/* * Copyright 2019 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "p2p/base/connection.h" #include #include #include #include #include #include "absl/algorithm/container.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "p2p/base/port_allocator.h" #include "rtc_base/checks.h" #include "rtc_base/crc32.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/mdns_responder_interface.h" #include "rtc_base/message_digest.h" #include "rtc_base/network.h" #include "rtc_base/numerics/safe_minmax.h" #include "rtc_base/string_encode.h" #include "rtc_base/string_utils.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/third_party/base64/base64.h" namespace cricket { namespace { // Determines whether we have seen at least the given maximum number of // pings fail to have a response. inline bool TooManyFailures( const std::vector& pings_since_last_response, uint32_t maximum_failures, int rtt_estimate, int64_t now) { // If we haven't sent that many pings, then we can't have failed that many. if (pings_since_last_response.size() < maximum_failures) return false; // Check if the window in which we would expect a response to the ping has // already elapsed. int64_t expected_response_time = pings_since_last_response[maximum_failures - 1].sent_time + rtt_estimate; return now > expected_response_time; } // Determines whether we have gone too long without seeing any response. inline bool TooLongWithoutResponse( const std::vector& pings_since_last_response, int64_t maximum_time, int64_t now) { if (pings_since_last_response.size() == 0) return false; auto first = pings_since_last_response[0]; return now > (first.sent_time + maximum_time); } // Helper methods for converting string values of log description fields to // enum. webrtc::IceCandidateType GetCandidateTypeByString(absl::string_view type) { if (type == LOCAL_PORT_TYPE) { return webrtc::IceCandidateType::kLocal; } else if (type == STUN_PORT_TYPE) { return webrtc::IceCandidateType::kStun; } else if (type == PRFLX_PORT_TYPE) { return webrtc::IceCandidateType::kPrflx; } else if (type == RELAY_PORT_TYPE) { return webrtc::IceCandidateType::kRelay; } return webrtc::IceCandidateType::kUnknown; } webrtc::IceCandidatePairProtocol GetProtocolByString( absl::string_view protocol) { if (protocol == UDP_PROTOCOL_NAME) { return webrtc::IceCandidatePairProtocol::kUdp; } else if (protocol == TCP_PROTOCOL_NAME) { return webrtc::IceCandidatePairProtocol::kTcp; } else if (protocol == SSLTCP_PROTOCOL_NAME) { return webrtc::IceCandidatePairProtocol::kSsltcp; } else if (protocol == TLS_PROTOCOL_NAME) { return webrtc::IceCandidatePairProtocol::kTls; } return webrtc::IceCandidatePairProtocol::kUnknown; } webrtc::IceCandidatePairAddressFamily GetAddressFamilyByInt( int address_family) { if (address_family == AF_INET) { return webrtc::IceCandidatePairAddressFamily::kIpv4; } else if (address_family == AF_INET6) { return webrtc::IceCandidatePairAddressFamily::kIpv6; } return webrtc::IceCandidatePairAddressFamily::kUnknown; } webrtc::IceCandidateNetworkType ConvertNetworkType(rtc::AdapterType type) { switch (type) { case rtc::ADAPTER_TYPE_ETHERNET: return webrtc::IceCandidateNetworkType::kEthernet; case rtc::ADAPTER_TYPE_LOOPBACK: return webrtc::IceCandidateNetworkType::kLoopback; case rtc::ADAPTER_TYPE_WIFI: return webrtc::IceCandidateNetworkType::kWifi; case rtc::ADAPTER_TYPE_VPN: return webrtc::IceCandidateNetworkType::kVpn; case rtc::ADAPTER_TYPE_CELLULAR: case rtc::ADAPTER_TYPE_CELLULAR_2G: case rtc::ADAPTER_TYPE_CELLULAR_3G: case rtc::ADAPTER_TYPE_CELLULAR_4G: case rtc::ADAPTER_TYPE_CELLULAR_5G: return webrtc::IceCandidateNetworkType::kCellular; default: return webrtc::IceCandidateNetworkType::kUnknown; } } // When we don't have any RTT data, we have to pick something reasonable. We // use a large value just in case the connection is really slow. const int DEFAULT_RTT = 3000; // 3 seconds // We will restrict RTT estimates (when used for determining state) to be // within a reasonable range. const int MINIMUM_RTT = 100; // 0.1 seconds const int MAXIMUM_RTT = 60000; // 60 seconds const int DEFAULT_RTT_ESTIMATE_HALF_TIME_MS = 500; // Computes our estimate of the RTT given the current estimate. inline int ConservativeRTTEstimate(int rtt) { return rtc::SafeClamp(2 * rtt, MINIMUM_RTT, MAXIMUM_RTT); } // Weighting of the old rtt value to new data. const int RTT_RATIO = 3; // 3 : 1 constexpr int64_t kMinExtraPingDelayMs = 100; // Default field trials. const IceFieldTrials kDefaultFieldTrials; constexpr int kSupportGoogPingVersionRequestIndex = static_cast( IceGoogMiscInfoBindingRequestAttributeIndex::SUPPORT_GOOG_PING_VERSION); constexpr int kSupportGoogPingVersionResponseIndex = static_cast( IceGoogMiscInfoBindingResponseAttributeIndex::SUPPORT_GOOG_PING_VERSION); } // namespace // A ConnectionRequest is a STUN binding used to determine writability. class Connection::ConnectionRequest : public StunRequest { public: ConnectionRequest(StunRequestManager& manager, Connection* connection, std::unique_ptr message); void OnResponse(StunMessage* response) override; void OnErrorResponse(StunMessage* response) override; void OnTimeout() override; void OnSent() override; int resend_delay() override; private: Connection* const connection_; }; Connection::ConnectionRequest::ConnectionRequest( StunRequestManager& manager, Connection* connection, std::unique_ptr message) : StunRequest(manager, std::move(message)), connection_(connection) {} void Connection::ConnectionRequest::OnResponse(StunMessage* response) { RTC_DCHECK_RUN_ON(connection_->network_thread_); connection_->OnConnectionRequestResponse(this, response); } void Connection::ConnectionRequest::OnErrorResponse(StunMessage* response) { RTC_DCHECK_RUN_ON(connection_->network_thread_); connection_->OnConnectionRequestErrorResponse(this, response); } void Connection::ConnectionRequest::OnTimeout() { RTC_DCHECK_RUN_ON(connection_->network_thread_); connection_->OnConnectionRequestTimeout(this); } void Connection::ConnectionRequest::OnSent() { RTC_DCHECK_RUN_ON(connection_->network_thread_); connection_->OnConnectionRequestSent(this); // Each request is sent only once. After a single delay , the request will // time out. set_timed_out(); } int Connection::ConnectionRequest::resend_delay() { return CONNECTION_RESPONSE_TIMEOUT; } Connection::Connection(rtc::WeakPtr port, size_t index, const Candidate& remote_candidate) : network_thread_(port->thread()), id_(rtc::CreateRandomId()), port_(std::move(port)), local_candidate_(port_->Candidates()[index]), remote_candidate_(remote_candidate), recv_rate_tracker_(100, 