::Cow; // Addition for transforms simply means appending to the list of // transform functions. This is different to how we handle the other // animation procedures so we treat it separately here rather than // handling it in TransformOperation. if procedure == Procedure::Add { let result = self.0.iter().chain(&*other.0).cloned().collect(); return Ok(Transform(result)); } let this = Cow::Borrowed(&self.0); let other = Cow::Borrowed(&other.0); // Interpolate the common prefix let mut result = this .iter() .zip(other.iter()) .take_while(|(this, other)| is_matched_operation(this, other)) .map(|(this, other)| this.animate(other, procedure)) .collect::, _>>()?; // Deal with the remainders let this_remainder = if this.len() > result.len() { Some(&this[result.len()..]) } else { None }; let other_remainder = if other.len() > result.len() { Some(&other[result.len()..]) } else { None }; match (this_remainder, other_remainder) { // If there is a remainder from *both* lists we must have had mismatched functions. // => Add the remainders to a suitable ___Matrix function. (Some(this_remainder), Some(other_remainder)) => { result.push(TransformOperation::animate_mismatched_transforms( this_remainder, other_remainder, procedure, )?); }, // If there is a remainder from just one list, then one list must be shorter but // completely match the type of the corresponding functions in the longer list. // => Interpolate the remainder with identity transforms. (Some(remainder), None) | (None, Some(remainder)) => { let fill_right = this_remainder.is_some(); result.append( &mut remainder .iter() .map(|transform| { let identity = transform.to_animated_zero().unwrap(); match transform { TransformOperation::AccumulateMatrix { .. } | TransformOperation::InterpolateMatrix { .. } => { let (from, to) = if fill_right { (transform, &identity) } else { (&identity, transform) }; TransformOperation::animate_mismatched_transforms( &[from.clone()], &[to.clone()], procedure, ) }, _ => { let (lhs, rhs) = if fill_right { (transform, &identity) } else { (&identity, transform) }; lhs.animate(rhs, procedure) }, } }) .collect::, _>>()?, ); }, (None, None) => {}, } Ok(Transform(result.into())) } } impl ComputeSquaredDistance for ComputedTransform { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { let squared_dist = self.0.squared_distance_with_zero(&other.0); // Roll back to matrix interpolation if there is any Err(()) in the // transform lists, such as mismatched transform functions. // // FIXME: Using a zero size here seems a bit sketchy but matches the // previous behavior. if squared_dist.is_err() { let rect = euclid::Rect::zero(); let matrix1: Matrix3D = self.to_transform_3d_matrix(Some(&rect))?.0.into(); let matrix2: Matrix3D = other.to_transform_3d_matrix(Some(&rect))?.0.into(); return matrix1.compute_squared_distance(&matrix2); } squared_dist } } /// impl Animate for ComputedTransformOperation { fn animate(&self, other: &Self, procedure: Procedure) -> Result { match (self, other) { (&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => { Ok(TransformOperation::Matrix3D( this.animate(other, procedure)?, )) }, (&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => { Ok(TransformOperation::Matrix(this.animate(other, procedure)?)) }, ( &TransformOperation::Skew(ref fx, ref fy), &TransformOperation::Skew(ref tx, ref ty), ) => Ok(TransformOperation::Skew( fx.animate(tx, procedure)?, fy.animate(ty, procedure)?, )), (&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) => { Ok(TransformOperation::SkewX(f.animate(t, procedure)?)) }, (&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => { Ok(TransformOperation::SkewY(f.animate(t, procedure)?)) }, ( &TransformOperation::Translate3D(ref fx, ref fy, ref fz), &TransformOperation::Translate3D(ref tx, ref ty, ref tz), ) => Ok(TransformOperation::Translate3D( fx.animate(tx, procedure)?, fy.animate(ty, procedure)?, fz.animate(tz, procedure)?, )), ( &TransformOperation::Translate(ref