/* * Copyright 2020 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "pc/sctp_data_channel.h" #include #include #include #include #include "absl/cleanup/cleanup.h" #include "media/sctp/sctp_transport_internal.h" #include "pc/proxy.h" #include "pc/sctp_utils.h" #include "rtc_base/checks.h" #include "rtc_base/location.h" #include "rtc_base/logging.h" #include "rtc_base/system/unused.h" #include "rtc_base/thread.h" namespace webrtc { namespace { static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024; static std::atomic g_unique_id{0}; int GenerateUniqueId() { return ++g_unique_id; } // Define proxy for DataChannelInterface. BEGIN_PRIMARY_PROXY_MAP(DataChannel) PROXY_PRIMARY_THREAD_DESTRUCTOR() PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*) PROXY_METHOD0(void, UnregisterObserver) BYPASS_PROXY_CONSTMETHOD0(std::string, label) BYPASS_PROXY_CONSTMETHOD0(bool, reliable) BYPASS_PROXY_CONSTMETHOD0(bool, ordered) BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime) BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits) BYPASS_PROXY_CONSTMETHOD0(absl::optional, maxRetransmitsOpt) BYPASS_PROXY_CONSTMETHOD0(absl::optional, maxPacketLifeTime) BYPASS_PROXY_CONSTMETHOD0(std::string, protocol) BYPASS_PROXY_CONSTMETHOD0(bool, negotiated) // Can't bypass the proxy since the id may change. PROXY_CONSTMETHOD0(int, id) BYPASS_PROXY_CONSTMETHOD0(Priority, priority) PROXY_CONSTMETHOD0(DataState, state) PROXY_CONSTMETHOD0(RTCError, error) PROXY_CONSTMETHOD0(uint32_t, messages_sent) PROXY_CONSTMETHOD0(uint64_t, bytes_sent) PROXY_CONSTMETHOD0(uint32_t, messages_received) PROXY_CONSTMETHOD0(uint64_t, bytes_received) PROXY_CONSTMETHOD0(uint64_t, buffered_amount) PROXY_METHOD0(void, Close) // TODO(bugs.webrtc.org/11547): Change to run on the network thread. PROXY_METHOD1(bool, Send, const DataBuffer&) END_PROXY_MAP(DataChannel) } // namespace InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base) : DataChannelInit(base), open_handshake_role(kOpener) { // If the channel is externally negotiated, do not send the OPEN message. if (base.negotiated) { open_handshake_role = kNone; } else { // Datachannel is externally negotiated. Ignore the id value. // Specified in createDataChannel, WebRTC spec section 6.1 bullet 13. id = -1; } // Backwards compatibility: If maxRetransmits or maxRetransmitTime // are negative, the feature is not enabled. // Values are clamped to a 16bit range. if (maxRetransmits) { if (*maxRetransmits < 0) { RTC_LOG(LS_ERROR) << "Accepting maxRetransmits < 0 for backwards compatibility"; maxRetransmits = absl::nullopt; } else if (*maxRetransmits > std::numeric_limits::max()) { maxRetransmits = std::numeric_limits::max(); } } if (maxRetransmitTime) { if (*maxRetransmitTime < 0) { RTC_LOG(LS_ERROR) << "Accepting maxRetransmitTime < 0 for backwards compatibility"; maxRetransmitTime = absl::nullopt; } else if (*maxRetransmitTime > std::numeric_limits::max()) { maxRetransmitTime = std::numeric_limits::max(); } } } bool SctpSidAllocator::AllocateSid(rtc::SSLRole role, int* sid) { int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1; while (!IsSidAvailable(potential_sid)) { potential_sid += 2; if (potential_sid > static_cast(cricket::kMaxSctpSid)) { return false; } } *sid = potential_sid; used_sids_.insert(potential_sid); return true; } bool SctpSidAllocator::ReserveSid(int sid) { if (!IsSidAvailable(sid)) { return false; } used_sids_.insert(sid); return true; } void SctpSidAllocator::ReleaseSid(int sid) { auto it = used_sids_.find(sid); if (it != used_sids_.end()) { used_sids_.erase(it); } } bool SctpSidAllocator::IsSidAvailable(int sid) const { if (sid < static_cast(cricket::kMinSctpSid) || sid > static_cast(cricket::kMaxSctpSid)) { return false; } return used_sids_.find(sid) == used_sids_.end(); } rtc::scoped_refptr SctpDataChannel::Create( SctpDataChannelControllerInterface* controller, const std::string& label, const InternalDataChannelInit& config, rtc::Thread* signaling_thread, rtc::Thread* network_thread) { auto channel = rtc::make_ref_counted( config, controller, label, signaling_thread, network_thread); if (!channel->Init()) { return