10u), send_rate_tracker_(100, 10u), write_state_(STATE_WRITE_INIT), receiving_(false), connected_(true), pruned_(false), use_candidate_attr_(false), requests_(port_->thread(), [this](const void* data, size_t size, StunRequest* request) { OnSendStunPacket(data, size, request); }), rtt_(DEFAULT_RTT), last_ping_sent_(0), last_ping_received_(0), last_data_received_(0), last_ping_response_received_(0), state_(IceCandidatePairState::WAITING), time_created_ms_(rtc::TimeMillis()), field_trials_(&kDefaultFieldTrials), rtt_estimate_(DEFAULT_RTT_ESTIMATE_HALF_TIME_MS) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(port_); RTC_LOG(LS_INFO) << ToString() << ": Connection created"; } Connection::~Connection() { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(!port_); } webrtc::TaskQueueBase* Connection::network_thread() const { return network_thread_; } const Candidate& Connection::local_candidate() const { RTC_DCHECK_RUN_ON(network_thread_); return local_candidate_; } const Candidate& Connection::remote_candidate() const { return remote_candidate_; } const rtc::Network* Connection::network() const { return port()->Network(); } int Connection::generation() const { return port()->generation(); } uint64_t Connection::priority() const { if (!port_) return 0; uint64_t priority = 0; // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs // Let G be the priority for the candidate provided by the controlling // agent. Let D be the priority for the candidate provided by the // controlled agent. // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) IceRole role = port_->GetIceRole(); if (role != ICEROLE_UNKNOWN) { uint32_t g = 0; uint32_t d = 0; if (role == ICEROLE_CONTROLLING) { g = local_candidate().priority(); d = remote_candidate_.priority(); } else { g = remote_candidate_.priority(); d = local_candidate().priority(); } priority = std::min(g, d); priority = priority << 32; priority += 2 * std::max(g, d) + (g > d ? 1 : 0); } return priority; } void Connection::set_write_state(WriteState value) { RTC_DCHECK_RUN_ON(network_thread_); WriteState old_value = write_state_; write_state_ = value; if (value != old_value) { RTC_LOG(LS_VERBOSE) << ToString() << ": set_write_state from: " << old_value << " to " << value; SignalStateChange(this); } } void Connection::UpdateReceiving(int64_t now) { RTC_DCHECK_RUN_ON(network_thread_); bool receiving; if (last_ping_sent() < last_ping_response_received()) { // We consider any candidate pair that has its last connectivity check // acknowledged by a response as receiving, particularly for backup // candidate pairs that send checks at a much slower pace than the selected // one. Otherwise, a backup candidate pair constantly becomes not receiving // as a side effect of a long ping interval, since we do not have a separate // receiving timeout for backup candidate pairs. See // IceConfig.ice_backup_candidate_pair_ping_interval, // IceConfig.ice_connection_receiving_timeout and their default value. receiving = true; } else { receiving = last_received() > 0 && now <= last_received() + receiving_timeout(); } if (receiving_ == receiving) { return; } RTC_LOG(LS_VERBOSE) << ToString() << ": set_receiving to " << receiving; receiving_ = receiving; receiving_unchanged_since_ = now; SignalStateChange(this); } void Connection::set_state(IceCandidatePairState state) { RTC_DCHECK_RUN_ON(network_thread_); IceCandidatePairState old_state = state_; state_ = state; if (state != old_state) { RTC_LOG(LS_VERBOSE) << ToString() << ": set_state"; } } void Connection::set_connected(bool value) { RTC_DCHECK_RUN_ON(network_thread_); bool old_value = connected_; connected_ = value; if (value != old_value) { RTC_LOG(LS_VERBOSE) << ToString() << ": Change connected_ to " << value; SignalStateChange(this); } } bool Connection::use_candidate_attr() const { RTC_DCHECK_RUN_ON(network_thread_); return use_candidate_attr_; } void Connection::set_use_candidate_attr(bool enable) { RTC_DCHECK_RUN_ON(network_thread_); use_candidate_attr_ = enable; } void Connection::set_nomination(uint32_t value) { RTC_DCHECK_RUN_ON(network_thread_); nomination_ = value; } uint32_t Connection::remote_nomination() const { RTC_DCHECK_RUN_ON(network_thread_); return remote_nomination_; } bool Connection::nominated() const { RTC_DCHECK_RUN_ON(network_thread_); return acked_nomination_ || remote_nomination_; } int Connection::unwritable_timeout() const { RTC_DCHECK_RUN_ON(network_thread_); return unwritable_timeout_.value_or(CONNECTION_WRITE_CONNECT_TIMEOUT); } void Connection::set_unwritable_timeout(const absl::optional& value_ms) { RTC_DCHECK_RUN_ON(network_thread_); unwritable_timeout_ = value_ms; } int Connection::unwritable_min_checks() const { RTC_DCHECK_RUN_ON(network_thread_); return unwritable_min_checks_.value_or(CONNECTION_WRITE_CONNECT_FAILURES); } void Connection::set_unwritable_min_checks(const absl::optional& value) { RTC_DCHECK_RUN_ON(network_thread_); unwritable_min_checks_ = value; } int Connection::inactive_timeout() const { RTC_DCHECK_RUN_ON(network_thread_); return inactive_timeout_.value_or(CONNECTION_WRITE_TIMEOUT); } void Connection::set_inactive_timeout(const absl::optional& value) { RTC_DCHECK_RUN_ON(network_thread_); inactive_timeout_ = value; } int Connection::receiving_timeout() const { RTC_DCHECK_RUN_ON(network_thread_); return receiving_timeout_.value_or(WEAK_CONNECTION_RECEIVE_TIMEOUT); } void Connection::set_receiving_timeout( absl::optional receiving_timeout_ms) { RTC_DCHECK_RUN_ON(network_thread_); receiving_timeout_ = receiving_timeout_ms; } void Connection::SetIceFieldTrials(const IceFieldTrials* field_trials) { RTC_DCHECK_RUN_ON(network_thread_); field_trials_ = field_trials; rtt_estimate_.SetHalfTime(field_trials->rtt_estimate_halftime_ms); } void Connection::OnSendStunPacket(const void* data, size_t size, StunRequest* req) { RTC_DCHECK_RUN_ON(network_thread_); rtc::PacketOptions options(port_->StunDscpValue()); options.info_signaled_after_sent.packet_type = rtc::PacketType::kIceConnectivityCheck; auto err = port_->SendTo(data, size, remote_candidate_.address(), options, false); if (err < 0) { RTC_LOG(LS_WARNING) << ToString() << ": Failed to send STUN ping " " err=" << err << " id=" << rtc::hex_encode(req->id()); } } void Connection::OnReadPacket(const char* data, size_t size, int64_t packet_time_us) { RTC_DCHECK_RUN_ON(network_thread_); std::unique_ptr msg; std::string remote_ufrag; const rtc::SocketAddress& addr(remote_candidate_.address()); if (!port_->GetStunMessage(data, size, addr, &msg, &remote_ufrag)) { // The packet did not parse