/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "absl/strings/string_view.h" #include "api/audio_codecs/builtin_audio_encoder_factory.h" #include "api/rtc_event_log/rtc_event_log.h" #include "api/task_queue/pending_task_safety_flag.h" #include "api/task_queue/task_queue_base.h" #include "api/test/simulated_network.h" #include "api/video/builtin_video_bitrate_allocator_factory.h" #include "api/video/video_bitrate_allocation.h" #include "api/video_codecs/video_encoder.h" #include "api/video_codecs/video_encoder_config.h" #include "call/call.h" #include "call/fake_network_pipe.h" #include "call/simulated_network.h" #include "media/engine/internal_encoder_factory.h" #include "media/engine/simulcast_encoder_adapter.h" #include "modules/audio_coding/include/audio_coding_module.h" #include "modules/audio_device/include/test_audio_device.h" #include "modules/audio_mixer/audio_mixer_impl.h" #include "modules/rtp_rtcp/source/rtp_packet.h" #include "rtc_base/checks.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/task_queue_for_test.h" #include "rtc_base/thread.h" #include "rtc_base/thread_annotations.h" #include "system_wrappers/include/metrics.h" #include "test/call_test.h" #include "test/direct_transport.h" #include "test/drifting_clock.h" #include "test/encoder_settings.h" #include "test/fake_encoder.h" #include "test/field_trial.h" #include "test/frame_generator_capturer.h" #include "test/gtest.h" #include "test/null_transport.h" #include "test/rtp_rtcp_observer.h" #include "test/testsupport/file_utils.h" #include "test/testsupport/perf_test.h" #include "test/video_encoder_proxy_factory.h" #include "video/transport_adapter.h" using webrtc::test::DriftingClock; namespace webrtc { namespace { enum : int { // The first valid value is 1. kTransportSequenceNumberExtensionId = 1, }; } // namespace class CallPerfTest : public test::CallTest { public: CallPerfTest() { RegisterRtpExtension(RtpExtension(RtpExtension::kTransportSequenceNumberUri, kTransportSequenceNumberExtensionId)); } protected: enum class FecMode { kOn, kOff }; enum class CreateOrder { kAudioFirst, kVideoFirst }; void TestAudioVideoSync(FecMode fec, CreateOrder create_first, float video_ntp_speed, float video_rtp_speed, float audio_rtp_speed, absl::string_view test_label); void TestMinTransmitBitrate(bool pad_to_min_bitrate); void TestCaptureNtpTime(const BuiltInNetworkBehaviorConfig& net_config, int threshold_ms, int start_time_ms, int run_time_ms); void TestMinAudioVideoBitrate(int test_bitrate_from, int test_bitrate_to, int test_bitrate_step, int min_bwe, int start_bwe, int max_bwe); void TestEncodeFramerate(VideoEncoderFactory* encoder_factory, absl::string_view payload_name, const std::vector& max_framerates); }; class VideoRtcpAndSyncObserver : public test::RtpRtcpObserver, public rtc::VideoSinkInterface { static const int kInSyncThresholdMs = 50; static const int kStartupTimeMs = 2000; static const int kMinRunTimeMs = 30000; public: explicit VideoRtcpAndSyncObserver(TaskQueueBase* task_queue, Clock* clock, absl::string_view test_label) : test::RtpRtcpObserver(CallPerfTest::kLongTimeout), clock_(clock), test_label_(test_label), creation_time_ms_(clock_->TimeInMilliseconds()), task_queue_(task_queue) {} void OnFrame(const VideoFrame& video_frame) override { task_queue_->PostTask([this]() { CheckStats(); }); } void CheckStats() { if (!receive_stream_) return; VideoReceiveStreamInterface::Stats stats = receive_stream_->GetStats(); if (stats.sync_offset_ms == std::numeric_limits::max()) return; int64_t now_ms = clock_->TimeInMilliseconds(); int64_t time_since_creation = now_ms - creation_time_ms_; // During the first couple of seconds audio and video can falsely be // estimated as being synchronized. We don't want to trigger on those. if (time_since_creation < kStartupTimeMs) return; if (std::abs(stats.sync_offset_ms) < kInSyncThresholdMs) { if (first_time_in_sync_ == -1) { first_time_in_sync_ = now_ms; webrtc::test::PrintResult("sync_convergence_time", test_label_, "synchronization", time_since_creation, "ms", false); } if (time_since_creation > kMinRunTimeMs) observation_complete_.Set(); } if (first_time_in_sync_ != -1) sync_offset_ms_list_.push_back(stats.sync_offset_ms); } void set_receive_stream(VideoReceiveStreamInterface* receive_stream) { RTC_DCHECK_EQ(task_queue_, TaskQueueBase::Current()); // Note that receive_stream may be nullptr. receive_stream_ = receive_stream; } void PrintResults() { test::PrintResultList("stream_offset", test_label_, "synchronization", sync_offset_ms_list_, "ms", false); } private: Clock* const clock_; const std::string test_label_; const int64_t creation_time_ms_; int64_t first_time_in_sync_ = -1; VideoReceiveStreamInterface* receive_stream_ = nullptr; std::vector sync_offset_ms_list_; TaskQueueBase* const task_queue_; }; void CallPerfTest::TestAudioVideoSync(FecMode fec, CreateOrder create_first, float video_ntp_speed, float video_rtp_speed, float audio_rtp_speed, absl::string_view test_label) { const char* kSyncGroup = "av_sync"; const uint32_t kAudioSendSsrc = 1234; const uint32_t kAudioRecvSsrc = 5678; BuiltInNetworkBehaviorConfig audio_net_config; audio_net_config.queue_delay_ms = 500; audio_net_config.loss_percent = 5; auto observer = std::make_unique( task_queue(), Clock::GetRealTimeClock(), test_label); std::map audio_pt_map; std::map video_pt_map; std::unique_ptr audio_send_transport; std::unique_ptr video_send_transport; std::unique_ptr receive_transport; AudioSendStream* audio_send_stream; AudioReceiveStreamInterface* audio_receive_stream; std::unique_ptr drifting_clock; SendTask(task_queue(), [&]() { metrics::Reset(); rtc::scoped_refptr fake_audio_device = TestAudioDeviceModule::Create( task_queue_factory_.get(), TestAudioDeviceModule::CreatePulsedNoiseCapturer(256, 48000), TestAudioDeviceModule::CreateDiscardRenderer(48000), audio_rtp_speed); EXPECT_EQ(0, fake_audio_device->Init()); AudioState::Config send_audio_state_config; send_audio_state_config.audio_mixer = AudioMixerImpl::Create(); send_audio_state_config.audio_processing = AudioProcessingBuilder().Create(); send_audio_state_config.audio_device_module = fake_audio_device; Call::Config sender_config(send_event_log_.get()); auto audio_state = AudioState::Create(send_audio_state_config); fake_audio_device->RegisterAudioCallback(audio_state->audio_transport()); sender_config.audio_state = audio_state; Call::Config receiver_config(recv_event_log_.get()); receiver_config.audio_state = audio_state; CreateCalls(sender_config, receiver_config); std::copy_if(std::begin(payload_type_map_), std::end(payload_type_map_), std::inserter(audio_pt_map, audio_pt_map.end()), [](const std::pair& pair) { return pair.second == MediaType::AUDIO; }); std::copy_if(std::begin(payload_type_map_), std::end(payload_type_map_), std::inserter(video_pt_map, video_pt_map.end()), [](const std::pair& pair) { return pair.second == MediaType::VIDEO; }); audio_send_transport = std::make_unique( task_queue(), sender_call_.get(), observer.get(), test::PacketTransport::kSender, audio_pt_map, std::make_unique( Clock::GetRealTimeClock(), std::make_unique(audio_net_config))); audio_send_transport->SetReceiver(receiver_call_->Receiver()); video_send_transport = std::make_unique( task_queue(), sender_call_.get(), observer.get(), test::PacketTransport::kSender, video_pt_map, std::make_unique(Clock::GetRealTimeClock(), std::make_unique( BuiltInNetworkBehaviorConfig()))); video_send_transport->SetReceiver(receiver_call_->Receiver()); receive_transport = std::make_unique( task_queue(), receiver_call_.get(), observer.get(), test::PacketTransport::kReceiver, payload_type_map_, std::make_unique(Clock::GetRealTimeClock(), std::make_unique( BuiltInNetworkBehaviorConfig()))); receive_transport->SetReceiver(sender_call_->Receiver()); CreateSendConfig(1, 0, 0, video_send_transport.get()); CreateMatchingReceiveConfigs(receive_transport.get()); AudioSendStream::Config audio_send_config(audio_send_transport.get()); audio_send_config.rtp.ssrc = kAudioSendSsrc; audio_send_config.send_codec_spec = AudioSendStream::Config::SendCodecSpec( kAudioSendPayloadType, {"ISAC", 16000, 1}); audio_send_config.encoder_factory = CreateBuiltinAudioEncoderFactory(); audio_send_stream = sender_call_->CreateAudioSendStream(audio_send_config); GetVideoSendConfig()->rtp.nack.rtp_history_ms = kNackRtpHistoryMs; if (fec == FecMode::kOn) { GetVideoSendConfig()->rtp.ulpfec.red_payload_type = kRedPayloadType; GetVideoSendConfig()->rtp.ulpfec.ulpfec_payload_type = kUlpfecPayloadType; video_receive_configs_[0].rtp.red_payload_type = kRedPayloadType; video_receive_configs_[0].rtp.ulpfec_payload_type = kUlpfecPayloadType; } video_receive_configs_[0].rtp.nack.rtp_history_ms = 1000; video_receive_configs_[0].renderer = observer.get(); video_receive_configs_[0].sync_group = kSyncGroup; AudioReceiveStreamInterface::Config audio_recv_config; audio_recv_config.rtp.remote_ssrc = kAudioSendSsrc; audio_recv_config.rtp.local_ssrc = kAudioRecvSsrc; audio_recv_config.rtcp_send_transport = receive_transport.get(); audio_recv_config.sync_group = kSyncGroup; audio_recv_config.decoder_factory = audio_decoder_factory_; audio_recv_config.decoder_map = { {kAudioSendPayloadType, {"ISAC", 16000, 1}}}; if (create_first == CreateOrder::kAudioFirst) { audio_receive_stream = receiver_call_->CreateAudioReceiveStream(audio_recv_config); CreateVideoStreams(); } else { CreateVideoStreams(); audio_receive_stream = receiver_call_->CreateAudioReceiveStream(audio_recv_config); } EXPECT_EQ(1u, video_receive_streams_.size()); observer->set_receive_stream(video_receive_streams_[0]); drifting_clock = std::make_unique(clock_, video_ntp_speed); CreateFrameGeneratorCapturerWithDrift(drifting_clock.get(), video_rtp_speed, kDefaultFramerate, kDefaultWidth, kDefaultHeight); Start(); audio_send_stream->Start(); audio_receive_stream->Start(); }); EXPECT_TRUE(observer->Wait()) << "Timed out while waiting for audio and video to be synchronized."; SendTask(task_queue(), [&]() { // Clear the pointer to the receive stream since it will now be deleted. observer->set_receive_stream(nullptr); audio_send_stream->Stop(); audio_receive_stream->Stop(); Stop(); DestroyStreams(); sender_call_->DestroyAudioSendStream(audio_send_stream); receiver_call_->DestroyAudioReceiveStream(audio_receive_stream); DestroyCalls(); // Call may post periodic rtcp packet to the transport on the process // thread, thus transport should be destroyed after the call objects. // Though transports keep pointers to the call objects, transports handle // packets on the task_queue() and thus wouldn't create a race while current // destruction happens in the same task as destruction of the call objects. video_send_transport.reset(); audio_send_transport.reset(); receive_transport.reset(); }); observer->PrintResults(); // In quick test synchronization may not be achieved in time. if (!field_trial::IsEnabled("WebRTC-QuickPerfTest")) { // TODO(bugs.webrtc.org/10417): Reenable this for iOS #if !defined(WEBRTC_IOS) EXPECT_METRIC_EQ(1, metrics::NumSamples("WebRTC.Video.AVSyncOffsetInMs")); #endif } task_queue()->PostTask( [to_delete = observer.release()]() { delete to_delete; }); } TEST_F(CallPerfTest, Synchronization_PlaysOutAudioAndVideoWithoutClockDrift) { TestAudioVideoSync(FecMode::kOff, CreateOrder::kAudioFirst, DriftingClock::kNoDrift, DriftingClock::kNoDrift, DriftingClock::kNoDrift, "_video_no_drift"); } TEST_F(CallPerfTest, Synchronization_PlaysOutAudioAndVideoWithVideoNtpDrift) { TestAudioVideoSync(FecMode::kOff, CreateOrder::kAudioFirst, DriftingClock::PercentsFaster(10.0f), DriftingClock::kNoDrift, DriftingClock::kNoDrift, "_video_ntp_drift"); } TEST_F(CallPerfTest, Synchronization_PlaysOutAudioAndVideoWithAudioFasterThanVideoDrift) { TestAudioVideoSync(FecMode::kOff, CreateOrder::kAudioFirst, DriftingClock::kNoDrift, DriftingClock::PercentsSlower(30.0f), DriftingClock::PercentsFaster(30.0f), "_audio_faster"); } TEST_F(CallPerfTest, Synchronization_PlaysOutAudioAndVideoWithVideoFasterThanAudioDrift) { TestAudioVideoSync(FecMode::kOn, CreateOrder::kVideoFirst, DriftingClock::kNoDrift, DriftingClock::PercentsFaster(30.0f), DriftingClock::PercentsSlower(30.0f), "_video_faster"); } void CallPerfTest::TestCaptureNtpTime( const BuiltInNetworkBehaviorConfig& net_config, int threshold_ms, int start_time_ms, int run_time_ms) { class CaptureNtpTimeObserver : public test::EndToEndTest, public rtc::VideoSinkInterface { public: CaptureNtpTimeObserver(const BuiltInNetworkBehaviorConfig& net_config, int threshold_ms, int start_time_ms, int run_time_ms) : EndToEndTest(kLongTimeout), net_config_(net_config), clock_(Clock::GetRealTimeClock()), threshold_ms_(threshold_ms), start_time_ms_(start_time_ms), run_time_ms_(run_time_ms), creation_time_ms_(clock_->TimeInMilliseconds()), capturer_(nullptr), rtp_start_timestamp_set_(false), rtp_start_timestamp_(0) {} private: std::unique_ptr CreateSendTransport( TaskQueueBase* task_queue, Call* sender_call) override { return std::make_unique( task_queue, sender_call, this, test::PacketTransport::kSender, payload_type_map_, std::make_unique( Clock::GetRealTimeClock(), std::make_unique(net_config_))); } std::unique_ptr CreateReceiveTransport( TaskQueueBase* task_queue) override { return std::make_unique( task_queue, nullptr, this, test::PacketTransport::kReceiver, payload_type_map_, std::make_unique( Clock::GetRealTimeClock(), std::make_unique(net_config_))); } void OnFrame(const VideoFrame& video_frame) override { MutexLock lock(&mutex_); if (video_frame.ntp_time_ms() <= 0) { // Haven't got enough RTCP SR in order to calculate the capture ntp // time. return; } int64_t now_ms = clock_->TimeInMilliseconds(); int64_t time_since_creation = now_ms - creation_time_ms_; if (time_since_creation < start_time_ms_) { // Wait for `start_time_ms_` before start measuring. return; } if (time_since_creation > run_time_ms_) { observation_complete_.Set(); } FrameCaptureTimeList::iterator iter = capture_time_list_.find(video_frame.timestamp()); EXPECT_TRUE(iter != capture_time_list_.end()); // The real