nullptr; } return channel; } // static rtc::scoped_refptr SctpDataChannel::CreateProxy( rtc::scoped_refptr channel) { // TODO(bugs.webrtc.org/11547): incorporate the network thread in the proxy. auto* signaling_thread = channel->signaling_thread_; return DataChannelProxy::Create(signaling_thread, std::move(channel)); } SctpDataChannel::SctpDataChannel(const InternalDataChannelInit& config, SctpDataChannelControllerInterface* controller, const std::string& label, rtc::Thread* signaling_thread, rtc::Thread* network_thread) : signaling_thread_(signaling_thread), network_thread_(network_thread), internal_id_(GenerateUniqueId()), label_(label), config_(config), observer_(nullptr), controller_(controller) { RTC_DCHECK_RUN_ON(signaling_thread_); RTC_UNUSED(network_thread_); } void SctpDataChannel::DetachFromController() { RTC_DCHECK_RUN_ON(signaling_thread_); controller_detached_ = true; } bool SctpDataChannel::Init() { RTC_DCHECK_RUN_ON(signaling_thread_); if (config_.id < -1 || (config_.maxRetransmits && *config_.maxRetransmits < 0) || (config_.maxRetransmitTime && *config_.maxRetransmitTime < 0)) { RTC_LOG(LS_ERROR) << "Failed to initialize the SCTP data channel due to " "invalid DataChannelInit."; return false; } if (config_.maxRetransmits && config_.maxRetransmitTime) { RTC_LOG(LS_ERROR) << "maxRetransmits and maxRetransmitTime should not be both set."; return false; } switch (config_.open_handshake_role) { case webrtc::InternalDataChannelInit::kNone: // pre-negotiated handshake_state_ = kHandshakeReady; break; case webrtc::InternalDataChannelInit::kOpener: handshake_state_ = kHandshakeShouldSendOpen; break; case webrtc::InternalDataChannelInit::kAcker: handshake_state_ = kHandshakeShouldSendAck; break; } // Try to connect to the transport in case the transport channel already // exists. OnTransportChannelCreated(); // Checks if the transport is ready to send because the initial channel // ready signal may have been sent before the DataChannel creation. // This has to be done async because the upper layer objects (e.g. // Chrome glue and WebKit) are not wired up properly until after this // function returns. RTC_DCHECK(!controller_detached_); if (controller_->ReadyToSendData()) { AddRef(); absl::Cleanup release = [this] { Release(); }; rtc::Thread::Current()->PostTask([this, release = std::move(release)] { RTC_DCHECK_RUN_ON(signaling_thread_); if (state_ != kClosed) OnTransportReady(true); }); } return true; } SctpDataChannel::~SctpDataChannel() { RTC_DCHECK_RUN_ON(signaling_thread_); } void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) { RTC_DCHECK_RUN_ON(signaling_thread_); observer_ = observer; DeliverQueuedReceivedData(); } void SctpDataChannel::UnregisterObserver() { RTC_DCHECK_RUN_ON(signaling_thread_); observer_ = nullptr; } bool SctpDataChannel::reliable() const { // May be called on any thread. return !config_.maxRetransmits && !config_.maxRetransmitTime; } uint64_t SctpDataChannel::buffered_amount() const { RTC_DCHECK_RUN_ON(signaling_thread_); return queued_send_data_.byte_count(); } void SctpDataChannel::Close() { RTC_DCHECK_RUN_ON(signaling_thread_); if (state_ == kClosing || state_ == kClosed) return; SetState(kClosing); // Will send queued data before beginning the underlying closing procedure. UpdateState(); } SctpDataChannel::DataState SctpDataChannel::state() const { RTC_DCHECK_RUN_ON(signaling_thread_); return state_; } RTCError SctpDataChannel::error() const { RTC_DCHECK_RUN_ON(signaling_thread_); return error_; } uint32_t SctpDataChannel::messages_sent() const { RTC_DCHECK_RUN_ON(signaling_thread_); return messages_sent_; } uint64_t SctpDataChannel::bytes_sent() const { RTC_DCHECK_RUN_ON(signaling_thread_); return bytes_sent_; } uint32_t SctpDataChannel::messages_received() const { RTC_DCHECK_RUN_ON(signaling_thread_); return messages_received_; } uint64_t SctpDataChannel::bytes_received() const { RTC_DCHECK_RUN_ON(signaling_thread_); return bytes_received_; } bool SctpDataChannel::Send(const DataBuffer& buffer) { RTC_DCHECK_RUN_ON(signaling_thread_); // TODO(bugs.webrtc.org/11547): Expect this method to be called on the network // thread. Bring buffer management etc to the network thread and keep the // operational state management on the signaling thread. if (state_ != kOpen) { return false; } // If the queue is non-empty, we're waiting for SignalReadyToSend, // so just add to the end of the queue and keep waiting. if (!queued_send_data_.Empty()) { if (!QueueSendDataMessage(buffer)) { // Queue is full return false; } return true; } SendDataMessage(buffer, true); // Always return true for SCTP DataChannel per the spec. return true; } void SctpDataChannel::SetSctpSid(int sid) { RTC_DCHECK_RUN_ON(signaling_thread_); RTC_DCHECK_LT(config_.id, 0); RTC_DCHECK_GE(sid, 0); RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck); RTC_DCHECK_EQ(state_, kConnecting); if (config_.id == sid) { return; } const_cast(config_).id = sid; RTC_DCHECK(!controller_detached_); controller_->AddSctpDataStream(sid); } void SctpDataChannel::OnClosingProcedureStartedRemotely(int sid) { RTC_DCHECK_RUN_ON(signaling_thread_); if (sid == config_.id && state_ != kClosing && state_ != kClosed) { // Don't bother sending queued data since the side that initiated the // closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy // discussion about this. queued_send_data_.Clear(); queued_control_data_.Clear(); // Just need to change state to kClosing, SctpTransport will handle the // rest of the closing procedure and OnClosingProcedureComplete will be // called later. started_closing_procedure_ = true; SetState(kClosing); } } void SctpDataChannel::OnClosingProcedureComplete(int sid) { RTC_DCHECK_RUN_ON(signaling_thread_); if (sid == config_.id) { // If the closing procedure is complete, we should have finished sending // all pending data and transitioned to kClosing already. RTC_DCHECK_EQ(state_, kClosing); RTC_DCHECK(queued_send_data_.Empty()); DisconnectFromTransport(); SetState(kClosed); } } void SctpDataChannel::OnTransportChannelCreated() { RTC_DCHECK_RUN_ON(signaling_thread_); if (controller_detached_) { return; } if (!connected_to_transport_) { connected_to_transport_ = controller_->ConnectDataChannel(this); } // The sid may have been unassigned when controller_->ConnectDataChannel was // done. So always add the streams even if connected_to_transport_ is true. if (config_.id >= 0) { controller_->AddSctpDataStream(config_.id); } } void SctpDataChannel::OnTransportChannelClosed(RTCError error) { // The SctpTransport is unusable, which could come from multiplie reasons: // - the SCTP m= section was rejected // - the DTLS transport is closed // - the SCTP transport is closed CloseAbruptlyWithError(std::move(error)); } DataChannelStats SctpDataChannel::GetStats() const { RTC_DCHECK_RUN_ON(signaling_thread_); DataChannelStats stats{internal_id_, id(), label(), protocol(), state(), messages_sent(), messages_received(), bytes_sent(), bytes_received()}; return stats; } void SctpDataChannel::OnDataReceived(const cricket::ReceiveDataParams& params, const rtc::CopyOnWriteBuffer& payload) { RTC_DCHECK_RUN_ON(signaling_thread_); if (params.sid != config_.id) { return; } if (params.type == DataMessageType::kControl) { if (handshake_state_ != kHandshakeWaitingForAck) { // Ignore it if we are not expecting an ACK message. RTC_LOG(LS_WARNING) << "DataChannel received unexpected CONTROL message, sid = " << params.sid; return; } if (ParseDataChannelOpenAckMessage(payload)) { // We can send unordered as soon as we receive the ACK message. handshake_state_ = kHandshakeReady; RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = " << params.sid; } else { RTC_LOG(LS_WARNING) << "DataChannel failed to parse OPEN_ACK message, sid = " << params.sid; } return; } RTC_DCHECK(params.type == DataMessageType::kBinary || params.type == DataMessageType::kText); RTC_LOG(LS_VERBOSE) << "DataChannel received DATA message, sid = " << params.sid; // We can send unordered as soon as we receive any DATA message since the // remote side must have received the OPEN (and old clients do not send // OPEN_ACK). if (handshake_state_ == kHandshakeWaitingForAck) { handshake_state_ = kHandshakeReady; } bool binary = (params.type == webrtc::DataMessageType::kBinary); auto