/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/packet_buffer.h" #include #include #include #include #include #include #include "absl/types/variant.h" #include "api/array_view.h" #include "api/rtp_packet_info.h" #include "api/video/video_frame_type.h" #include "common_video/h264/h264_common.h" #include "modules/rtp_rtcp/source/rtp_header_extensions.h" #include "modules/rtp_rtcp/source/rtp_packet_received.h" #include "modules/rtp_rtcp/source/rtp_video_header.h" #include "modules/video_coding/codecs/h264/include/h264_globals.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/mod_ops.h" namespace webrtc { namespace video_coding { PacketBuffer::Packet::Packet(const RtpPacketReceived& rtp_packet, const RTPVideoHeader& video_header) : marker_bit(rtp_packet.Marker()), payload_type(rtp_packet.PayloadType()), seq_num(rtp_packet.SequenceNumber()), timestamp(rtp_packet.Timestamp()), times_nacked(-1), video_header(video_header) {} PacketBuffer::PacketBuffer(size_t start_buffer_size, size_t max_buffer_size) : max_size_(max_buffer_size), first_seq_num_(0), first_packet_received_(false), is_cleared_to_first_seq_num_(false), buffer_(start_buffer_size), sps_pps_idr_is_h264_keyframe_(false) { RTC_DCHECK_LE(start_buffer_size, max_buffer_size); // Buffer size must always be a power of 2. RTC_DCHECK((start_buffer_size & (start_buffer_size - 1)) == 0); RTC_DCHECK((max_buffer_size & (max_buffer_size - 1)) == 0); } PacketBuffer::~PacketBuffer() { Clear(); } PacketBuffer::InsertResult PacketBuffer::InsertPacket( std::unique_ptr packet) { PacketBuffer::InsertResult result; uint16_t seq_num = packet->seq_num; size_t index = seq_num % buffer_.size(); if (!first_packet_received_) { first_seq_num_ = seq_num; first_packet_received_ = true; } else if (AheadOf(first_seq_num_, seq_num)) { // If we have explicitly cleared past this packet then it's old, // don't insert it, just silently ignore it. if (is_cleared_to_first_seq_num_) { return result; } first_seq_num_ = seq_num; } if (buffer_[index] != nullptr) { // Duplicate packet, just delete the payload. if (buffer_[index]->seq_num == packet->seq_num) { return result; } // The packet buffer is full, try to expand the buffer. while (ExpandBufferSize() && buffer_[seq_num % buffer_.size()] != nullptr) { } index = seq_num % buffer_.size(); // Packet buffer is still full since we were unable to expand the buffer. if (buffer_[index] != nullptr) { // Clear the buffer, delete payload, and return false to signal that a // new keyframe is needed. RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame."; ClearInternal(); result.buffer_cleared = true; return result; } } packet->continuous = false; buffer_[index] = std::move(packet); UpdateMissingPackets(seq_num); received_padding_.erase( received_padding_.begin(), received_padding_.lower_bound(seq_num - (buffer_.size() / 4))); result.packets = FindFrames(seq_num); return result; } uint32_t PacketBuffer::ClearTo(uint16_t seq_num) { // We have already cleared past this sequence number, no need to do anything. if (is_cleared_to_first_seq_num_ && AheadOf(first_seq_num_, seq_num)) { return 0; } // If the packet buffer was cleared between a frame was created and returned. if (!first_packet_received_) return 0; // Avoid iterating over the buffer more than once by capping the number of // iterations to the `size_` of the buffer. ++seq_num; uint32_t num_cleared_packets = 0; size_t diff = ForwardDiff(first_seq_num_, seq_num); size_t iterations = std::min(diff, buffer_.size()); for (size_t i = 0; i < iterations; ++i) { auto& stored = buffer_[first_seq_num_ % buffer_.size()]; if (stored != nullptr && AheadOf(seq_num, stored->seq_num)) { ++num_cleared_packets; stored = nullptr; } ++first_seq_num_; } // If `diff` is larger than `iterations` it means that we don't increment // `first_seq_num_` until we reach `seq_num`, so we set it here. first_seq_num_ = seq_num; is_cleared_to_first_seq_num_ = true; missing_packets_.erase(missing_packets_.begin(), missing_packets_.lower_bound(seq_num)); received_padding_.erase(received_padding_.begin(), received_padding_.lower_bound(seq_num)); return num_cleared_packets; } void PacketBuffer::Clear() { ClearInternal(); } PacketBuffer::InsertResult PacketBuffer::InsertPadding(uint16_t seq_num) { PacketBuffer::InsertResult result; UpdateMissingPackets(seq_num); received_padding_.insert(seq_num); result.packets = FindFrames(static_cast(seq_num + 1)); return result; } void PacketBuffer::ForceSpsPpsIdrIsH264Keyframe() { sps_pps_idr_is_h264_keyframe_ = true; } void PacketBuffer::ClearInternal() { for (auto& entry : buffer_) { entry = nullptr; } first_packet_received_ = false; is_cleared_to_first_seq_num_ = false; newest_inserted_seq_num_.reset(); missing_packets_.clear(); received_padding_.clear(); } bool PacketBuffer::ExpandBufferSize() { if (buffer_.size() == max_size_) { RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_ << "), failed to increase size."; return false; } size_t new_size = std::min(max_size_, 2 * buffer_.size()); std::vector> new_buffer(new_size); for (std::unique_ptr& entry : buffer_) { if (entry != nullptr) { new_buffer[entry->seq_num % new_size] = std::move(entry); } } buffer_ = std::move(new_buffer); RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size; return true; } bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const { size_t index = seq_num % buffer_.size(); int prev_index = index > 0 ? index - 1 : buffer_.size() - 1; const auto& entry = buffer_[index]; const auto& prev_entry = buffer_[prev_index]; if (entry == nullptr) return false; if (entry->seq_num != seq_num) return false; if (entry->is_first_packet_in_frame()) return true; if (prev_entry == nullptr) return false; if (prev_entry->seq_num != static_cast(entry->seq_num - 1)) return false; if (prev_entry->timestamp != entry->timestamp) return false; if (prev_entry->continuous) return true; return false; } std::vector> PacketBuffer::FindFrames( uint16_t seq_num) { std::vector> found_frames; auto start = seq_num; for (size_t i = 0; i < buffer_.size(); ++i) { if (received_padding_.find(seq_num) != received_padding_.end()) { seq_num += 1; continue; } if (!PotentialNewFrame(seq_num)) { break; } size_t index = seq_num % buffer_.size(); buffer_[index]->continuous = true; // If all packets of the frame is continuous, find the first packet of the // frame and add all packets of the frame to the returned packets. if (buffer_[index]->is_last_packet_in_frame()) { uint16_t start_seq_num = seq_num; // Find the start index by searching backward until the packet with // the `frame_begin` flag is set. int start_index = index; size_t tested_packets = 0; int64_t frame_timestamp = buffer_[start_index]->timestamp; // Identify H.264 keyframes by means of SPS, PPS, and IDR. bool is_h264 = buffer_[start_index]->codec() == kVideoCodecH264; bool has_h264_sps = false; bool has_h264_pps = false; bool has_h264_idr = false; bool is_h264_keyframe = false; int idr_width = -1; int idr_height = -1; bool full_frame_found = false; while (true) { ++tested_packets; if (!is_h264) { if (buffer_[start_index] == nullptr || buffer_[start_index]->is_first_packet_in_frame()) { full_frame_found = buffer_[start_index] != nullptr; break; } } if (is_h264) { const auto* h264_header = absl::get_if( &buffer_[start_index]->video_header.video_type_header); if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket) return found_frames; for (size_t j = 0; j < h264_header->nalus_length; ++j) { if (h264_header->nalus[j].type == H264::NaluType::kSps) { has_h264_sps = true; } else if (h264_header->nalus[j].type == H264::NaluType::kPps) { has_h264_pps = true; } else if (h264_header->nalus[j].type == H264::NaluType::kIdr) { has_h264_idr = true; } } if ((sps_pps_idr_is_h264_keyframe_ && has_h264_idr && has_h264_sps && has_h264_pps) || (!sps_pps_idr_is_h264_keyframe_ && has_h264_idr)) { is_h264_keyframe = true; // Store the resolution of key frame which is the packet with // smallest index and valid resolution; typically its IDR or SPS // packet; there may