as a valid STUN message // This is a data packet, pass it along. last_data_received_ = rtc::TimeMillis(); UpdateReceiving(last_data_received_); recv_rate_tracker_.AddSamples(size); stats_.packets_received++; SignalReadPacket(this, data, size, packet_time_us); // If timed out sending writability checks, start up again if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) { RTC_LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. " "Resetting state to STATE_WRITE_INIT."; set_write_state(STATE_WRITE_INIT); } } else if (!msg) { // The packet was STUN, but failed a check and was handled internally. } else { // The packet is STUN and passed the Port checks. // Perform our own checks to ensure this packet is valid. // If this is a STUN request, then update the receiving bit and respond. // If this is a STUN response, then update the writable bit. // Log at LS_INFO if we receive a ping on an unwritable connection. rtc::LoggingSeverity sev = (!writable() ? rtc::LS_INFO : rtc::LS_VERBOSE); msg->ValidateMessageIntegrity(remote_candidate().password()); switch (msg->type()) { case STUN_BINDING_REQUEST: RTC_LOG_V(sev) << ToString() << ": Received " << StunMethodToString(msg->type()) << ", id=" << rtc::hex_encode(msg->transaction_id()); if (remote_ufrag == remote_candidate_.username()) { HandleStunBindingOrGoogPingRequest(msg.get()); } else { // The packet had the right local username, but the remote username // was not the right one for the remote address. RTC_LOG(LS_ERROR) << ToString() << ": Received STUN request with bad remote username " << remote_ufrag; port_->SendBindingErrorResponse(msg.get(), addr, STUN_ERROR_UNAUTHORIZED, STUN_ERROR_REASON_UNAUTHORIZED); } break; // Response from remote peer. Does it match request sent? // This doesn't just check, it makes callbacks if transaction // id's match. case STUN_BINDING_RESPONSE: case STUN_BINDING_ERROR_RESPONSE: if (msg->IntegrityOk()) { requests_.CheckResponse(msg.get()); } // Otherwise silently discard the response. break; // Remote end point sent an STUN indication instead of regular binding // request. In this case `last_ping_received_` will be updated but no // response will be sent. case STUN_BINDING_INDICATION: ReceivedPing(msg->transaction_id()); break; case GOOG_PING_REQUEST: HandleStunBindingOrGoogPingRequest(msg.get()); break; case GOOG_PING_RESPONSE: case GOOG_PING_ERROR_RESPONSE: if (msg->IntegrityOk()) { requests_.CheckResponse(msg.get()); } break; default: RTC_DCHECK_NOTREACHED(); break; } } } void Connection::HandleStunBindingOrGoogPingRequest(IceMessage* msg) { RTC_DCHECK_RUN_ON(network_thread_); // This connection should now be receiving. ReceivedPing(msg->transaction_id()); if (field_trials_->extra_ice_ping && last_ping_response_received_ == 0) { if (local_candidate().type() == RELAY_PORT_TYPE || local_candidate().type() == PRFLX_PORT_TYPE || remote_candidate().type() == RELAY_PORT_TYPE || remote_candidate().type() == PRFLX_PORT_TYPE) { const int64_t now = rtc::TimeMillis(); if (last_ping_sent_ + kMinExtraPingDelayMs <= now) { RTC_LOG(LS_INFO) << ToString() << "WebRTC-ExtraICEPing/Sending extra ping" " last_ping_sent_: " << last_ping_sent_ << " now: " << now << " (diff: " << (now - last_ping_sent_) << ")"; Ping(now); } else { RTC_LOG(LS_INFO) << ToString() << "WebRTC-ExtraICEPing/Not sending extra ping" " last_ping_sent_: " << last_ping_sent_ << " now: " << now << " (diff: " << (now - last_ping_sent_) << ")"; } } } const rtc::SocketAddress& remote_addr = remote_candidate_.address(); if (msg->type() == STUN_BINDING_REQUEST) { // Check for role conflicts. const std::string& remote_ufrag = remote_candidate_.username(); if (!port_->MaybeIceRoleConflict(remote_addr, msg, remote_ufrag)) { // Received conflicting role from the peer. RTC_LOG(LS_INFO) << "Received conflicting role from the peer."; return; } } stats_.recv_ping_requests++; LogCandidatePairEvent(webrtc::IceCandidatePairEventType::kCheckReceived, msg->reduced_transaction_id()); // This is a validated stun request from remote peer. if (msg->type() == STUN_BINDING_REQUEST) { SendStunBindingResponse(msg); } else { RTC_DCHECK(msg->type() == GOOG_PING_REQUEST); SendGoogPingResponse(msg); } // If it timed out on writing check, start up again if (!pruned_ && write_state_ == STATE_WRITE_TIMEOUT) { set_write_state(STATE_WRITE_INIT); } if (port_->GetIceRole() == ICEROLE_CONTROLLED) { const StunUInt32Attribute* nomination_attr = msg->GetUInt32(STUN_ATTR_NOMINATION); uint32_t nomination = 0; if (nomination_attr) { nomination = nomination_attr->value(); if (nomination == 0) { RTC_LOG(LS_ERROR) << "Invalid nomination: " << nomination; } } else { const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(STUN_ATTR_USE_CANDIDATE); if (use_candidate_attr) { nomination = 1; } } // We don't un-nominate a connection, so we only keep a larger nomination. if (nomination > remote_nomination_) { set_remote_nomination(nomination); SignalNominated(this); } } // Set the remote cost if the network_info attribute is available. // Note: If packets are re-ordered, we may get incorrect network cost // temporarily, but it should get the correct value shortly after that. const StunUInt32Attribute* network_attr = msg->GetUInt32(STUN_ATTR_GOOG_NETWORK_INFO); if (network_attr) { uint32_t network_info = network_attr->value(); uint16_t network_cost = static_cast(network_info); if (network_cost != remote_candidate_.network_cost()) { remote_candidate_.set_network_cost(network_cost); // Network cost change will affect the connection ranking, so signal // state change to force a re-sort in P2PTransportChannel. SignalStateChange(this); } } if (field_trials_->piggyback_ice_check_acknowledgement) { HandlePiggybackCheckAcknowledgementIfAny(msg); } } void Connection::SendStunBindingResponse(const StunMessage* message) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK_EQ(message->type(), STUN_BINDING_REQUEST); // Retrieve the username from the `message`. const StunByteStringAttribute* username_attr = message->GetByteString(STUN_ATTR_USERNAME); RTC_DCHECK(username_attr != NULL); if (username_attr == NULL) { // No valid username, skip the response. return; } // Fill in the response. StunMessage response(STUN_BINDING_RESPONSE, message->transaction_id()); const StunUInt32Attribute* retransmit_attr = message->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); if (retransmit_attr) { // Inherit the incoming retransmit value in the response so the other side // can see our view of lost