capture time has been wrapped to uint32_t before converted // to rtp timestamp in the sender side. So here we convert the estimated // capture time to a uint32_t 90k timestamp also for comparing. uint32_t estimated_capture_timestamp = 90 * static_cast(video_frame.ntp_time_ms()); uint32_t real_capture_timestamp = iter->second; int time_offset_ms = real_capture_timestamp - estimated_capture_timestamp; time_offset_ms = time_offset_ms / 90; time_offset_ms_list_.push_back(time_offset_ms); EXPECT_TRUE(std::abs(time_offset_ms) < threshold_ms_); } Action OnSendRtp(const uint8_t* packet, size_t length) override { MutexLock lock(&mutex_); RtpPacket rtp_packet; EXPECT_TRUE(rtp_packet.Parse(packet, length)); if (!rtp_start_timestamp_set_) { // Calculate the rtp timestamp offset in order to calculate the real // capture time. uint32_t first_capture_timestamp = 90 * static_cast(capturer_->first_frame_capture_time()); rtp_start_timestamp_ = rtp_packet.Timestamp() - first_capture_timestamp; rtp_start_timestamp_set_ = true; } uint32_t capture_timestamp = rtp_packet.Timestamp() - rtp_start_timestamp_; capture_time_list_.insert( capture_time_list_.end(), std::make_pair(rtp_packet.Timestamp(), capture_timestamp)); return SEND_PACKET; } void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { capturer_ = frame_generator_capturer; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { (*receive_configs)[0].renderer = this; // Enable the receiver side rtt calculation. (*receive_configs)[0].rtp.rtcp_xr.receiver_reference_time_report = true; } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out while waiting for estimated capture " "NTP time to be within bounds."; test::PrintResultList("capture_ntp_time", "", "real - estimated", time_offset_ms_list_, "ms", true); } Mutex mutex_; const BuiltInNetworkBehaviorConfig net_config_; Clock* const clock_; const int threshold_ms_; const int start_time_ms_; const int run_time_ms_; const int64_t creation_time_ms_; test::FrameGeneratorCapturer* capturer_; bool rtp_start_timestamp_set_; uint32_t rtp_start_timestamp_; typedef std::map FrameCaptureTimeList; FrameCaptureTimeList capture_time_list_ RTC_GUARDED_BY(&mutex_); std::vector time_offset_ms_list_; } test(net_config, threshold_ms, start_time_ms, run_time_ms); RunBaseTest(&test); } // Flaky tests, disabled on Mac and Windows due to webrtc:8291. #if !(defined(WEBRTC_MAC) || defined(WEBRTC_WIN)) TEST_F(CallPerfTest, Real_Estimated_CaptureNtpTimeWithNetworkDelay) { BuiltInNetworkBehaviorConfig net_config; net_config.queue_delay_ms = 100; // TODO(wu): lower the threshold as the calculation/estimation becomes more // accurate. const int kThresholdMs = 100; const int kStartTimeMs = 10000; const int kRunTimeMs = 20000; TestCaptureNtpTime(net_config, kThresholdMs, kStartTimeMs, kRunTimeMs); } TEST_F(CallPerfTest, Real_Estimated_CaptureNtpTimeWithNetworkJitter) { BuiltInNetworkBehaviorConfig net_config; net_config.queue_delay_ms = 100; net_config.delay_standard_deviation_ms = 10; // TODO(wu): lower the threshold as the calculation/estimation becomes more // accurate. const int kThresholdMs = 100; const int kStartTimeMs = 10000; const int kRunTimeMs = 20000; TestCaptureNtpTime(net_config, kThresholdMs, kStartTimeMs, kRunTimeMs); } #endif TEST_F(CallPerfTest, ReceivesCpuOveruseAndUnderuse) { // Minimal normal usage at the start, then 30s overuse to allow filter to // settle, and then 80s underuse to allow plenty of time for rampup again. test::ScopedFieldTrials fake_overuse_settings( "WebRTC-ForceSimulatedOveruseIntervalMs/1-30000-80000/"); class LoadObserver : public test::SendTest, public test::FrameGeneratorCapturer::SinkWantsObserver { public: LoadObserver() : SendTest(kLongTimeout), test_phase_(TestPhase::kInit) {} void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_capturer->SetSinkWantsObserver(this); // Set a high initial resolution to be sure that we can scale down. frame_generator_capturer->ChangeResolution(1920, 1080); } // OnSinkWantsChanged is called when FrameGeneratorCapturer::AddOrUpdateSink // is called. // TODO(sprang): Add integration test for maintain-framerate mode? void OnSinkWantsChanged(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { // The sink wants can change either because an adaptation happened (i.e. // the pixels or frame rate changed) or for other reasons, such as encoded // resolutions being communicated (happens whenever we capture a new frame // size). In this test, we only care about adaptations. bool did_adapt = last_wants_.max_pixel_count != wants.max_pixel_count || last_wants_.target_pixel_count != wants.target_pixel_count || last_wants_.max_framerate_fps != wants.max_framerate_fps; last_wants_ = wants; if (!did_adapt) { return; } // At kStart expect CPU overuse. Then expect CPU underuse when the encoder // delay has been decreased. switch (test_phase_) { case TestPhase::kInit: // Max framerate should be set initially. if (wants.max_framerate_fps != std::numeric_limits::max() && wants.max_pixel_count == std::numeric_limits::max()) { test_phase_ = TestPhase::kStart; } else { ADD_FAILURE() << "Got unexpected adaptation request, max res = " << wants.max_pixel_count << ", target res = " << wants.target_pixel_count.value_or(-1) << ", max fps = " << wants.max_framerate_fps; } break; case TestPhase::kStart: if (wants.max_pixel_count < std::numeric_limits::max()) { // On adapting down, VideoStreamEncoder::VideoSourceProxy will set // only the max pixel count, leaving the target unset. test_phase_ = TestPhase::kAdaptedDown; } else { ADD_FAILURE() << "Got unexpected adaptation request, max res = " << wants.max_pixel_count << ", target res = " << wants.target_pixel_count.value_or(-1) << ", max fps = " << wants.max_framerate_fps; } break; case TestPhase::kAdaptedDown: // On adapting up, the adaptation counter will again be at zero, and // so all constraints will be reset. if (wants.max_pixel_count == std::numeric_limits::max() && !wants.target_pixel_count) { test_phase_ = TestPhase::kAdaptedUp; observation_complete_.Set(); } else { ADD_FAILURE() << "Got unexpected adaptation request, max res = " << wants.max_pixel_count << ", target res = " << wants.target_pixel_count.value_or(-1) << ", max fps = " << wants.max_framerate_fps; } break; case TestPhase::kAdaptedUp: ADD_FAILURE() << "Got unexpected adaptation request, max res = " << wants.max_pixel_count << ", target res = " << wants.target_pixel_count.value_or(-1) << ", max fps = " << wants.max_framerate_fps; } } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override {} void PerformTest() override { EXPECT_TRUE(Wait()) << "Timed out before receiving an overuse callback."; } enum class TestPhase { kInit, kStart, kAdaptedDown, kAdaptedUp } test_phase_; private: rtc::VideoSinkWants last_wants_; } test; RunBaseTest(&test); } void CallPerfTest::TestMinTransmitBitrate(bool pad_to_min_bitrate) { static const int kMaxEncodeBitrateKbps = 30; static const int kMinTransmitBitrateBps = 150000; static const int kMinAcceptableTransmitBitrate = 130; static const int kMaxAcceptableTransmitBitrate = 170; static const int kNumBitrateObservationsInRange = 100; static const int kAcceptableBitrateErrorMargin = 15; // +- 7 class BitrateObserver : public test::EndToEndTest { public: explicit BitrateObserver(bool using_min_transmit_bitrate, TaskQueueBase* task_queue) : EndToEndTest(kLongTimeout), send_stream_(nullptr), converged_(false), pad_to_min_bitrate_(using_min_transmit_bitrate), min_acceptable_bitrate_(using_min_transmit_bitrate ? kMinAcceptableTransmitBitrate : (kMaxEncodeBitrateKbps - kAcceptableBitrateErrorMargin / 2)), max_acceptable_bitrate_(using_min_transmit_bitrate ? kMaxAcceptableTransmitBitrate : (kMaxEncodeBitrateKbps + kAcceptableBitrateErrorMargin / 2)), num_bitrate_observations_in_range_(0), task_queue_(task_queue), task_safety_flag_(PendingTaskSafetyFlag::CreateDetached()) {} private: // TODO(holmer): Run this with a timer instead of once per packet. Action OnSendRtp(const uint8_t* packet, size_t length) override { task_queue_->PostTask(SafeTask(task_safety_flag_, [this]() { VideoSendStream::Stats stats = send_stream_->GetStats(); if (!stats.substreams.empty()) { RTC_DCHECK_EQ(1, stats.substreams.size()); int bitrate_kbps = stats.substreams.begin()->second.total_bitrate_bps / 1000; if (bitrate_kbps > min_acceptable_bitrate_ && bitrate_kbps < max_acceptable_bitrate_) { converged_ = true; ++num_bitrate_observations_in_range_; if (num_bitrate_observations_in_range_ == kNumBitrateObservationsInRange) observation_complete_.Set(); } if (converged_) bitrate_kbps_list_.push_back(bitrate_kbps); } })); return SEND_PACKET; } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } void OnStreamsStopped() override { task_safety_flag_->SetNotAlive(); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { if (pad_to_min_bitrate_) { encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps; } else { RTC_DCHECK_EQ(0, encoder_config->min_transmit_bitrate_bps); } } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timeout while waiting for send-bitrate stats."; test::PrintResultList( "bitrate_stats_", (pad_to_min_bitrate_ ? "min_transmit_bitrate" : "without_min_transmit_bitrate"), "bitrate_kbps", bitrate_kbps_list_, "kbps", false); } VideoSendStream* send_stream_; bool converged_; const bool pad_to_min_bitrate_; const int min_acceptable_bitrate_; const int max_acceptable_bitrate_; int