buffer = std::make_unique(payload, binary); if (state_ == kOpen && observer_) { ++messages_received_; bytes_received_ += buffer->size(); observer_->OnMessage(*buffer.get()); } else { if (queued_received_data_.byte_count() + payload.size() > kMaxQueuedReceivedDataBytes) { RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size."; queued_received_data_.Clear(); CloseAbruptlyWithError( RTCError(RTCErrorType::RESOURCE_EXHAUSTED, "Queued received data exceeds the max buffer size.")); return; } queued_received_data_.PushBack(std::move(buffer)); } } void SctpDataChannel::OnTransportReady(bool writable) { RTC_DCHECK_RUN_ON(signaling_thread_); writable_ = writable; if (!writable) { return; } SendQueuedControlMessages(); SendQueuedDataMessages(); UpdateState(); } void SctpDataChannel::CloseAbruptlyWithError(RTCError error) { RTC_DCHECK_RUN_ON(signaling_thread_); if (state_ == kClosed) { return; } if (connected_to_transport_) { DisconnectFromTransport(); } // Closing abruptly means any queued data gets thrown away. queued_send_data_.Clear(); queued_control_data_.Clear(); // Still go to "kClosing" before "kClosed", since observers may be expecting // that. SetState(kClosing); error_ = std::move(error); SetState(kClosed); } void SctpDataChannel::CloseAbruptlyWithDataChannelFailure( const std::string& message) { RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message); error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE); CloseAbruptlyWithError(std::move(error)); } void SctpDataChannel::UpdateState() { RTC_DCHECK_RUN_ON(signaling_thread_); // UpdateState determines what to do from a few state variables. Include // all conditions required for each state transition here for // clarity. OnTransportReady(true) will send any queued data and then invoke // UpdateState(). switch (state_) { case kConnecting: { if (connected_to_transport_) { if (handshake_state_ == kHandshakeShouldSendOpen) { rtc::CopyOnWriteBuffer payload; WriteDataChannelOpenMessage(label_, config_, &payload); SendControlMessage(payload); } else if (handshake_state_ == kHandshakeShouldSendAck) { rtc::CopyOnWriteBuffer payload; WriteDataChannelOpenAckMessage(&payload); SendControlMessage(payload); } if (writable_ && (handshake_state_ == kHandshakeReady || handshake_state_ == kHandshakeWaitingForAck)) { SetState(kOpen); // If we have received buffers before the channel got writable. // Deliver them now. DeliverQueuedReceivedData(); } } break; } case kOpen: { break; } case kClosing: { // Wait for all queued data to be sent before beginning the closing // procedure. if (queued_send_data_.Empty() && queued_control_data_.Empty()) { // For SCTP data channels, we need to wait for the closing procedure // to complete; after calling RemoveSctpDataStream, // OnClosingProcedureComplete will end up called asynchronously // afterwards. if (connected_to_transport_ && !started_closing_procedure_ && !controller_detached_ && config_.id >= 0) { started_closing_procedure_ = true; controller_->RemoveSctpDataStream(config_.id); } } break; } case kClosed: break; } } void SctpDataChannel::SetState(DataState state) { RTC_DCHECK_RUN_ON(signaling_thread_); if (state_ == state) { return; } state_ = state; if (observer_) { observer_->OnStateChange(); } if (state_ == kOpen) { SignalOpened(this); } else if (state_ == kClosed) { SignalClosed(this); } } void SctpDataChannel::DisconnectFromTransport() { RTC_DCHECK_RUN_ON(signaling_thread_); if (!connected_to_transport_ || controller_detached_) return; controller_->DisconnectDataChannel(this); connected_to_transport_ = false; } void SctpDataChannel::DeliverQueuedReceivedData() { RTC_DCHECK_RUN_ON(signaling_thread_); if (!observer_) { return; } while (!queued_received_data_.Empty()) { std::unique_ptr buffer = queued_received_data_.PopFront(); ++messages_received_; bytes_received_ += buffer->size(); observer_->OnMessage(*buffer); } } void SctpDataChannel::SendQueuedDataMessages() { RTC_DCHECK_RUN_ON(signaling_thread_); if (queued_send_data_.Empty()) { return; } RTC_DCHECK(state_ == kOpen || state_ == kClosing); while (!queued_send_data_.Empty()) { std::unique_ptr buffer = queued_send_data_.PopFront(); if (!SendDataMessage(*buffer, false)) { // Return the message to the front of the queue if sending is aborted. queued_send_data_.PushFront(std::move(buffer)); break; } } } bool SctpDataChannel::SendDataMessage(const DataBuffer& buffer, bool queue_if_blocked) { RTC_DCHECK_RUN_ON(signaling_thread_); SendDataParams send_params; if (controller_detached_) { return false; } send_params.ordered = config_.ordered; // Send as ordered if it is still going through OPEN/ACK signaling. if (handshake_state_ != kHandshakeReady && !config_.ordered) { send_params.ordered = true; RTC_LOG(LS_VERBOSE) << "Sending data as ordered for unordered DataChannel " "because the OPEN_ACK message has not been received."; } send_params.max_rtx_count = config_.maxRetransmits; send_params.max_rtx_ms = config_.maxRetransmitTime; send_params.type = buffer.binary ? DataMessageType::kBinary : DataMessageType::kText; cricket::SendDataResult send_result = cricket::SDR_SUCCESS; bool success = controller_->SendData(config_.id, send_params, buffer.data, &send_result); if (success) { ++messages_sent_; bytes_sent_ += buffer.size(); if (observer_ && buffer.size() > 0) { observer_->OnBufferedAmountChange(buffer.size()); } return true; } if (send_result == cricket::SDR_BLOCK) { if (!queue_if_blocked || QueueSendDataMessage(buffer)) { return false; } } // Close the channel if the error is not SDR_BLOCK, or if queuing the // message failed. RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, " "send_result = " << send_result; CloseAbruptlyWithError( RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data")); return false; } bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) { RTC_DCHECK_RUN_ON(signaling_thread_); size_t start_buffered_amount = queued_send_data_.byte_count(); if (start_buffered_amount + buffer.size() > DataChannelInterface::MaxSendQueueSize()) { RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel."; return false; } queued_send_data_.PushBack(std::make_unique(buffer)); return true; } void SctpDataChannel::SendQueuedControlMessages() { RTC_DCHECK_RUN_ON(signaling_thread_); PacketQueue control_packets; control_packets.Swap(&queued_control_data_); while (!control_packets.Empty()) { std::unique_ptr buf = control_packets.PopFront(); SendControlMessage(buf->data); } } void SctpDataChannel::QueueControlMessage( const rtc::CopyOnWriteBuffer& buffer) { RTC_DCHECK_RUN_ON(signaling_thread_); queued_control_data_.PushBack(std::make_unique(buffer, true)); } bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) { RTC_DCHECK_RUN_ON(signaling_thread_); RTC_DCHECK(writable_); RTC_DCHECK_GE(config_.id, 0); if (controller_detached_) { return false; } bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen; RTC_DCHECK(!is_open_message || !config_.negotiated); SendDataParams send_params; // Send data as ordered before we receive any message from the remote peer to // make sure the remote peer will not receive any data before it receives the // OPEN message. send_params.ordered = config_.ordered || is_open_message; send_params.type = DataMessageType::kControl; cricket::SendDataResult send_result = cricket::SDR_SUCCESS; bool retval = controller_->SendData(config_.id, send_params, buffer, &send_result); if (retval) { RTC_LOG(LS_VERBOSE) << "Sent CONTROL message on channel " << config_.id; if (handshake_state_ == kHandshakeShouldSendAck) { handshake_state_ = kHandshakeReady; } else if (handshake_state_ == kHandshakeShouldSendOpen) { handshake_state_ = kHandshakeWaitingForAck; } } else if (send_result == cricket::SDR_BLOCK) { QueueControlMessage(buffer); } else { RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send" " the CONTROL message, send_result = " << send_result; CloseAbruptlyWithError(RTCError(RTCErrorType::NETWORK_ERROR, "Failed to send a CONTROL message")); } return retval; } // static void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) { g_unique_id = new_value; } SctpDataChannel* DowncastProxiedDataChannelInterfaceToSctpDataChannelForTesting( DataChannelInterface* channel) { return static_cast( static_cast(channel)->internal()); } } // namespace webrtc