pings. response.AddAttribute(std::make_unique( STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value())); if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) { RTC_LOG(LS_INFO) << ToString() << ": Received a remote ping with high retransmit count: " << retransmit_attr->value(); } } response.AddAttribute(std::make_unique( STUN_ATTR_XOR_MAPPED_ADDRESS, remote_candidate_.address())); if (field_trials_->announce_goog_ping) { // Check if message contains a announce-request. auto goog_misc = message->GetUInt16List(STUN_ATTR_GOOG_MISC_INFO); if (goog_misc != nullptr && goog_misc->Size() >= kSupportGoogPingVersionRequestIndex && // Which version can we handle...currently any >= 1 goog_misc->GetType(kSupportGoogPingVersionRequestIndex) >= 1) { auto list = StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO); list->AddTypeAtIndex(kSupportGoogPingVersionResponseIndex, kGoogPingVersion); response.AddAttribute(std::move(list)); } } response.AddMessageIntegrity(local_candidate().password()); response.AddFingerprint(); SendResponseMessage(response); } void Connection::SendGoogPingResponse(const StunMessage* message) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(message->type() == GOOG_PING_REQUEST); // Fill in the response. StunMessage response(GOOG_PING_RESPONSE, message->transaction_id()); response.AddMessageIntegrity32(local_candidate().password()); SendResponseMessage(response); } void Connection::SendResponseMessage(const StunMessage& response) { RTC_DCHECK_RUN_ON(network_thread_); // Where I send the response. const rtc::SocketAddress& addr = remote_candidate_.address(); // Send the response. rtc::ByteBufferWriter buf; response.Write(&buf); rtc::PacketOptions options(port_->StunDscpValue()); options.info_signaled_after_sent.packet_type = rtc::PacketType::kIceConnectivityCheckResponse; auto err = port_->SendTo(buf.Data(), buf.Length(), addr, options, false); if (err < 0) { RTC_LOG(LS_ERROR) << ToString() << ": Failed to send " << StunMethodToString(response.type()) << ", to=" << addr.ToSensitiveString() << ", err=" << err << ", id=" << rtc::hex_encode(response.transaction_id()); } else { // Log at LS_INFO if we send a stun ping response on an unwritable // connection. rtc::LoggingSeverity sev = (!writable()) ? rtc::LS_INFO : rtc::LS_VERBOSE; RTC_LOG_V(sev) << ToString() << ": Sent " << StunMethodToString(response.type()) << ", to=" << addr.ToSensitiveString() << ", id=" << rtc::hex_encode(response.transaction_id()); stats_.sent_ping_responses++; LogCandidatePairEvent(webrtc::IceCandidatePairEventType::kCheckResponseSent, response.reduced_transaction_id()); } } uint32_t Connection::acked_nomination() const { RTC_DCHECK_RUN_ON(network_thread_); return acked_nomination_; } void Connection::set_remote_nomination(uint32_t remote_nomination) { RTC_DCHECK_RUN_ON(network_thread_); remote_nomination_ = remote_nomination; } void Connection::OnReadyToSend() { RTC_DCHECK_RUN_ON(network_thread_); SignalReadyToSend(this); } bool Connection::pruned() const { RTC_DCHECK_RUN_ON(network_thread_); return pruned_; } void Connection::Prune() { RTC_DCHECK_RUN_ON(network_thread_); if (!pruned_ || active()) { RTC_LOG(LS_INFO) << ToString() << ": Connection pruned"; pruned_ = true; requests_.Clear(); set_write_state(STATE_WRITE_TIMEOUT); } } void Connection::Destroy() { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(port_) << "Calling Destroy() twice?"; if (port_) port_->DestroyConnection(this); } bool Connection::Shutdown() { RTC_DCHECK_RUN_ON(network_thread_); if (!port_) return false; // already shut down. RTC_DLOG(LS_VERBOSE) << ToString() << ": Connection destroyed"; // Fire the 'destroyed' event before deleting the object. This is done // intentionally to avoid a situation whereby the signal might have dangling // pointers to objects that have been deleted by the time the async task // that deletes the connection object runs. auto destroyed_signals = SignalDestroyed; SignalDestroyed.disconnect_all(); destroyed_signals(this); LogCandidatePairConfig(webrtc::IceCandidatePairConfigType::kDestroyed); // Reset the `port_` after logging and firing the destroyed signal since // information required for logging needs access to `port_`. port_.reset(); return true; } void Connection::FailAndPrune() { RTC_DCHECK_RUN_ON(network_thread_); // TODO(bugs.webrtc.org/13865): There's a circular dependency between Port // and Connection. In some cases (Port dtor), a Connection object is deleted // without using the `Destroy` method (port_ won't be nulled and some // functionality won't run as expected), while in other cases // the Connection object is deleted asynchronously and in that case `port_` // will be nulled. // In such a case, there's a chance that the Port object gets // deleted before the Connection object ends up being deleted. if (!port_) return; set_state(IceCandidatePairState::FAILED); Prune(); } void Connection::PrintPingsSinceLastResponse(std::string* s, size_t max) { RTC_DCHECK_RUN_ON(network_thread_); rtc::StringBuilder oss; if (pings_since_last_response_.size() > max) { for (size_t i = 0; i < max; i++) { const SentPing& ping = pings_since_last_response_[i]; oss << rtc::hex_encode(ping.id) << " "; } oss << "... " << (pings_since_last_response_.size() - max) << " more"; } else { for (const SentPing& ping : pings_since_last_response_) { oss << rtc::hex_encode(ping.id) << " "; } } *s = oss.str(); } bool Connection::selected() const { RTC_DCHECK_RUN_ON(network_thread_); return selected_; } void Connection::set_selected(bool selected) { RTC_DCHECK_RUN_ON(network_thread_); selected_ = selected; } void Connection::UpdateState(int64_t now) { RTC_DCHECK_RUN_ON(network_thread_); if (!port_) return; int rtt = ConservativeRTTEstimate(rtt_); if (RTC_LOG_CHECK_LEVEL(LS_VERBOSE)) { std::string pings; PrintPingsSinceLastResponse(&pings, 5); RTC_LOG(LS_VERBOSE) << ToString() << ": UpdateState()" ", ms since last received response=" << now - last_ping_response_received_ << ", ms since last received data=" << now - last_data_received_ << ", rtt=" << rtt << ", pings_since_last_response=" << pings; } // Check the writable state. (The order of these checks is important.) // // Before becoming unwritable, we allow for a fixed number of pings to fail // (i.e., receive no response). We also have to give the response time to // get back, so we include a conservative estimate of this. // // Before timing out writability, we give a fixed amount of time. This is to // allow for changes in network conditions. if ((write_state_ == STATE_WRITABLE) && TooManyFailures(pings_since_last_response_, unwritable_min_checks(), rtt, now) && TooLongWithoutResponse(pings_since_last_response_, unwritable_timeout(), now)) { uint32_t