fx, ref fy), &TransformOperation::Translate(ref tx, ref ty), ) => Ok(TransformOperation::Translate( fx.animate(tx, procedure)?, fy.animate(ty, procedure)?, )), (&TransformOperation::TranslateX(ref f), &TransformOperation::TranslateX(ref t)) => { Ok(TransformOperation::TranslateX(f.animate(t, procedure)?)) }, (&TransformOperation::TranslateY(ref f), &TransformOperation::TranslateY(ref t)) => { Ok(TransformOperation::TranslateY(f.animate(t, procedure)?)) }, (&TransformOperation::TranslateZ(ref f), &TransformOperation::TranslateZ(ref t)) => { Ok(TransformOperation::TranslateZ(f.animate(t, procedure)?)) }, ( &TransformOperation::Scale3D(ref fx, ref fy, ref fz), &TransformOperation::Scale3D(ref tx, ref ty, ref tz), ) => Ok(TransformOperation::Scale3D( animate_multiplicative_factor(*fx, *tx, procedure)?, animate_multiplicative_factor(*fy, *ty, procedure)?, animate_multiplicative_factor(*fz, *tz, procedure)?, )), (&TransformOperation::ScaleX(ref f), &TransformOperation::ScaleX(ref t)) => Ok( TransformOperation::ScaleX(animate_multiplicative_factor(*f, *t, procedure)?), ), (&TransformOperation::ScaleY(ref f), &TransformOperation::ScaleY(ref t)) => Ok( TransformOperation::ScaleY(animate_multiplicative_factor(*f, *t, procedure)?), ), (&TransformOperation::ScaleZ(ref f), &TransformOperation::ScaleZ(ref t)) => Ok( TransformOperation::ScaleZ(animate_multiplicative_factor(*f, *t, procedure)?), ), ( &TransformOperation::Scale(ref fx, ref fy), &TransformOperation::Scale(ref tx, ref ty), ) => Ok(TransformOperation::Scale( animate_multiplicative_factor(*fx, *tx, procedure)?, animate_multiplicative_factor(*fy, *ty, procedure)?, )), ( &TransformOperation::Rotate3D(fx, fy, fz, fa), &TransformOperation::Rotate3D(tx, ty, tz, ta), ) => { let animated = Rotate::Rotate3D(fx, fy, fz, fa) .animate(&Rotate::Rotate3D(tx, ty, tz, ta), procedure)?; let (fx, fy, fz, fa) = ComputedRotate::resolve(&animated); Ok(TransformOperation::Rotate3D(fx, fy, fz, fa)) }, (&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) => { Ok(TransformOperation::RotateX(fa.animate(&ta, procedure)?)) }, (&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) => { Ok(TransformOperation::RotateY(fa.animate(&ta, procedure)?)) }, (&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) => { Ok(TransformOperation::RotateZ(fa.animate(&ta, procedure)?)) }, (&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => { Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?)) }, (&TransformOperation::Rotate(fa), &TransformOperation::RotateZ(ta)) => { Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?)) }, (&TransformOperation::RotateZ(fa), &TransformOperation::Rotate(ta)) => { Ok(TransformOperation::Rotate(fa.animate(&ta, procedure)?)) }, ( &TransformOperation::Perspective(ref fd), &TransformOperation::Perspective(ref td), ) => { use crate::values::computed::CSSPixelLength; use crate::values::generics::transform::create_perspective_matrix; // From https://drafts.csswg.org/css-transforms-2/#interpolation-of-transform-functions: // // The transform functions matrix(), matrix3d() and // perspective() get converted into 4x4 matrices first and // interpolated as defined in section Interpolation of // Matrices afterwards. // let from = create_perspective_matrix(fd.infinity_or(|l| l.px())); let to = create_perspective_matrix(td.infinity_or(|l| l.px())); let interpolated = Matrix3D::from(from).animate(&Matrix3D::from(to), procedure)?; let decomposed = decompose_3d_matrix(interpolated)?; let perspective_z = decomposed.perspective.2; // Clamp results outside of the -1 to 0 range so that we get perspective // function values between 1 and infinity. let used_value = if perspective_z >= 0. { transform::PerspectiveFunction::None } else { transform::PerspectiveFunction::Length(CSSPixelLength::new( if perspective_z <= -1. { 1. } else { -1. / perspective_z }, )) }; Ok(TransformOperation::Perspective(used_value)) }, _ if self.is_translate() && other.is_translate() => self .to_translate_3d() .animate(&other.to_translate_3d(), procedure), _ if self.is_scale() && other.is_scale() => { self.to_scale_3d().animate(&other.to_scale_3d(), procedure) }, _ if self.is_rotate() && other.is_rotate() => self .to_rotate_3d() .animate(&other.to_rotate_3d(), procedure), _ => Err(()), } } } impl ComputedTransformOperation { /// If there are no size dependencies, we try to animate in-place, to avoid /// creating deeply nested Interpolate* operations. fn try_animate_mismatched_transforms_in_place( left: &[Self], right: &[Self], procedure: Procedure, ) -> Result { let (left, _left_3d) = Transform::components_to_transform_3d_matrix(left, None)?; let (right, _right_3d) = Transform::components_to_transform_3d_matrix(right, None)?; ComputedTransformOperation::Matrix3D(left.into()).animate( &ComputedTransformOperation::Matrix3D(right.into()), procedure, ) } fn animate_mismatched_transforms( left: &[Self], right: &[Self], procedure: Procedure, ) -> Result { if let Ok(op) = Self::try_animate_mismatched_transforms_in_place(left, right, procedure) { return Ok(op); } let from_list = Transform(left.to_vec().into()); let to_list = Transform(right.to_vec().into()); Ok(match procedure { Procedure::Add => { debug_assert!(false, "Addition should've been handled earlier"); return Err(()); }, Procedure::Interpolate { progress } => Self::InterpolateMatrix { from_list, to_list, progress: Percentage(progress as f32), }, Procedure::Accumulate { count } => Self::AccumulateMatrix { from_list, to_list, count: cmp::min(count, i32::max_value() as u64) as i32, }, }) } } // This might not be the most useful definition of distance. It might be better, for example, // to trace the distance travelled by a point as its transform is interpolated between the two // lists. That, however, proves to be quite complicated so we take a simple approach for now. // See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0. impl ComputeSquaredDistance for ComputedTransformOperation { fn compute_squared_distance(&self, other: &Self) -> Result { match (self, other) { (&TransformOperation::Matrix3D(ref this), &TransformOperation::Matrix3D(ref other)) => { this.compute_squared_distance(other) }, (&TransformOperation::Matrix(ref this), &TransformOperation::Matrix(ref other)) => { let this: Matrix3D = (*this).into(); let other: Matrix3D = (*other).into(); this.compute_squared_distance(&other) }, ( &TransformOperation::Skew(ref fx, ref fy), &TransformOperation::Skew(ref tx, ref ty), ) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)?), (&TransformOperation::SkewX(ref f), &TransformOperation::SkewX(ref t)) | (&TransformOperation::SkewY(ref f), &TransformOperation::SkewY(ref t)) => { f.compute_squared_distance(&t) }, ( &TransformOperation::Translate3D(ref fx, ref fy, ref fz), &TransformOperation::Translate3D(ref tx, ref ty, ref tz), ) => { // For translate, We don't want to require doing layout in order // to calculate the result, so drop the percentage part. // // However, dropping percentage makes us impossible to compute // the distance for the percentage-percentage case, but Gecko // uses the same formula, so it's fine for now. let basis = Length::new(0.); let fx = fx.resolve(basis).px(); let fy = fy.resolve(basis).px(); let tx = tx.resolve(basis).px(); let ty = ty.resolve(basis).px(); Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)? + fz.compute_squared_distance(&tz)?) }, ( &TransformOperation::Scale3D(ref fx, ref fy, ref fz), &TransformOperation::Scale3D(ref tx, ref ty, ref tz), ) => Ok(fx.compute_squared_distance(&tx)? + fy.compute_squared_distance(&ty)? + fz.compute_squared_distance(&tz)?), ( &TransformOperation::Rotate3D(fx, fy, fz, fa), &TransformOperation::Rotate3D(tx, ty, tz, ta), ) => Rotate::Rotate3D(fx, fy, fz, fa) .compute_squared_distance(&Rotate::Rotate3D(tx, ty, tz, ta)), (&TransformOperation::RotateX(fa), &TransformOperation::RotateX(ta)) | (&TransformOperation::RotateY(fa), &TransformOperation::RotateY(ta)) | (&TransformOperation::RotateZ(fa), &TransformOperation::RotateZ(ta)) | (&TransformOperation::Rotate(fa), &TransformOperation::Rotate(ta)) => { fa.compute_squared_distance(&ta) }, ( &TransformOperation::Perspective(ref