be packet preceeding this packet, IDR's // resolution will be applied to them. if (buffer_[start_index]->width() > 0 && buffer_[start_index]->height() > 0) { idr_width = buffer_[start_index]->width(); idr_height = buffer_[start_index]->height(); } } } if (tested_packets == buffer_.size()) break; start_index = start_index > 0 ? start_index - 1 : buffer_.size() - 1; // In the case of H264 we don't have a frame_begin bit (yes, // `frame_begin` might be set to true but that is a lie). So instead // we traverese backwards as long as we have a previous packet and // the timestamp of that packet is the same as this one. This may cause // the PacketBuffer to hand out incomplete frames. // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106 if (is_h264 && (buffer_[start_index] == nullptr || buffer_[start_index]->timestamp != frame_timestamp)) { break; } --start_seq_num; } if (is_h264) { // Warn if this is an unsafe frame. if (has_h264_idr && (!has_h264_sps || !has_h264_pps)) { RTC_LOG(LS_WARNING) << "Received H.264-IDR frame " "(SPS: " << has_h264_sps << ", PPS: " << has_h264_pps << "). Treating as " << (sps_pps_idr_is_h264_keyframe_ ? "delta" : "key") << " frame since WebRTC-SpsPpsIdrIsH264Keyframe is " << (sps_pps_idr_is_h264_keyframe_ ? "enabled." : "disabled"); } // Now that we have decided whether to treat this frame as a key frame // or delta frame in the frame buffer, we update the field that // determines if the RtpFrameObject is a key frame or delta frame. const size_t first_packet_index = start_seq_num % buffer_.size(); if (is_h264_keyframe) { buffer_[first_packet_index]->video_header.frame_type = VideoFrameType::kVideoFrameKey; if (idr_width > 0 && idr_height > 0) { // IDR frame was finalized and we have the correct resolution for // IDR; update first packet to have same resolution as IDR. buffer_[first_packet_index]->video_header.width = idr_width; buffer_[first_packet_index]->video_header.height = idr_height; } } else { buffer_[first_packet_index]->video_header.frame_type = VideoFrameType::kVideoFrameDelta; } // If this is not a keyframe, make sure there are no gaps in the packet // sequence numbers up until this point. if (!is_h264_keyframe && missing_packets_.upper_bound(start_seq_num) != missing_packets_.begin()) { return found_frames; } } if (is_h264 || full_frame_found) { const uint16_t end_seq_num = seq_num + 1; // Use uint16_t type to handle sequence number wrap around case. uint16_t num_packets = end_seq_num - start_seq_num; found_frames.reserve(found_frames.size() + num_packets); for (uint16_t i = start_seq_num; i != end_seq_num; ++i) { std::unique_ptr& packet = buffer_[i % buffer_.size()]; RTC_DCHECK(packet); RTC_DCHECK_EQ(i, packet->seq_num); // Ensure frame boundary flags are properly set. packet->video_header.is_first_packet_in_frame = (i == start_seq_num); packet->video_header.is_last_packet_in_frame = (i == seq_num); found_frames.push_back(std::move(packet)); } missing_packets_.erase(missing_packets_.begin(), missing_packets_.upper_bound(seq_num)); received_padding_.erase(received_padding_.lower_bound(start), received_padding_.upper_bound(seq_num)); } } ++seq_num; } return found_frames; } void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) { if (!newest_inserted_seq_num_) newest_inserted_seq_num_ = seq_num; const int kMaxPaddingAge = 1000; if (AheadOf(seq_num, *newest_inserted_seq_num_)) { uint16_t old_seq_num = seq_num - kMaxPaddingAge; auto erase_to = missing_packets_.lower_bound(old_seq_num); missing_packets_.erase(missing_packets_.begin(), erase_to); // Guard against inserting a large amount of missing packets if there is a // jump in the sequence number. if (AheadOf(old_seq_num, *newest_inserted_seq_num_)) *newest_inserted_seq_num_ = old_seq_num; ++*newest_inserted_seq_num_; while (AheadOf(seq_num, *newest_inserted_seq_num_)) { missing_packets_.insert(*newest_inserted_seq_num_); ++*newest_inserted_seq_num_; } } else { missing_packets_.erase(seq_num); } } } // namespace video_coding } // namespace webrtc