num_bitrate_observations_in_range_; std::vector bitrate_kbps_list_; TaskQueueBase* task_queue_; rtc::scoped_refptr task_safety_flag_; } test(pad_to_min_bitrate, task_queue()); fake_encoder_max_bitrate_ = kMaxEncodeBitrateKbps; RunBaseTest(&test); } TEST_F(CallPerfTest, Bitrate_Kbps_PadsToMinTransmitBitrate) { TestMinTransmitBitrate(true); } TEST_F(CallPerfTest, Bitrate_Kbps_NoPadWithoutMinTransmitBitrate) { TestMinTransmitBitrate(false); } // TODO(bugs.webrtc.org/8878) #if defined(WEBRTC_MAC) #define MAYBE_KeepsHighBitrateWhenReconfiguringSender \ DISABLED_KeepsHighBitrateWhenReconfiguringSender #else #define MAYBE_KeepsHighBitrateWhenReconfiguringSender \ KeepsHighBitrateWhenReconfiguringSender #endif TEST_F(CallPerfTest, MAYBE_KeepsHighBitrateWhenReconfiguringSender) { static const uint32_t kInitialBitrateKbps = 400; static const uint32_t kReconfigureThresholdKbps = 600; // We get lower bitrate than expected by this test if the following field // trial is enabled. test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-SendSideBwe-WithOverhead/Disabled/"); class VideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: VideoStreamFactory() {} private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams(width, height, encoder_config); streams[0].min_bitrate_bps = 50000; streams[0].target_bitrate_bps = streams[0].max_bitrate_bps = 2000000; return streams; } }; class BitrateObserver : public test::EndToEndTest, public test::FakeEncoder { public: explicit BitrateObserver(TaskQueueBase* task_queue) : EndToEndTest(kDefaultTimeout), FakeEncoder(Clock::GetRealTimeClock()), encoder_inits_(0), last_set_bitrate_kbps_(0), send_stream_(nullptr), frame_generator_(nullptr), encoder_factory_(this), bitrate_allocator_factory_( CreateBuiltinVideoBitrateAllocatorFactory()), task_queue_(task_queue) {} int32_t InitEncode(const VideoCodec* config, const VideoEncoder::Settings& settings) override { ++encoder_inits_; if (encoder_inits_ == 1) { // First time initialization. Frame size is known. // `expected_bitrate` is affected by bandwidth estimation before the // first frame arrives to the encoder. uint32_t expected_bitrate = last_set_bitrate_kbps_ > 0 ? last_set_bitrate_kbps_ : kInitialBitrateKbps; EXPECT_EQ(expected_bitrate, config->startBitrate) << "Encoder not initialized at expected bitrate."; EXPECT_EQ(kDefaultWidth, config->width); EXPECT_EQ(kDefaultHeight, config->height); } else if (encoder_inits_ == 2) { EXPECT_EQ(2 * kDefaultWidth, config->width); EXPECT_EQ(2 * kDefaultHeight, config->height); EXPECT_GE(last_set_bitrate_kbps_, kReconfigureThresholdKbps); EXPECT_GT(config->startBitrate, kReconfigureThresholdKbps) << "Encoder reconfigured with bitrate too far away from last set."; observation_complete_.Set(); } return FakeEncoder::InitEncode(config, settings); } void SetRates(const RateControlParameters& parameters) override { last_set_bitrate_kbps_ = parameters.bitrate.get_sum_kbps(); if (encoder_inits_ == 1 && parameters.bitrate.get_sum_kbps() > kReconfigureThresholdKbps) { time_to_reconfigure_.Set(); } FakeEncoder::SetRates(parameters); } void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { bitrate_config->start_bitrate_bps = kInitialBitrateKbps * 1000; } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = &encoder_factory_; send_config->encoder_settings.bitrate_allocator_factory = bitrate_allocator_factory_.get(); encoder_config->max_bitrate_bps = 2 * kReconfigureThresholdKbps * 1000; encoder_config->video_stream_factory = rtc::make_ref_counted(); encoder_config_ = encoder_config->Copy(); } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_ = frame_generator_capturer; } void PerformTest() override { ASSERT_TRUE(time_to_reconfigure_.Wait(kDefaultTimeout.ms())) << "Timed out before receiving an initial high bitrate."; frame_generator_->ChangeResolution(kDefaultWidth * 2, kDefaultHeight * 2); SendTask(task_queue_, [&]() { send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy()); }); EXPECT_TRUE(Wait()) << "Timed out while waiting for a couple of high bitrate estimates " "after reconfiguring the send stream."; } private: rtc::Event time_to_reconfigure_; int encoder_inits_; uint32_t last_set_bitrate_kbps_; VideoSendStream* send_stream_; test::FrameGeneratorCapturer* frame_generator_; test::VideoEncoderProxyFactory encoder_factory_; std::unique_ptr bitrate_allocator_factory_; VideoEncoderConfig encoder_config_; TaskQueueBase* task_queue_; } test(task_queue()); RunBaseTest(&test); } // Discovers the minimal supported audio+video bitrate. The test bitrate is // considered supported if Rtt does not go above 400ms with the network // contrained to the test bitrate. // // |test_bitrate_from