/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "p2p/base/stun_request.h" #include #include #include #include #include "absl/memory/memory.h" #include "api/task_queue/pending_task_safety_flag.h" #include "rtc_base/checks.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/string_encode.h" #include "rtc_base/time_utils.h" // For TimeMillis namespace cricket { using ::webrtc::SafeTask; // RFC 5389 says SHOULD be 500ms. // For years, this was 100ms, but for networks that // experience moments of high RTT (such as 2G networks), this doesn't // work well. const int STUN_INITIAL_RTO = 250; // milliseconds // The timeout doubles each retransmission, up to this many times // RFC 5389 says SHOULD retransmit 7 times. // This has been 8 for years (not sure why). const int STUN_MAX_RETRANSMISSIONS = 8; // Total sends: 9 // We also cap the doubling, even though the standard doesn't say to. // This has been 1.6 seconds for years, but for networks that // experience moments of high RTT (such as 2G networks), this doesn't // work well. const int STUN_MAX_RTO = 8000; // milliseconds, or 5 doublings StunRequestManager::StunRequestManager( webrtc::TaskQueueBase* thread, std::function send_packet) : thread_(thread), send_packet_(std::move(send_packet)) {} StunRequestManager::~StunRequestManager() = default; void StunRequestManager::Send(StunRequest* request) { SendDelayed(request, 0); } void StunRequestManager::SendDelayed(StunRequest* request, int delay) { RTC_DCHECK_RUN_ON(thread_); RTC_DCHECK_EQ(this, request->manager()); auto [iter, was_inserted] = requests_.emplace(request->id(), absl::WrapUnique(request)); RTC_DCHECK(was_inserted); request->Send(webrtc::TimeDelta::Millis(delay)); } void StunRequestManager::FlushForTest(int msg_type) { RTC_DCHECK_RUN_ON(thread_); for (const auto& [unused, request] : requests_) { if (msg_type == kAllRequestsForTest || msg_type == request->type()) { // Calling `Send` implies starting the send operation which may be posted // on a timer and be repeated on a timer until timeout. To make sure that // a call to `Send` doesn't conflict with a previously started `Send` // operation, we reset the `task_safety_` flag here, which has the effect // of canceling any outstanding tasks and prepare a new flag for // operations related to this call to `Send`. request->ResetTasksForTest(); request->Send(webrtc::TimeDelta::Zero()); } } } bool StunRequestManager::HasRequestForTest(int msg_type) { RTC_DCHECK_RUN_ON(thread_); RTC_DCHECK_NE(msg_type, kAllRequestsForTest); for (const auto& [unused, request] : requests_) { if (msg_type == request->type()) { return true; } } return false; } void StunRequestManager::Clear() { RTC_DCHECK_RUN_ON(thread_); requests_.clear(); } bool StunRequestManager::CheckResponse(StunMessage* msg) { RTC_DCHECK_RUN_ON(thread_); RequestMap::iterator iter = requests_.find(msg->transaction_id()); if (iter == requests_.end()) return false; StunRequest* request = iter->second.get(); // Now that we know the request, we can see if the response is // integrity-protected or not. // For some tests, the message integrity is not set in the request. // Complain, and then don't check. bool skip_integrity_checking = false; if (request->msg()->integrity() == StunMessage::IntegrityStatus::kNotSet) { skip_integrity_checking = true; } else { msg->ValidateMessageIntegrity(request->msg()->password()); } bool success = true; if (!msg->GetNonComprehendedAttributes().empty()) { // If a response contains unknown comprehension-required attributes, it's // simply discarded and the transaction is considered failed. See RFC5389 // sections 7.3.3 and 7.3.4. RTC_LOG(LS_ERROR) << ": Discarding response due to unknown " "comprehension-required attribute."; success = false; } else if (msg->type() == GetStunSuccessResponseType(request->type())) { if (!msg->IntegrityOk() && !skip_integrity_checking) { return