// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/compressed_dc.h" #include #include #include #include #include #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/compressed_dc.cc" #include #include #include #include "lib/jxl/ac_strategy.h" #include "lib/jxl/ans_params.h" #include "lib/jxl/aux_out.h" #include "lib/jxl/aux_out_fwd.h" #include "lib/jxl/base/bits.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/data_parallel.h" #include "lib/jxl/base/padded_bytes.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/base/status.h" #include "lib/jxl/chroma_from_luma.h" #include "lib/jxl/common.h" #include "lib/jxl/dec_ans.h" #include "lib/jxl/dec_bit_reader.h" #include "lib/jxl/dec_cache.h" #include "lib/jxl/entropy_coder.h" #include "lib/jxl/image.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { using D = HWY_FULL(float); using DScalar = HWY_CAPPED(float, 1); // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Abs; using hwy::HWY_NAMESPACE::Add; using hwy::HWY_NAMESPACE::Div; using hwy::HWY_NAMESPACE::Max; using hwy::HWY_NAMESPACE::Mul; using hwy::HWY_NAMESPACE::MulAdd; using hwy::HWY_NAMESPACE::Rebind; using hwy::HWY_NAMESPACE::Sub; using hwy::HWY_NAMESPACE::Vec; using hwy::HWY_NAMESPACE::ZeroIfNegative; // TODO(veluca): optimize constants. const float w1 = 0.20345139757231578f; const float w2 = 0.0334829185968739f; const float w0 = 1.0f - 4.0f * (w1 + w2); template V MaxWorkaround(V a, V b) { #if (HWY_TARGET == HWY_AVX3) && HWY_COMPILER_CLANG <= 800 // Prevents "Do not know how to split the result of this operator" error return IfThenElse(a > b, a, b); #else return Max(a, b); #endif } template JXL_INLINE void ComputePixelChannel(const D d, const float dc_factor, const float* JXL_RESTRICT row_top, const float* JXL_RESTRICT row, const float* JXL_RESTRICT row_bottom, Vec* JXL_RESTRICT mc, Vec* JXL_RESTRICT sm, Vec* JXL_RESTRICT gap, size_t x) { const auto tl = LoadU(d, row_top + x - 1); const auto tc = Load(d, row_top + x); const auto tr = LoadU(d, row_top + x + 1); const auto ml = LoadU(d, row + x - 1); *mc = Load(d, row + x); const auto mr = LoadU(d, row + x + 1); const auto bl = LoadU(d, row_bottom + x - 1); const auto bc = Load(d, row_bottom + x); const auto br = LoadU(d, row_bottom + x + 1); const auto w_center = Set(d, w0); const auto w_side = Set(d, w1); const auto w_corner = Set(d, w2); const auto corner = Add(Add(tl, tr), Add(bl, br)); const auto side = Add(Add(ml, mr), Add(tc, bc)); *sm = MulAdd(corner, w_corner, MulAdd(side, w_side, Mul(*mc, w_center))); const auto dc_quant = Set(d, dc_factor); *gap = MaxWorkaround(*gap, Abs(Div(Sub(*mc, *sm), dc_quant))); } template JXL_INLINE void ComputePixel( const float* JXL_RESTRICT dc_factors, const float* JXL_RESTRICT* JXL_RESTRICT rows_top, const float* JXL_RESTRICT* JXL_RESTRICT rows, const float* JXL_RESTRICT* JXL_RESTRICT rows_bottom, float* JXL_RESTRICT* JXL_RESTRICT out_rows, size_t x) { const D d; auto mc_x = Undefined(d); auto mc_y = Undefined(d); auto mc_b = Undefined(d); auto sm_x = Undefined(d); auto sm_y = Undefined(d); auto sm_b = Undefined(d); auto gap = Set(d, 