test_bitrate_to| bitrate constraint range // `test_bitrate_step` bitrate constraint update step during the test // |min_bwe max_bwe| BWE range // `start_bwe` initial BWE void CallPerfTest::TestMinAudioVideoBitrate(int test_bitrate_from, int test_bitrate_to, int test_bitrate_step, int min_bwe, int start_bwe, int max_bwe) { static const std::string kAudioTrackId = "audio_track_0"; static constexpr int kOpusBitrateFbBps = 32000; static constexpr int kBitrateStabilizationMs = 10000; static constexpr int kBitrateMeasurements = 10; static constexpr int kBitrateMeasurementMs = 1000; static constexpr int kShortDelayMs = 10; static constexpr int kMinGoodRttMs = 400; class MinVideoAndAudioBitrateTester : public test::EndToEndTest { public: MinVideoAndAudioBitrateTester(int test_bitrate_from, int test_bitrate_to, int test_bitrate_step, int min_bwe, int start_bwe, int max_bwe, TaskQueueBase* task_queue) : EndToEndTest(), test_bitrate_from_(test_bitrate_from), test_bitrate_to_(test_bitrate_to), test_bitrate_step_(test_bitrate_step), min_bwe_(min_bwe), start_bwe_(start_bwe), max_bwe_(max_bwe), task_queue_(task_queue) {} protected: BuiltInNetworkBehaviorConfig GetFakeNetworkPipeConfig() { BuiltInNetworkBehaviorConfig pipe_config; pipe_config.link_capacity_kbps = test_bitrate_from_; return pipe_config; } std::unique_ptr CreateSendTransport( TaskQueueBase* task_queue, Call* sender_call) override { auto network = std::make_unique(GetFakeNetworkPipeConfig()); send_simulated_network_ = network.get(); return std::make_unique( task_queue, sender_call, this, test::PacketTransport::kSender, test::CallTest::payload_type_map_, std::make_unique(Clock::GetRealTimeClock(), std::move(network))); } std::unique_ptr CreateReceiveTransport( TaskQueueBase* task_queue) override { auto network = std::make_unique(GetFakeNetworkPipeConfig()); receive_simulated_network_ = network.get(); return std::make_unique( task_queue, nullptr, this, test::PacketTransport::kReceiver, test::CallTest::payload_type_map_, std::make_unique(Clock::GetRealTimeClock(), std::move(network))); } void PerformTest() override { // Quick test mode, just to exercise all the code paths without actually // caring about performance measurements. const bool quick_perf_test = field_trial::IsEnabled("WebRTC-QuickPerfTest"); int last_passed_test_bitrate = -1; for (int test_bitrate = test_bitrate_from_; test_bitrate_from_ < test_bitrate_to_ ? test_bitrate <= test_bitrate_to_ : test_bitrate >= test_bitrate_to_; test_bitrate += test_bitrate_step_) { BuiltInNetworkBehaviorConfig pipe_config; pipe_config.link_capacity_kbps = test_bitrate; send_simulated_network_->SetConfig(pipe_config); receive_simulated_network_->SetConfig(pipe_config); rtc::Thread::SleepMs(quick_perf_test ? kShortDelayMs : kBitrateStabilizationMs); int64_t avg_rtt = 0; for (int i = 0; i < kBitrateMeasurements; i++) { Call::Stats call_stats; SendTask(task_queue_, [this, &call_stats]() { call_stats = sender_call_->GetStats(); }); avg_rtt += call_stats.rtt_ms; rtc::Thread::SleepMs(quick_perf_test ? kShortDelayMs : kBitrateMeasurementMs); } avg_rtt = avg_rtt / kBitrateMeasurements; if (avg_rtt > kMinGoodRttMs) { break; } else { last_passed_test_bitrate = test_bitrate; } } EXPECT_GT(last_passed_test_bitrate, -1) << "Minimum supported bitrate out of the test scope"; webrtc::test::PrintResult("min_test_bitrate_", "", "min_bitrate", last_passed_test_bitrate, "kbps", false); } void OnCallsCreated(Call* sender_call, Call* receiver_call) override { sender_call_ = sender_call; BitrateConstraints bitrate_config; bitrate_config.min_bitrate_bps = min_bwe_; bitrate_config.start_bitrate_bps = start_bwe_; bitrate_config.max_bitrate_bps = max_bwe_; sender_call->GetTransportControllerSend()->SetSdpBitrateParameters( bitrate_config); } size_t GetNumVideoStreams() const override { return 1; } size_t GetNumAudioStreams() const override { return 1; } void ModifyAudioConfigs(AudioSendStream::Config* send_config, std::vector* receive_configs) override { send_config->send_codec_spec->target_bitrate_bps = absl::optional(kOpusBitrateFbBps); } private: const int test_bitrate_from_; const int test_bitrate_to_; const int test_bitrate_step_; const int min_bwe_; const int start_bwe_; const int max_bwe_; SimulatedNetwork* send_simulated_network_; SimulatedNetwork* receive_simulated_network_; Call* sender_call_; TaskQueueBase* const task_queue_; } test(test_bitrate_from, test_bitrate_to, test_bitrate_step, min_bwe, start_bwe, max_bwe, task_queue()); RunBaseTest(&test); } // TODO(bugs.webrtc.org/8878) #if defined(WEBRTC_MAC) #define MAYBE_Min_Bitrate_VideoAndAudio DISABLED_Min_Bitrate_VideoAndAudio #else #define MAYBE_Min_Bitrate_VideoAndAudio Min_Bitrate_VideoAndAudio #endif TEST_F(CallPerfTest, MAYBE_Min_Bitrate_VideoAndAudio) { TestMinAudioVideoBitrate(110, 40, -10, 10000, 70000, 200000); } void CallPerfTest::TestEncodeFramerate(VideoEncoderFactory* encoder_factory, absl::string_view payload_name, const std::vector& max_framerates) { static constexpr double kAllowedFpsDiff = 1.5; static constexpr TimeDelta kMinGetStatsInterval = TimeDelta::Millis(400); static constexpr TimeDelta kMinRunTime = TimeDelta::Seconds(15); static constexpr DataRate kMaxBitrate = DataRate::KilobitsPerSec(1000); class FramerateObserver : public test::EndToEndTest, public test::FrameGeneratorCapturer::SinkWantsObserver { public: FramerateObserver(VideoEncoderFactory* encoder_factory, absl::string_view payload_name, const std::vector& max_framerates, TaskQueueBase* task_queue) : EndToEndTest(kDefaultTimeout), clock_(Clock::GetRealTimeClock()), encoder_factory_(encoder_factory), payload_name_(payload_name), max_framerates_(max_framerates), task_queue_(task_queue), start_time_(clock_->CurrentTime()), last_getstats_time_(start_time_), send_stream_(nullptr) {} void OnFrameGeneratorCapturerCreated( test::FrameGeneratorCapturer* frame_generator_capturer) override { frame_generator_capturer->ChangeResolution(640, 360); } void OnSinkWantsChanged(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override {} void ModifySenderBitrateConfig( BitrateConstraints* bitrate_config) override { bitrate_config->start_bitrate_bps = kMaxBitrate.bps() / 2; } void OnVideoStreamsCreated(VideoSendStream* send_stream, const std::vector& receive_streams) override { send_stream_ = send_stream; } size_t GetNumVideoStreams() const override { return max_framerates_.size(); } void ModifyVideoConfigs( VideoSendStream::Config* send_config, std::vector* receive_configs, VideoEncoderConfig* encoder_config) override { send_config->encoder_settings.encoder_factory = encoder_factory_; send_config->rtp.payload_name = payload_name_; send_config->rtp.payload_type = test::CallTest::kVideoSendPayloadType; encoder_config->video_format.name = payload_name_; encoder_config->codec_type = PayloadStringToCodecType(payload_name_); encoder_config->max_bitrate_bps = kMaxBitrate.bps(); for (size_t i = 0; i < max_framerates_.size(); ++i) { encoder_config->simulcast_layers[i].max_framerate = max_framerates_[i]; configured_framerates_[send_config->rtp.ssrcs[i]] = max_framerates_[i]; } } void PerformTest() override { EXPECT_TRUE(Wait()) << "Timeout while waiting for framerate stats."; } void VerifyStats() const { double input_fps = 0.0; for (const auto& configured_framerate : configured_framerates_) { input_fps = std::max(configured_framerate.second, input_fps); } for (const auto& encode_frame_rate_list : encode_frame_rate_lists_) { const std::vector& values = encode_frame_rate_list.second; test::PrintResultList("substream", "", "encode_frame_rate", values, "fps", false); double average_fps = std::accumulate(values.begin(), values.end(), 0.0) / values.size(); uint32_t ssrc = encode_frame_rate_list.first; double expected_fps = configured_framerates_.find(ssrc)->second; if (expected_fps != input_fps) EXPECT_NEAR(expected_fps, average_fps, kAllowedFpsDiff); } } Action OnSendRtp(const uint8_t* packet, size_t length) override { const Timestamp now = clock_->CurrentTime(); if (now - last_getstats_time_ > kMinGetStatsInterval) { last_getstats_time_ = now; task_queue_->PostTask([this, now]() { VideoSendStream::Stats stats = send_stream_->GetStats(); for (const auto& stat : stats.substreams) { encode_frame_rate_lists_[stat.first].push_back( stat.second.encode_frame_rate); } if (now - start_time_ > kMinRunTime) { VerifyStats(); observation_complete_.Set(); } }); } return SEND_PACKET; } Clock* const clock_; VideoEncoderFactory* const encoder_factory_; const std::string payload_name_; const std::vector max_framerates_; TaskQueueBase* const task_queue_; const Timestamp start_time_; Timestamp last_getstats_time_; VideoSendStream* send_stream_; std::map> encode_frame_rate_lists_; std::map configured_framerates_; } test(encoder_factory, payload_name, max_framerates, task_queue()); RunBaseTest(&test); } TEST_F(CallPerfTest, TestEncodeFramerateVp8Simulcast) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestEncodeFramerate(&encoder_factory, "VP8", /*max_framerates=*/{20, 30}); } TEST_F(CallPerfTest, TestEncodeFramerateVp8SimulcastLowerInputFps) { InternalEncoderFactory internal_encoder_factory; test::FunctionVideoEncoderFactory encoder_factory( [&internal_encoder_factory]() { return std::make_unique( &internal_encoder_factory, SdpVideoFormat("VP8")); }); TestEncodeFramerate(&encoder_factory, "VP8", /*max_framerates=*/{14, 20}); } } // namespace webrtc