max_pings = unwritable_min_checks(); RTC_LOG(LS_INFO) << ToString() << ": Unwritable after " << max_pings << " ping failures and " << now - pings_since_last_response_[0].sent_time << " ms without a response," " ms since last received ping=" << now - last_ping_received_ << " ms since last received data=" << now - last_data_received_ << " rtt=" << rtt; set_write_state(STATE_WRITE_UNRELIABLE); } if ((write_state_ == STATE_WRITE_UNRELIABLE || write_state_ == STATE_WRITE_INIT) && TooLongWithoutResponse(pings_since_last_response_, inactive_timeout(), now)) { RTC_LOG(LS_INFO) << ToString() << ": Timed out after " << now - pings_since_last_response_[0].sent_time << " ms without a response, rtt=" << rtt; set_write_state(STATE_WRITE_TIMEOUT); } // Update the receiving state. UpdateReceiving(now); if (dead(now)) { port_->DestroyConnectionAsync(this); } } void Connection::UpdateLocalIceParameters(int component, absl::string_view username_fragment, absl::string_view password) { RTC_DCHECK_RUN_ON(network_thread_); local_candidate_.set_component(component); local_candidate_.set_username(username_fragment); local_candidate_.set_password(password); } int64_t Connection::last_ping_sent() const { RTC_DCHECK_RUN_ON(network_thread_); return last_ping_sent_; } void Connection::Ping(int64_t now) { RTC_DCHECK_RUN_ON(network_thread_); if (!port_) return; last_ping_sent_ = now; // If not using renomination, we use "1" to mean "nominated" and "0" to mean // "not nominated". If using renomination, values greater than 1 are used for // re-nominated pairs. int nomination = use_candidate_attr_ ? 1 : 0; if (nomination_ > 0) { nomination = nomination_; } auto req = std::make_unique(requests_, this, BuildPingRequest()); if (ShouldSendGoogPing(req->msg())) { auto message = std::make_unique(GOOG_PING_REQUEST, req->id()); message->AddMessageIntegrity32(remote_candidate_.password()); req.reset(new ConnectionRequest(requests_, this, std::move(message))); } pings_since_last_response_.push_back(SentPing(req->id(), now, nomination)); RTC_LOG(LS_VERBOSE) << ToString() << ": Sending STUN ping, id=" << rtc::hex_encode(req->id()) << ", nomination=" << nomination_; requests_.Send(req.release()); state_ = IceCandidatePairState::IN_PROGRESS; num_pings_sent_++; } std::unique_ptr Connection::BuildPingRequest() { auto message = std::make_unique(STUN_BINDING_REQUEST); // Note that the order of attributes does not impact the parsing on the // receiver side. The attribute is retrieved then by iterating and matching // over all parsed attributes. See StunMessage::GetAttribute. message->AddAttribute(std::make_unique( STUN_ATTR_USERNAME, port()->CreateStunUsername(remote_candidate_.username()))); message->AddAttribute(std::make_unique( STUN_ATTR_GOOG_NETWORK_INFO, (port_->Network()->id() << 16) | port_->network_cost())); if (field_trials_->piggyback_ice_check_acknowledgement && last_ping_id_received_) { message->AddAttribute(std::make_unique( STUN_ATTR_GOOG_LAST_ICE_CHECK_RECEIVED, *last_ping_id_received_)); } // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role. IceRole ice_role = port_->GetIceRole(); RTC_DCHECK(ice_role == ICEROLE_CONTROLLING || ice_role == ICEROLE_CONTROLLED); message->AddAttribute(std::make_unique( ice_role == ICEROLE_CONTROLLING ? STUN_ATTR_ICE_CONTROLLING : STUN_ATTR_ICE_CONTROLLED, port_->IceTiebreaker())); if (ice_role == ICEROLE_CONTROLLING) { // We should have either USE_CANDIDATE attribute or ICE_NOMINATION // attribute but not both. That was enforced in p2ptransportchannel. if (use_candidate_attr()) { message->AddAttribute( std::make_unique(STUN_ATTR_USE_CANDIDATE)); } if (nomination_ && nomination_ != acked_nomination()) { message->AddAttribute(std::make_unique( STUN_ATTR_NOMINATION, nomination_)); } } message->AddAttribute(std::make_unique( STUN_ATTR_PRIORITY, prflx_priority())); if (port()->send_retransmit_count_attribute()) { message->AddAttribute(std::make_unique( STUN_ATTR_RETRANSMIT_COUNT, pings_since_last_response_.size())); } if (field_trials_->enable_goog_ping && !remote_support_goog_ping_.has_value()) { // Check if remote supports GOOG PING by announcing which version we // support. This is sent on all STUN_BINDING_REQUEST until we get a // STUN_BINDING_RESPONSE. auto list = StunAttribute::CreateUInt16ListAttribute(STUN_ATTR_GOOG_MISC_INFO); list->AddTypeAtIndex(kSupportGoogPingVersionRequestIndex, kGoogPingVersion); message->AddAttribute(std::move(list)); } message->AddMessageIntegrity(remote_candidate_.password()); message->AddFingerprint(); return message; } int64_t Connection::last_ping_response_received() const { RTC_DCHECK_RUN_ON(network_thread_); return last_ping_response_received_; } const absl::optional& Connection::last_ping_id_received() const { RTC_DCHECK_RUN_ON(network_thread_); return last_ping_id_received_; } // Used to check if any STUN ping response has been received. int Connection::rtt_samples() const { RTC_DCHECK_RUN_ON(network_thread_); return rtt_samples_; } // Called whenever a valid ping is received on this connection. This is // public because the connection intercepts the first ping for us. int64_t Connection::last_ping_received() const { RTC_DCHECK_RUN_ON(network_thread_); return last_ping_received_; } void Connection::ReceivedPing(const absl::optional& request_id) { RTC_DCHECK_RUN_ON(network_thread_); last_ping_received_ = rtc::TimeMillis(); last_ping_id_received_ = request_id; UpdateReceiving(last_ping_received_); } void Connection::HandlePiggybackCheckAcknowledgementIfAny(StunMessage* msg) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(msg->type() == STUN_BINDING_REQUEST || msg->type() == GOOG_PING_REQUEST); const StunByteStringAttribute* last_ice_check_received_attr = msg->GetByteString(STUN_ATTR_GOOG_LAST_ICE_CHECK_RECEIVED); if (last_ice_check_received_attr) { const absl::string_view request_id = last_ice_check_received_attr->string_view(); auto iter = absl::c_find_if( pings_since_last_response_, [&request_id](const SentPing& ping) { return ping.id == request_id; }); if (iter != pings_since_last_response_.end()) { rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; RTC_LOG_V(sev) << ToString() << ": Received piggyback STUN ping response, id=" << rtc::hex_encode(request_id); const int64_t rtt = rtc::TimeMillis() - iter->sent_time; ReceivedPingResponse(rtt, request_id, iter->nomination); } } } int64_t Connection::last_send_data() const { RTC_DCHECK_RUN_ON(network_thread_); return last_send_data_; } int64_t Connection::last_data_received() const { RTC_DCHECK_RUN_ON(network_thread_); return