/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/timing/jitter_estimator.h" #include #include #include #include #include "absl/types/optional.h" #include "api/field_trials_view.h" #include "api/units/data_size.h" #include "api/units/frequency.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/video_coding/timing/rtt_filter.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { static constexpr uint32_t kStartupDelaySamples = 30; static constexpr int64_t kFsAccuStartupSamples = 5; static constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200); static constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60); static constexpr double kDefaultMaxTimestampDeviationInSigmas = 3.5; constexpr double kPhi = 0.97; constexpr double kPsi = 0.9999; constexpr uint32_t kAlphaCountMax = 400; constexpr uint32_t kNackLimit = 3; constexpr int32_t kNumStdDevDelayOutlier = 15; constexpr int32_t kNumStdDevFrameSizeOutlier = 3; // ~Less than 1% chance (look up in normal distribution table)... constexpr double kNoiseStdDevs = 2.33; // ...of getting 30 ms freezes constexpr double kNoiseStdDevOffset = 30.0; } // namespace JitterEstimator::JitterEstimator(Clock* clock, const FieldTrialsView& field_trials) : fps_counter_(30), // TODO(sprang): Use an estimator with limit based on // time, rather than number of samples. clock_(clock) { Reset(); } JitterEstimator::~JitterEstimator() = default; // Resets the JitterEstimate. void JitterEstimator::Reset() { var_noise_ = 4.0; avg_frame_size_ = kDefaultAvgAndMaxFrameSize; max_frame_size_ = kDefaultAvgAndMaxFrameSize; var_frame_size_ = 100; last_update_time_ = absl::nullopt; prev_estimate_ = absl::nullopt; prev_frame_size_ = absl::nullopt; avg_noise_ = 0.0; alpha_count_ = 1; filter_jitter_estimate_ = TimeDelta::Zero(); latest_nack_ = Timestamp::Zero(); nack_count_ = 0; frame_size_sum_ = DataSize::Zero(); frame_size_count_ = 0; startup_count_ = 0; rtt_filter_.Reset(); fps_counter_.Reset(); kalman_filter_ = FrameDelayDeltaKalmanFilter(); } // Updates the estimates with the new measurements. void JitterEstimator::UpdateEstimate(TimeDelta frame_delay, DataSize frame_size) { if (frame_size.IsZero()) { return; } // Can't use DataSize since this can be negative. double delta_frame_bytes = frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes(); if (frame_size_count_ < kFsAccuStartupSamples) { frame_size_sum_ += frame_size; frame_size_count_++; } else if (frame_size_count_ == kFsAccuStartupSamples) { // Give the frame size filter. avg_frame_size_ = frame_size_sum_ / static_cast(frame_size_count_); frame_size_count_++; } DataSize avg_frame_size = kPhi * avg_frame_size_ + (1 - kPhi) * frame_size; DataSize deviation_size = DataSize::Bytes(2 * sqrt(var_frame_size_)); if (frame_size < avg_frame_size_ + deviation_size) { // Only update the average frame size if this sample wasn't a key frame. avg_frame_size_ = avg_frame_size; } double delta_bytes = frame_size.bytes() - avg_frame_size.bytes(); var_frame_size_ = std::max( kPhi * var_frame_size_ + (1 - kPhi) * (delta_bytes * delta_bytes), 1.0); // Update max_frame_size_ estimate. max_frame_size_ = std::max(kPsi * max_frame_size_, frame_size); if (!prev_frame_size_) { prev_frame_size_ = frame_size; return; } prev_frame_size_ = frame_size; // Cap frame_delay based on the current time deviation noise. TimeDelta max_time_deviation = TimeDelta::Millis( kDefaultMaxTimestampDeviationInSigmas * sqrt(var_noise_) + 0.5); frame_delay.Clamp(-max_time_deviation, max_time_deviation); // Only update the Kalman filter if the sample is not considered an extreme // outlier. Even if it is an extreme outlier from a delay point of view, if // the frame size also is large the deviation is probably due to an incorrect // line slope. double deviation = frame_delay.ms() - kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes); if (fabs(deviation) < kNumStdDevDelayOutlier * sqrt(var_noise_) || frame_size.bytes() > avg_frame_size_.bytes() + kNumStdDevFrameSizeOutlier * sqrt(var_frame_size_)) { // Update the variance of the deviation from the line given by the Kalman // filter. EstimateRandomJitter(deviation); // Prevent updating with frames which have been congested by a large frame, // and therefore arrives almost at the same time as that frame. // This can occur when we receive a large frame (key frame) which has been // delayed. The next frame is of normal size (delta frame), and thus deltaFS // will be << 0. This removes all frame samples which arrives after a key // frame. if (delta_frame_bytes > -0.25 * max_frame_size_.bytes()) { // Update the Kalman filter with the new data kalman_filter_.PredictAndUpdate(frame_delay, delta_frame_bytes, max_frame_size_, var_noise_); } } else { int nStdDev = (deviation >= 0) ? kNumStdDevDelayOutlier : -kNumStdDevDelayOutlier; EstimateRandomJitter(nStdDev * sqrt(var_noise_)); } // Post process the total estimated jitter if (startup_count_ >= kStartupDelaySamples) { PostProcessEstimate(); } else { startup_count_++; } } // Updates the nack/packet ratio. void JitterEstimator::FrameNacked() { if (nack_count_ < kNackLimit) { nack_count_++; } latest_nack_ = clock_->CurrentTime(); } // Estimates the random jitter by calculating the variance of the sample // distance from the line given by theta. void JitterEstimator::EstimateRandomJitter(double d_dT) { Timestamp now = clock_->CurrentTime(); if (last_update_time_.has_value()) { fps_counter_.AddSample((now - *last_update_time_).us()); } last_update_time_ = now; if (alpha_count_ == 0) { RTC_DCHECK_NOTREACHED(); return; } double alpha = static_cast(alpha_count_ - 1) / static_cast(alpha_count_); alpha_count_++; if (alpha_count_ > kAlphaCountMax) alpha_count_ = kAlphaCountMax; // In order to avoid a low frame rate stream to react slower to changes, // scale the alpha weight relative a 30 fps stream. Frequency fps = GetFrameRate(); if (fps > Frequency::Zero()) { constexpr Frequency k30Fps = Frequency::Hertz(30); double rate_scale = k30Fps / fps; // At startup, there can be a lot of noise in the fps estimate. // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps // at sample #kStartupDelaySamples. if (alpha_count_ < kStartupDelaySamples) { rate_scale = (alpha_count_ * rate_scale + (kStartupDelaySamples - alpha_count_)) / kStartupDelaySamples; } alpha = pow(alpha, rate_scale); } double avgNoise = alpha * avg_noise_ + (1 - alpha) * d_dT; double varNoise = alpha * var_noise_ + (1 - alpha) * (d_dT - avg_noise_) * (d_dT - avg_noise_); avg_noise_ = avgNoise; var_noise_ = varNoise; if (var_noise_ < 1.0) { // The variance should never be zero, since we might get stuck and consider // all samples as outliers. var_noise_ = 1.0; } } double JitterEstimator::NoiseThreshold() const { double noiseThreshold = kNoiseStdDevs * sqrt(var_noise_) - kNoiseStdDevOffset; if (noiseThreshold < 1.0) { noiseThreshold = 1.0; } return noiseThreshold; } // Calculates the current jitter estimate from the filtered estimates. TimeDelta JitterEstimator::CalculateEstimate() { double retMs = kalman_filter_.GetFrameDelayVariationEstimateSizeBased( max_frame_size_.bytes() - avg_frame_size_.bytes()) + NoiseThreshold(); TimeDelta ret = TimeDelta::Millis(retMs); constexpr TimeDelta kMinEstimate = TimeDelta::Millis(1); constexpr TimeDelta kMaxEstimate = TimeDelta::Seconds(10); // A very low estimate (or negative) is neglected. if (ret < kMinEstimate) { ret = prev_estimate_.value_or(kMinEstimate); // Sanity check to make sure that no other method has set `prev_estimate_` // to a value lower than `kMinEstimate`. RTC_DCHECK_GE(ret, kMinEstimate); } else if (ret > kMaxEstimate) { // Sanity ret = kMaxEstimate; } prev_estimate_ = ret; return ret; } void JitterEstimator::PostProcessEstimate() { filter_jitter_estimate_ = CalculateEstimate(); } void JitterEstimator::UpdateRtt(TimeDelta rtt) { rtt_filter_.Update(rtt); } // Returns the current filtered estimate if available, // otherwise tries to calculate an estimate. TimeDelta JitterEstimator::GetJitterEstimate( double rtt_multiplier, absl::optional rtt_mult_add_cap) { TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER; Timestamp now = clock_->CurrentTime(); if (now - latest_nack_ > kNackCountTimeout) nack_count_ = 0; if (filter_jitter_estimate_ > jitter) jitter = filter_jitter_estimate_; if (nack_count_ >= kNackLimit) { if (rtt_mult_add_cap.has_value()) { jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier, rtt_mult_add_cap.value()); } else { jitter += rtt_filter_.Rtt() * rtt_multiplier; } } static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5); static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10); Frequency fps = GetFrameRate(); // Ignore jitter for very low fps streams. if (fps < kJitterScaleLowThreshold) { if (fps.IsZero()) { return std::max(TimeDelta::Zero(), jitter); } return TimeDelta::Zero(); } // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. if (fps < kJitterScaleHighThreshold) { jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * (fps - kJitterScaleLowThreshold) * jitter; } return std::max(TimeDelta::Zero(), jitter); } Frequency JitterEstimator::GetFrameRate() const { TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean()); if (mean_frame_period <= TimeDelta::Zero()) return Frequency::Zero(); Frequency fps = 1 / mean_frame_period; // Sanity check. RTC_DCHECK_GE(fps, Frequency::Zero()); return std::min(fps, kMaxFramerateEstimate); } } // namespace webrtc