0.5f); ComputePixelChannel(d, dc_factors[0], rows_top[0], rows[0], rows_bottom[0], &mc_x, &sm_x, &gap, x); ComputePixelChannel(d, dc_factors[1], rows_top[1], rows[1], rows_bottom[1], &mc_y, &sm_y, &gap, x); ComputePixelChannel(d, dc_factors[2], rows_top[2], rows[2], rows_bottom[2], &mc_b, &sm_b, &gap, x); auto factor = MulAdd(Set(d, -4.0f), gap, Set(d, 3.0f)); factor = ZeroIfNegative(factor); auto out = MulAdd(Sub(sm_x, mc_x), factor, mc_x); Store(out, d, out_rows[0] + x); out = MulAdd(Sub(sm_y, mc_y), factor, mc_y); Store(out, d, out_rows[1] + x); out = MulAdd(Sub(sm_b, mc_b), factor, mc_b); Store(out, d, out_rows[2] + x); } void AdaptiveDCSmoothing(const float* dc_factors, Image3F* dc, ThreadPool* pool) { const size_t xsize = dc->xsize(); const size_t ysize = dc->ysize(); if (ysize <= 2 || xsize <= 2) return; // TODO(veluca): use tile-based processing? // TODO(veluca): decide if changes to the y channel should be propagated to // the x and b channels through color correlation. JXL_ASSERT(w1 + w2 < 0.25f); PROFILER_FUNC; Image3F smoothed(xsize, ysize); // Fill in borders that the loop below will not. First and last are unused. for (size_t c = 0; c < 3; c++) { for (size_t y : {size_t(0), ysize - 1}) { memcpy(smoothed.PlaneRow(c, y), dc->PlaneRow(c, y), xsize * sizeof(float)); } } auto process_row = [&](const uint32_t y, size_t /*thread*/) { const float* JXL_RESTRICT rows_top[3]{ dc->ConstPlaneRow(0, y - 1), dc->ConstPlaneRow(1, y - 1), dc->ConstPlaneRow(2, y - 1), }; const float* JXL_RESTRICT rows[3] = { dc->ConstPlaneRow(0, y), dc->ConstPlaneRow(1, y), dc->ConstPlaneRow(2, y), }; const float* JXL_RESTRICT rows_bottom[3] = { dc->ConstPlaneRow(0, y + 1), dc->ConstPlaneRow(1, y + 1), dc->ConstPlaneRow(2, y + 1), }; float* JXL_RESTRICT rows_out[3] = { smoothed.PlaneRow(0, y), smoothed.PlaneRow(1, y), smoothed.PlaneRow(2, y), }; for (size_t x : {size_t(0), xsize - 1}) { for (size_t c = 0; c < 3; c++) { rows_out[c][x] = rows[c][x]; } } size_t x = 1; // First pixels const size_t N = Lanes(D()); for (; x < std::min(N, xsize - 1); x++) { ComputePixel(dc_factors, rows_top, rows, rows_bottom, rows_out, x); } // Full vectors. for (; x + N <= xsize - 1; x += N) { ComputePixel(dc_factors, rows_top, rows, rows_bottom, rows_out, x); } // Last pixels. for (; x < xsize - 1; x++) { ComputePixel(dc_factors, rows_top, rows, rows_bottom, rows_out, x); } }; JXL_CHECK(RunOnPool(pool, 1, ysize - 1, ThreadPool::NoInit, process_row, "DCSmoothingRow")); dc->Swap(smoothed); } // DC dequantization. void DequantDC(const Rect& r, Image3F* dc, ImageB* quant_dc, const Image& in, const float* dc_factors, float mul, const float* cfl_factors, YCbCrChromaSubsampling chroma_subsampling, const BlockCtxMap& bctx) { const HWY_FULL(float) df; const Rebind di; // assumes pixel_type <= float if (chroma_subsampling.Is444()) { const auto fac_x = Set(df, dc_factors[0] * mul); const auto fac_y = Set(df, dc_factors[1] * mul); const auto fac_b = Set(df, dc_factors[2] * mul); const auto cfl_fac_x = Set(df, cfl_factors[0]); const auto cfl_fac_b = Set(df, cfl_factors[2]); for (size_t y = 0; y < r.ysize(); y++) { float* dec_row_x = r.PlaneRow(dc, 0, y); float* dec_row_y = r.PlaneRow(dc, 1, y); float* dec_row_b = r.PlaneRow(dc, 2, y); const int32_t* quant_row_x = in.channel[1].plane.Row(y); const int32_t* quant_row_y = in.channel[0].plane.Row(y); const int32_t* quant_row_b = in.channel[2].plane.Row(y); for (size_t x = 0; x < r.xsize(); x += Lanes(di)) { const auto in_q_x = Load(di, quant_row_x + x); const auto in_q_y = Load(di, quant_row_y + x); const auto in_q_b = Load(di, quant_row_b + x); const auto in_x = Mul(ConvertTo(df, in_q_x), fac_x); const auto in_y = Mul(ConvertTo(df, in_q_y), fac_y); const auto in_b = Mul(ConvertTo(df, in_q_b), fac_b); Store(in_y, df, dec_row_y + x); Store(MulAdd(in_y, cfl_fac_x, in_x), df, dec_row_x + x); Store(MulAdd(in_y, cfl_fac_b, in_b), df, dec_row_b + x); } } } else { for (size_t c : {1, 0, 2}) { Rect rect(r.x0() >> chroma_subsampling.HShift(c), r.y0() >> chroma_subsampling.VShift(c), r.xsize() >> chroma_subsampling.HShift(c), r.ysize() >> chroma_subsampling.VShift(c)); const auto fac = Set(df, dc_factors[c] * mul); const Channel& ch = in.channel[c < 2 ? c ^ 1 : c]; for (size_t y = 0; y < rect.ysize(); y++) { const int32_t* quant_row = ch.plane.Row(y); float* row = rect.PlaneRow(dc, c, y); for (size_t x = 0; x < rect.xsize(); x += Lanes(di)) { const auto in_q = Load(di, quant_row + x); const auto in = Mul(ConvertTo(df, in_q), fac); Store(in, df, row + x); } } } } if (bctx.num_dc_ctxs <= 1) { for (size_t y = 0; y < r.ysize(); y++) { uint8_t* qdc_row = r.Row(quant_dc, y); memset(qdc_row, 0, sizeof(*qdc_row) * r.xsize()); } } else { for (size_t y = 0; y < r.ysize(); y++) { uint8_t* qdc_row_val = r.Row(quant_dc, y); const int32_t* quant_row_x = in.channel[1].plane.Row(y >> chroma_subsampling.VShift(0)); const int32_t* quant_row_y = in.channel[0].plane.Row(y >> chroma_subsampling.VShift(1)); const int32_t* quant_row_b = in.channel[2].plane.Row(y >> chroma_subsampling.VShift(2)); for (size_t x = 0; x < r.xsize(); x++) { int bucket_x = 0, bucket_y = 0, bucket_b = 0; for (int t : bctx.dc_thresholds[0]) { if (quant_row_x[x >> chroma_subsampling.HShift(0)] > t) bucket_x++; } for (int t : bctx.dc_thresholds[1]) { if (quant_row_y[x >> chroma_subsampling.HShift(1)] > t) bucket_y++; } for (int t : bctx.dc_thresholds[2]) { if (quant_row_b[x >> chroma_subsampling.HShift(2)] > t) bucket_b++; } int bucket = bucket_x; bucket *= bctx.dc_thresholds[2].size() + 1; bucket += bucket_b; bucket *= bctx.dc_thresholds[1].size() + 1; bucket += bucket_y; qdc_row_val[x] = bucket; } } } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(DequantDC); HWY_EXPORT(AdaptiveDCSmoothing); void AdaptiveDCSmoothing(const float* dc_factors, Image3F* dc, ThreadPool* pool) { return HWY_DYNAMIC_DISPATCH(AdaptiveDCSmoothing)(dc_factors, dc, pool); } void DequantDC(const Rect& r, Image3F* dc, ImageB* quant_dc, const Image& in, const float* dc_factors, float mul, const float* cfl_factors, YCbCrChromaSubsampling chroma_subsampling, const BlockCtxMap& bctx) { return HWY_DYNAMIC_DISPATCH(DequantDC)(r, dc, quant_dc, in, dc_factors, mul, cfl_factors, chroma_subsampling, bctx); } } // namespace jxl #endif // HWY_ONCE