last_data_received_; } void Connection::ReceivedPingResponse( int rtt, absl::string_view request_id, const absl::optional& nomination) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK_GE(rtt, 0); // We've already validated that this is a STUN binding response with // the correct local and remote username for this connection. // So if we're not already, become writable. We may be bringing a pruned // connection back to life, but if we don't really want it, we can always // prune it again. if (nomination && nomination.value() > acked_nomination_) { acked_nomination_ = nomination.value(); } int64_t now = rtc::TimeMillis(); total_round_trip_time_ms_ += rtt; current_round_trip_time_ms_ = static_cast(rtt); rtt_estimate_.AddSample(now, rtt); pings_since_last_response_.clear(); last_ping_response_received_ = now; UpdateReceiving(last_ping_response_received_); set_write_state(STATE_WRITABLE); set_state(IceCandidatePairState::SUCCEEDED); if (rtt_samples_ > 0) { rtt_ = rtc::GetNextMovingAverage(rtt_, rtt, RTT_RATIO); } else { rtt_ = rtt; } rtt_samples_++; } Connection::WriteState Connection::write_state() const { RTC_DCHECK_RUN_ON(network_thread_); return write_state_; } bool Connection::writable() const { RTC_DCHECK_RUN_ON(network_thread_); return write_state_ == STATE_WRITABLE; } bool Connection::receiving() const { RTC_DCHECK_RUN_ON(network_thread_); return receiving_; } // Determines whether the connection has finished connecting. This can only // be false for TCP connections. bool Connection::connected() const { RTC_DCHECK_RUN_ON(network_thread_); return connected_; } bool Connection::weak() const { return !(writable() && receiving() && connected()); } bool Connection::active() const { RTC_DCHECK_RUN_ON(network_thread_); return write_state_ != STATE_WRITE_TIMEOUT; } bool Connection::dead(int64_t now) const { RTC_DCHECK_RUN_ON(network_thread_); if (last_received() > 0) { // If it has ever received anything, we keep it alive // - if it has recevied last DEAD_CONNECTION_RECEIVE_TIMEOUT (30s) // - if it has a ping outstanding shorter than // DEAD_CONNECTION_RECEIVE_TIMEOUT (30s) // - else if IDLE let it live field_trials_->dead_connection_timeout_ms // // This covers the normal case of a successfully used connection that stops // working. This also allows a remote peer to continue pinging over a // locally inactive (pruned) connection. This also allows the local agent to // ping with longer interval than 30s as long as it shorter than // `dead_connection_timeout_ms`. if (now <= (last_received() + DEAD_CONNECTION_RECEIVE_TIMEOUT)) { // Not dead since we have received the last 30s. return false; } if (!pings_since_last_response_.empty()) { // Outstanding pings: let it live until the ping is unreplied for // DEAD_CONNECTION_RECEIVE_TIMEOUT. return now > (pings_since_last_response_[0].sent_time + DEAD_CONNECTION_RECEIVE_TIMEOUT); } // No outstanding pings: let it live until // field_trials_->dead_connection_timeout_ms has passed. return now > (last_received() + field_trials_->dead_connection_timeout_ms); } if (active()) { // If it has never received anything, keep it alive as long as it is // actively pinging and not pruned. Otherwise, the connection might be // deleted before it has a chance to ping. This is the normal case for a // new connection that is pinging but hasn't received anything yet. return false; } // If it has never received anything and is not actively pinging (pruned), we // keep it around for at least MIN_CONNECTION_LIFETIME to prevent connections // from being pruned too quickly during a network change event when two // networks would be up simultaneously but only for a brief period. return now > (time_created_ms_ + MIN_CONNECTION_LIFETIME); } int Connection::rtt() const { RTC_DCHECK_RUN_ON(network_thread_); return rtt_; } bool Connection::stable(int64_t now) const { // A connection is stable if it's RTT has converged and it isn't missing any // responses. We should send pings at a higher rate until the RTT converges // and whenever a ping response is missing (so that we can detect // unwritability faster) return rtt_converged() && !missing_responses(now); } std::string Connection::ToDebugId() const { return rtc::ToHex(reinterpret_cast(this)); } uint32_t Connection::ComputeNetworkCost() const { // TODO(honghaiz): Will add rtt as part of the network cost. return port()->network_cost() + remote_candidate_.network_cost(); } std::string Connection::ToString() const { RTC_DCHECK_RUN_ON(network_thread_); constexpr absl::string_view CONNECT_STATE_ABBREV[2] = { "-", // not connected (false) "C", // connected (true) }; constexpr absl::string_view RECEIVE_STATE_ABBREV[2] = { "-", // not receiving (false) "R", // receiving (true) }; constexpr absl::string_view WRITE_STATE_ABBREV[4] = { "W", // STATE_WRITABLE "w", // STATE_WRITE_UNRELIABLE "-", // STATE_WRITE_INIT "x", // STATE_WRITE_TIMEOUT }; constexpr absl::string_view ICESTATE[4] = { "W", // STATE_WAITING "I", // STATE_INPROGRESS "S", // STATE_SUCCEEDED "F" // STATE_FAILED }; constexpr absl::string_view SELECTED_STATE_ABBREV[2] = { "-", // candidate pair not selected (false) "S", // selected (true) }; rtc::StringBuilder ss; ss << "Conn[" << ToDebugId(); if (!port_) { // No content or network names for pending delete. Temporarily substitute // the names with a hash (rhyming with trash). ss << ":#:#:"; } else { ss << ":" << port_->content_name() << ":" << port_->Network()->ToString() << ":"; } const Candidate& local = local_candidate(); const Candidate& remote = remote_candidate(); ss << local.id() << ":" << local.component() << ":" << local.generation() << ":" << local.type() << ":" << local.protocol() << ":" << local.address().ToSensitiveString() << "->" << remote.id() << ":" << remote.component() << ":" << remote.priority() << ":" << remote.type() << ":" << remote.protocol() << ":" << remote.address().ToSensitiveString() << "|"; ss << CONNECT_STATE_ABBREV[connected_] << RECEIVE_STATE_ABBREV[receiving_] << WRITE_STATE_ABBREV[write_state_] << ICESTATE[static_cast(state_)] << "|" << SELECTED_STATE_ABBREV[selected_] << "|" << remote_nomination_ << "|" << nomination_ << "|"; if (port_) ss << priority() << "|"; if (rtt_ < DEFAULT_RTT) { ss << rtt_ << "]"; } else { ss << "-]"; } return ss.Release(); } std::string Connection::ToSensitiveString() const { return ToString(); } const webrtc::IceCandidatePairDescription& Connection::ToLogDescription() { RTC_DCHECK_RUN_ON(network_thread_); if (log_description_.has_value()) { return log_description_.value(); } const Candidate& local = local_candidate(); const