fd), &TransformOperation::Perspective(ref td), ) => fd .infinity_or(|l| l.px()) .compute_squared_distance(&td.infinity_or(|l| l.px())), (&TransformOperation::Perspective(ref p), &TransformOperation::Matrix3D(ref m)) | (&TransformOperation::Matrix3D(ref m), &TransformOperation::Perspective(ref p)) => { // FIXME(emilio): Is this right? Why interpolating this with // Perspective but not with anything else? let mut p_matrix = Matrix3D::identity(); let p = p.infinity_or(|p| p.px()); if p >= 0. { p_matrix.m34 = -1. / p.max(1.); } p_matrix.compute_squared_distance(&m) }, // Gecko cross-interpolates amongst all translate and all scale // functions (See ToPrimitive in layout/style/StyleAnimationValue.cpp) // without falling back to InterpolateMatrix _ if self.is_translate() && other.is_translate() => self .to_translate_3d() .compute_squared_distance(&other.to_translate_3d()), _ if self.is_scale() && other.is_scale() => self .to_scale_3d() .compute_squared_distance(&other.to_scale_3d()), _ if self.is_rotate() && other.is_rotate() => self .to_rotate_3d() .compute_squared_distance(&other.to_rotate_3d()), _ => Err(()), } } } // ------------------------------------ // Individual transforms. // ------------------------------------ /// impl ComputedRotate { fn resolve(&self) -> (Number, Number, Number, Angle) { // According to the spec: // https://drafts.csswg.org/css-transforms-2/#individual-transforms // // If the axis is unspecified, it defaults to "0 0 1" match *self { Rotate::None => (0., 0., 1., Angle::zero()), Rotate::Rotate3D(rx, ry, rz, angle) => (rx, ry, rz, angle), Rotate::Rotate(angle) => (0., 0., 1., angle), } } } impl Animate for ComputedRotate { #[inline] fn animate(&self, other: &Self, procedure: Procedure) -> Result { match (self, other) { (&Rotate::None, &Rotate::None) => Ok(Rotate::None), (&Rotate::Rotate3D(fx, fy, fz, fa), &Rotate::None) => { // We always normalize direction vector for rotate3d() first, so we should also // apply the same rule for rotate property. In other words, we promote none into // a 3d rotate, and normalize both direction vector first, and then do // interpolation. let (fx, fy, fz, fa) = transform::get_normalized_vector_and_angle(fx, fy, fz, fa); Ok(Rotate::Rotate3D( fx, fy, fz, fa.animate(&Angle::zero(), procedure)?, )) }, (&Rotate::None, &Rotate::Rotate3D(tx, ty, tz, ta)) => { // Normalize direction vector first. let (tx, ty, tz, ta) = transform::get_normalized_vector_and_angle(tx, ty, tz, ta); Ok(Rotate::Rotate3D( tx, ty, tz, Angle::zero().animate(&ta, procedure)?, )) }, (&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => { let (from, to) = (self.resolve(), other.resolve()); let (mut fx, mut fy, mut fz, fa) = transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3); let (mut tx, mut ty, mut tz, ta) = transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3); if fa == Angle::from_degrees(0.) { fx = tx; fy = ty; fz = tz; } else if ta == Angle::from_degrees(0.) { tx = fx; ty = fy; tz = fz; } if (fx, fy, fz) == (tx, ty, tz) { return Ok(Rotate::Rotate3D(fx, fy, fz, fa.animate(&ta, procedure)?)); } let fv = DirectionVector::new(fx, fy, fz); let tv = DirectionVector::new(tx, ty, tz); let fq = Quaternion::from_direction_and_angle(&fv, fa.radians64()); let tq = Quaternion::from_direction_and_angle(&tv, ta.radians64()); let rq = Quaternion::animate(&fq, &tq, procedure)?; let (x, y, z, angle) = transform::get_normalized_vector_and_angle( rq.0 as f32, rq.1 as f32, rq.2 as f32, rq.3.acos() as f32 * 2.0, ); Ok(Rotate::Rotate3D(x, y, z, Angle::from_radians(angle))) }, (&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => { // If this is a 2D rotation, we just animate the let (from, to) = (self.resolve().3, other.resolve().3); Ok(Rotate::Rotate(from.animate(&to, procedure)?)) }, } } } impl