false; } request->OnResponse(msg); } else if (msg->type() == GetStunErrorResponseType(request->type())) { request->OnErrorResponse(msg); } else { RTC_LOG(LS_ERROR) << "Received response with wrong type: " << msg->type() << " (expecting " << GetStunSuccessResponseType(request->type()) << ")"; return false; } requests_.erase(iter); return success; } bool StunRequestManager::empty() const { RTC_DCHECK_RUN_ON(thread_); return requests_.empty(); } bool StunRequestManager::CheckResponse(const char* data, size_t size) { RTC_DCHECK_RUN_ON(thread_); // Check the appropriate bytes of the stream to see if they match the // transaction ID of a response we are expecting. if (size < 20) return false; std::string id; id.append(data + kStunTransactionIdOffset, kStunTransactionIdLength); RequestMap::iterator iter = requests_.find(id); if (iter == requests_.end()) return false; // Parse the STUN message and continue processing as usual. rtc::ByteBufferReader buf(data, size); std::unique_ptr response(iter->second->msg_->CreateNew()); if (!response->Read(&buf)) { RTC_LOG(LS_WARNING) << "Failed to read STUN response " << rtc::hex_encode(id); return false; } return CheckResponse(response.get()); } void StunRequestManager::OnRequestTimedOut(StunRequest* request) { RTC_DCHECK_RUN_ON(thread_); requests_.erase(request->id()); } void StunRequestManager::SendPacket(const void* data, size_t size, StunRequest* request) { RTC_DCHECK_EQ(this, request->manager()); send_packet_(data, size, request); } StunRequest::StunRequest(StunRequestManager& manager) : manager_(manager), msg_(new StunMessage(STUN_INVALID_MESSAGE_TYPE)), tstamp_(0), count_(0), timeout_(false) { RTC_DCHECK_RUN_ON(network_thread()); } StunRequest::StunRequest(StunRequestManager& manager, std::unique_ptr message) : manager_(manager), msg_(std::move(message)), tstamp_(0), count_(0), timeout_(false) { RTC_DCHECK_RUN_ON(network_thread()); RTC_DCHECK(!msg_->transaction_id().empty()); } StunRequest::~StunRequest() {} int StunRequest::type() { RTC_DCHECK(msg_ != NULL); return msg_->type(); } const StunMessage* StunRequest::msg() const { return msg_.get(); } int StunRequest::Elapsed() const { RTC_DCHECK_RUN_ON(network_thread()); return static_cast(rtc::TimeMillis() - tstamp_); } void StunRequest::SendInternal() { RTC_DCHECK_RUN_ON(network_thread()); if (timeout_) { OnTimeout(); manager_.OnRequestTimedOut(this); return; } tstamp_ = rtc::TimeMillis(); rtc::ByteBufferWriter buf; msg_->Write(&buf); manager_.SendPacket(buf.Data(), buf.Length(), this); OnSent(); SendDelayed(webrtc::TimeDelta::Millis(resend_delay())); } void StunRequest::SendDelayed(webrtc::TimeDelta delay) { network_thread()->PostDelayedTask( SafeTask(task_safety_.flag(), [this]() { SendInternal(); }), delay); } void StunRequest::Send(webrtc::TimeDelta delay) { RTC_DCHECK_RUN_ON(network_thread()); RTC_DCHECK_GE(delay.ms(), 0); RTC_DCHECK(!task_safety_.flag()->alive()) << "Send already called?"; task_safety_.flag()->SetAlive(); delay.IsZero() ? SendInternal() : SendDelayed(delay); } void StunRequest::ResetTasksForTest() { RTC_DCHECK_RUN_ON(network_thread()); task_safety_.reset(webrtc::PendingTaskSafetyFlag::CreateDetachedInactive()); count_ = 0; RTC_DCHECK(!timeout_); } void StunRequest::OnSent() { RTC_DCHECK_RUN_ON(network_thread()); count_ += 1; int retransmissions = (count_ - 1); if (retransmissions >= STUN_MAX_RETRANSMISSIONS) { timeout_ = true; } RTC_DLOG(LS_VERBOSE) << "Sent STUN request " << count_ << "; resend delay = " << resend_delay(); } int StunRequest::resend_delay() { RTC_DCHECK_RUN_ON(network_thread()); if (count_ == 0) { return 0; } int retransmissions = (count_ - 1); int rto = STUN_INITIAL_RTO << retransmissions; return std::min(rto, STUN_MAX_RTO); } void StunRequest::set_timed_out() { RTC_DCHECK_RUN_ON(network_thread()); timeout_ = true; } } // namespace cricket