Candidate& remote = remote_candidate(); const rtc::Network* network = port()->Network(); log_description_ = webrtc::IceCandidatePairDescription(); log_description_->local_candidate_type = GetCandidateTypeByString(local.type()); log_description_->local_relay_protocol = GetProtocolByString(local.relay_protocol()); log_description_->local_network_type = ConvertNetworkType(network->type()); log_description_->local_address_family = GetAddressFamilyByInt(local.address().family()); log_description_->remote_candidate_type = GetCandidateTypeByString(remote.type()); log_description_->remote_address_family = GetAddressFamilyByInt(remote.address().family()); log_description_->candidate_pair_protocol = GetProtocolByString(local.protocol()); return log_description_.value(); } void Connection::set_ice_event_log(webrtc::IceEventLog* ice_event_log) { RTC_DCHECK_RUN_ON(network_thread_); ice_event_log_ = ice_event_log; } void Connection::LogCandidatePairConfig( webrtc::IceCandidatePairConfigType type) { RTC_DCHECK_RUN_ON(network_thread_); if (ice_event_log_ == nullptr) { return; } ice_event_log_->LogCandidatePairConfig(type, id(), ToLogDescription()); } void Connection::LogCandidatePairEvent(webrtc::IceCandidatePairEventType type, uint32_t transaction_id) { RTC_DCHECK_RUN_ON(network_thread_); if (ice_event_log_ == nullptr) { return; } ice_event_log_->LogCandidatePairEvent(type, id(), transaction_id); } void Connection::OnConnectionRequestResponse(StunRequest* request, StunMessage* response) { RTC_DCHECK_RUN_ON(network_thread_); // Log at LS_INFO if we receive a ping response on an unwritable // connection. rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; int rtt = request->Elapsed(); if (RTC_LOG_CHECK_LEVEL_V(sev)) { std::string pings; PrintPingsSinceLastResponse(&pings, 5); RTC_LOG_V(sev) << ToString() << ": Received " << StunMethodToString(response->type()) << ", id=" << rtc::hex_encode(request->id()) << ", code=0" // Makes logging easier to parse. ", rtt=" << rtt << ", pings_since_last_response=" << pings; } absl::optional nomination; const std::string request_id = request->id(); auto iter = absl::c_find_if( pings_since_last_response_, [&request_id](const SentPing& ping) { return ping.id == request_id; }); if (iter != pings_since_last_response_.end()) { nomination.emplace(iter->nomination); } ReceivedPingResponse(rtt, request_id, nomination); stats_.recv_ping_responses++; LogCandidatePairEvent( webrtc::IceCandidatePairEventType::kCheckResponseReceived, response->reduced_transaction_id()); if (request->msg()->type() == STUN_BINDING_REQUEST) { if (!remote_support_goog_ping_.has_value()) { auto goog_misc = response->GetUInt16List(STUN_ATTR_GOOG_MISC_INFO); if (goog_misc != nullptr && goog_misc->Size() >= kSupportGoogPingVersionResponseIndex) { // The remote peer has indicated that it {does/does not} supports // GOOG_PING. remote_support_goog_ping_ = goog_misc->GetType(kSupportGoogPingVersionResponseIndex) >= kGoogPingVersion; } else { remote_support_goog_ping_ = false; } } MaybeUpdateLocalCandidate(request, response); if (field_trials_->enable_goog_ping && remote_support_goog_ping_) { cached_stun_binding_ = request->msg()->Clone(); } } } void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request, StunMessage* response) { if (!port_) return; int error_code = response->GetErrorCodeValue(); RTC_LOG(LS_WARNING) << ToString() << ": Received " << StunMethodToString(response->type()) << " id=" << rtc::hex_encode(request->id()) << " code=" << error_code << " rtt=" << request->Elapsed(); cached_stun_binding_.reset(); if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE || error_code == STUN_ERROR_SERVER_ERROR || error_code == STUN_ERROR_UNAUTHORIZED) { // Recoverable error, retry } else if (error_code == STUN_ERROR_ROLE_CONFLICT) { port_->SignalRoleConflict(port_.get()); } else if (request->msg()->type() == GOOG_PING_REQUEST) { // Race, retry. } else { // This is not a valid connection. RTC_LOG(LS_ERROR) << ToString() << ": Received STUN error response, code=" << error_code << "; killing connection"; set_state(IceCandidatePairState::FAILED); port_->DestroyConnectionAsync(this); } } void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) { // Log at LS_INFO if we miss a ping on a writable connection. rtc::LoggingSeverity sev = writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; RTC_LOG_V(sev) << ToString() << ": Timing-out STUN ping " << rtc::hex_encode(request->id()) << " after " << request->Elapsed() << " ms"; } void Connection::OnConnectionRequestSent(ConnectionRequest* request) { RTC_DCHECK_RUN_ON(network_thread_); // Log at LS_INFO if we send a ping on an unwritable connection. rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; RTC_LOG_V(sev) << ToString() << ": Sent " << StunMethodToString(request->msg()->type()) << ", id=" << rtc::hex_encode(request->id()) << ", use_candidate=" << use_candidate_attr() << ", nomination=" << nomination_; stats_.sent_ping_requests_total++; LogCandidatePairEvent(webrtc::IceCandidatePairEventType::kCheckSent, request->reduced_transaction_id()); if (stats_.recv_ping_responses == 0) { stats_.sent_ping_requests_before_first_response++; } } IceCandidatePairState Connection::state() const { RTC_DCHECK_RUN_ON(network_thread_); return state_; } int Connection::num_pings_sent() const { RTC_DCHECK_RUN_ON(network_thread_); return num_pings_sent_; } void Connection::MaybeSetRemoteIceParametersAndGeneration( const IceParameters& ice_params, int generation) { if (remote_candidate_.username() == ice_params.ufrag && remote_candidate_.password().empty()) { remote_candidate_.set_password(ice_params.pwd); } // TODO(deadbeef): A value of '0' for the generation is used for both // generation 0 and "generation unknown". It should be changed to an // absl::optional to fix this. if (remote_candidate_.username() == ice_params.ufrag && remote_candidate_.password() == ice_params.pwd && remote_candidate_.generation() == 0) { remote_candidate_.set_generation(generation); } } void Connection::MaybeUpdatePeerReflexiveCandidate( const Candidate& new_candidate) { if (remote_candidate_.type() == PRFLX_PORT_TYPE && new_candidate.type() != PRFLX_PORT_TYPE && remote_candidate_.protocol() == new_candidate.protocol() && remote_candidate_.address() == new_candidate.address() && remote_candidate_.username() == new_candidate.username() && remote_candidate_.password() == new_candidate.password() && remote_candidate_.generation() == new_candidate.generation()) { remote_candidate_ = new_candidate; } } int64_t Connection::last_received() const { RTC_DCHECK_RUN_ON(network_thread_); return std::max(last_data_received_, std::max(last_ping_received_, last_ping_response_received_)); } int64_t Connection::receiving_unchanged_since() const { RTC_DCHECK_RUN_ON(network_thread_); return receiving_unchanged_since_; } uint32_t Connection::prflx_priority() const { RTC_DCHECK_RUN_ON(network_thread_); // PRIORITY Attribute. // Changing the type preference to Peer Reflexive and local preference // and component id information is unchanged from the original priority. // priority = (2^24)*(type preference) + // (2^8)*(local preference) + // (2^0)*(256 - component ID) IcePriorityValue type_preference = (local_candidate_.protocol() == TCP_PROTOCOL_NAME) ? ICE_TYPE_PREFERENCE_PRFLX_TCP : ICE_TYPE_PREFERENCE_PRFLX; return type_preference << 24 | (local_candidate_.priority() & 0x00FFFFFF); } ConnectionInfo Connection::stats() { RTC_DCHECK_RUN_ON(network_thread_); stats_.recv_bytes_second = round(recv_rate_tracker_.ComputeRate()); stats_.recv_total_bytes = recv_rate_tracker_.TotalSampleCount(); stats_.sent_bytes_second = round(send_rate_tracker_.ComputeRate()); stats_.sent_total_bytes = send_rate_tracker_.TotalSampleCount(); stats_.receiving = receiving_; stats_.writable = write_state_ == STATE_WRITABLE; stats_.timeout = write_state_ == STATE_WRITE_TIMEOUT; stats_.rtt = rtt_; stats_.key = this; stats_.state = state_; if (port_) { stats_.priority = priority(); stats_.local_candidate = local_candidate(); } stats_.nominated = nominated(); stats_.total_round_trip_time_ms = total_round_trip_time_ms_; stats_.current_round_trip_time_ms = current_round_trip_time_ms_; stats_.remote_candidate = remote_candidate(); return stats_; } void Connection::MaybeUpdateLocalCandidate(StunRequest* request, StunMessage* response) { if (!port_) return; // RFC 5245 // The agent checks the mapped address from the STUN response. If the // transport address does not match any of the local candidates that the // agent knows about, the mapped address represents a new candidate -- a // peer reflexive candidate. const StunAddressAttribute* addr = response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); if (!addr) { RTC_LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the " "stun response message"; return; } for (const Candidate& candidate : port_->Candidates()) { if (candidate.address() == addr->GetAddress()) { if (local_candidate_ != candidate) { RTC_LOG(LS_INFO) << ToString() << ": Updating local candidate type to srflx."; local_candidate_ = candidate; // SignalStateChange to force a re-sort in P2PTransportChannel as this // Connection's local candidate has changed. SignalStateChange(this); } return; } } // RFC 5245 // Its priority is set equal to the value of the PRIORITY attribute // in the Binding request. const StunUInt32Attribute* priority_attr = request->msg()->GetUInt32(STUN_ATTR_PRIORITY); if (!priority_attr) { RTC_LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " "No STUN_ATTR_PRIORITY found in the " "stun response message"; return; } const uint32_t priority = priority_attr->value(); std::string id = rtc::CreateRandomString(8); // Create a peer-reflexive candidate based on the local candidate. local_candidate_.set_id(id); local_candidate_.set_type(PRFLX_PORT_TYPE); // Set the related address and foundation attributes before changing the // address. local_candidate_.set_related_address(local_candidate_.address()); local_candidate_.set_foundation(Port::ComputeFoundation( PRFLX_PORT_TYPE, local_candidate_.protocol(), local_candidate_.relay_protocol(), local_candidate_.address())); local_candidate_.set_priority(priority); local_candidate_.set_address(addr->GetAddress()); // Change the local candidate of this Connection to the new prflx candidate. RTC_LOG(LS_INFO) << ToString() << ": Updating local candidate type to prflx."; port_->AddPrflxCandidate(local_candidate_); // SignalStateChange to force a re-sort in P2PTransportChannel as this // Connection's local candidate has changed. SignalStateChange(this); } bool Connection::rtt_converged() const { RTC_DCHECK_RUN_ON(network_thread_); return rtt_samples_ > (RTT_RATIO + 1); } bool Connection::missing_responses(int64_t now) const { RTC_DCHECK_RUN_ON(network_thread_); if (pings_since_last_response_.empty()) { return false; } int64_t waiting = now - pings_since_last_response_[0].sent_time; return waiting > 2 * rtt(); } bool Connection::TooManyOutstandingPings( const absl::optional& max_outstanding_pings) const { RTC_DCHECK_RUN_ON(network_thread_); if (!max_outstanding_pings.has_value()) { return false; } if (static_cast(pings_since_last_response_.size()) < *max_outstanding_pings) { return false; } return true; } void Connection::SetLocalCandidateNetworkCost(uint16_t cost) { RTC_DCHECK_RUN_ON(network_thread_); if (cost == local_candidate_.network_cost()) return; local_candidate_.set_network_cost(cost); // Network cost change will affect the connection selection criteria. // Signal the connection state change to force a re-sort in // P2PTransportChannel. SignalStateChange(this); } bool Connection::ShouldSendGoogPing(const StunMessage* message) { RTC_DCHECK_RUN_ON(network_thread_); if (remote_support_goog_ping_ == true && cached_stun_binding_ && cached_stun_binding_->EqualAttributes(message, [](int type) { // Ignore these attributes. // NOTE: Consider what to do if adding more content to // STUN_ATTR_GOOG_MISC_INFO return type != STUN_ATTR_FINGERPRINT && type != STUN_ATTR_MESSAGE_INTEGRITY && type != STUN_ATTR_RETRANSMIT_COUNT && type != STUN_ATTR_GOOG_MISC_INFO; })) { return true; } return false; } void Connection::ForgetLearnedState() { RTC_DCHECK_RUN_ON(network_thread_); RTC_LOG(LS_INFO) << ToString() << ": Connection forget learned state"; requests_.Clear(); receiving_ = false; write_state_ = STATE_WRITE_INIT; rtt_estimate_.Reset(); pings_since_last_response_.clear(); } ProxyConnection::ProxyConnection(rtc::WeakPtr port, size_t index, const Candidate& remote_candidate) : Connection(std::move(port), index, remote_candidate) {} int ProxyConnection::Send(const void* data, size_t size, const rtc::PacketOptions& options) { if (!port_) return SOCKET_ERROR; stats_.sent_total_packets++; int sent = port_->SendTo(data, size, remote_candidate_.address(), options, true); int64_t now = rtc::TimeMillis(); if (sent <= 0) { RTC_DCHECK(sent < 0); error_ = port_->GetError(); stats_.sent_discarded_packets++; stats_.sent_discarded_bytes += size; } else { send_rate_tracker_.AddSamplesAtTime(now, sent); } last_send_data_ = now; return sent; } int ProxyConnection::GetError() { return error_; } } // namespace cricket