ComputeSquaredDistance for ComputedRotate { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { match (self, other) { (&Rotate::None, &Rotate::None) => Ok(SquaredDistance::from_sqrt(0.)), (&Rotate::Rotate3D(_, _, _, a), &Rotate::None) | (&Rotate::None, &Rotate::Rotate3D(_, _, _, a)) => { a.compute_squared_distance(&Angle::zero()) }, (&Rotate::Rotate3D(_, ..), _) | (_, &Rotate::Rotate3D(_, ..)) => { let (from, to) = (self.resolve(), other.resolve()); let (mut fx, mut fy, mut fz, angle1) = transform::get_normalized_vector_and_angle(from.0, from.1, from.2, from.3); let (mut tx, mut ty, mut tz, angle2) = transform::get_normalized_vector_and_angle(to.0, to.1, to.2, to.3); if angle1 == Angle::zero() { fx = tx; fy = ty; fz = tz; } else if angle2 == Angle::zero() { tx = fx; ty = fy; tz = fz; } if (fx, fy, fz) == (tx, ty, tz) { angle1.compute_squared_distance(&angle2) } else { let v1 = DirectionVector::new(fx, fy, fz); let v2 = DirectionVector::new(tx, ty, tz); let q1 = Quaternion::from_direction_and_angle(&v1, angle1.radians64()); let q2 = Quaternion::from_direction_and_angle(&v2, angle2.radians64()); q1.compute_squared_distance(&q2) } }, (&Rotate::Rotate(_), _) | (_, &Rotate::Rotate(_)) => self .resolve() .3 .compute_squared_distance(&other.resolve().3), } } } /// impl ComputedTranslate { fn resolve(&self) -> (LengthPercentage, LengthPercentage, Length) { // According to the spec: // https://drafts.csswg.org/css-transforms-2/#individual-transforms // // Unspecified translations default to 0px match *self { Translate::None => ( LengthPercentage::zero(), LengthPercentage::zero(), Length::zero(), ), Translate::Translate(ref tx, ref ty, ref tz) => (tx.clone(), ty.clone(), tz.clone()), } } } impl Animate for ComputedTranslate { #[inline] fn animate(&self, other: &Self, procedure: Procedure) -> Result { match (self, other) { (&Translate::None, &Translate::None) => Ok(Translate::None), (&Translate::Translate(_, ..), _) | (_, &Translate::Translate(_, ..)) => { let (from, to) = (self.resolve(), other.resolve()); Ok(Translate::Translate( from.0.animate(&to.0, procedure)?, from.1.animate(&to.1, procedure)?, from.2.animate(&to.2, procedure)?, )) }, } } } impl ComputeSquaredDistance for ComputedTranslate { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { let (from, to) = (self.resolve(), other.resolve()); Ok(from.0.compute_squared_distance(&to.0)? + from.1.compute_squared_distance(&to.1)? + from.2.compute_squared_distance(&to.2)?) } } /// impl ComputedScale { fn resolve(&self) -> (Number, Number, Number) { // According to the spec: // https://drafts.csswg.org/css-transforms-2/#individual-transforms // // Unspecified scales default to 1 match *self { Scale::None => (1.0, 1.0, 1.0), Scale::Scale(sx, sy, sz) => (sx, sy, sz), } } } impl Animate for ComputedScale { #[inline] fn animate(&self, other: &Self, procedure: Procedure) -> Result { match (self, other) { (&Scale::None, &Scale::None) => Ok(Scale::None), (&Scale::Scale(_, ..), _) | (_, &Scale::Scale(_, ..)) => { let (from, to) = (self.resolve(), other.resolve()); // For transform lists, we add by appending to the list of // transform functions. However, ComputedScale cannot be // simply concatenated, so we have to calculate the additive // result here. if procedure == Procedure::Add { // scale(x1,y1,z1)*scale(x2,y2,z2) = scale(x1*x2, y1*y2, z1*z2) return Ok(Scale::Scale(from.0 * to.0, from.1 * to.1, from.2 * to.2)); } Ok(Scale::Scale( animate_multiplicative_factor(from.0, to.0, procedure)?, animate_multiplicative_factor(from.1, to.1, procedure)?, animate_multiplicative_factor(from.2, to.2, procedure)?, )) }, } } } impl ComputeSquaredDistance for ComputedScale { #[inline] fn compute_squared_distance(&self, other: &Self) -> Result { let (from, to) = (self.resolve(), other.resolve()); Ok(from.0.compute_squared_distance(&to.0)? + from.1.compute_squared_distance(&to.1)? + from.2.compute_squared_distance(&to.2)?) } }