/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_stream_encoder.h" #include #include #include #include #include #include "absl/memory/memory.h" #include "api/field_trials_view.h" #include "api/rtp_parameters.h" #include "api/task_queue/default_task_queue_factory.h" #include "api/task_queue/task_queue_base.h" #include "api/task_queue/task_queue_factory.h" #include "api/test/mock_fec_controller_override.h" #include "api/test/mock_video_encoder.h" #include "api/test/mock_video_encoder_factory.h" #include "api/units/data_rate.h" #include "api/units/time_delta.h" #include "api/video/builtin_video_bitrate_allocator_factory.h" #include "api/video/i420_buffer.h" #include "api/video/nv12_buffer.h" #include "api/video/video_adaptation_reason.h" #include "api/video/video_bitrate_allocation.h" #include "api/video_codecs/sdp_video_format.h" #include "api/video_codecs/video_codec.h" #include "api/video_codecs/video_encoder.h" #include "api/video_codecs/vp8_temporal_layers.h" #include "api/video_codecs/vp8_temporal_layers_factory.h" #include "call/adaptation/test/fake_adaptation_constraint.h" #include "call/adaptation/test/fake_resource.h" #include "common_video/h264/h264_common.h" #include "common_video/include/video_frame_buffer.h" #include "media/base/video_adapter.h" #include "media/engine/webrtc_video_engine.h" #include "modules/video_coding/codecs/av1/libaom_av1_encoder.h" #include "modules/video_coding/codecs/h264/include/h264.h" #include "modules/video_coding/codecs/multiplex/include/multiplex_encoder_adapter.h" #include "modules/video_coding/codecs/vp8/include/vp8.h" #include "modules/video_coding/codecs/vp9/include/vp9.h" #include "modules/video_coding/codecs/vp9/include/vp9_globals.h" #include "modules/video_coding/codecs/vp9/svc_config.h" #include "modules/video_coding/utility/quality_scaler.h" #include "modules/video_coding/utility/simulcast_rate_allocator.h" #include "rtc_base/event.h" #include "rtc_base/experiments/encoder_info_settings.h" #include "rtc_base/gunit.h" #include "rtc_base/logging.h" #include "rtc_base/ref_counted_object.h" #include "rtc_base/synchronization/mutex.h" #include "system_wrappers/include/metrics.h" #include "test/encoder_settings.h" #include "test/fake_encoder.h" #include "test/frame_forwarder.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/mappable_native_buffer.h" #include "test/scoped_key_value_config.h" #include "test/time_controller/simulated_time_controller.h" #include "test/video_encoder_nullable_proxy_factory.h" #include "test/video_encoder_proxy_factory.h" #include "video/frame_cadence_adapter.h" #include "video/send_statistics_proxy.h" namespace webrtc { using ::testing::_; using ::testing::AllOf; using ::testing::Eq; using ::testing::Field; using ::testing::Ge; using ::testing::Gt; using ::testing::Invoke; using ::testing::Le; using ::testing::Lt; using ::testing::Matcher; using ::testing::Mock; using ::testing::NiceMock; using ::testing::Optional; using ::testing::Return; using ::testing::SizeIs; using ::testing::StrictMock; namespace { const int kMinPixelsPerFrame = 320 * 180; const int kQpLow = 1; const int kQpHigh = 2; const int kMinFramerateFps = 2; const int kMinBalancedFramerateFps = 7; const int64_t kFrameTimeoutMs = 100; const size_t kMaxPayloadLength = 1440; const DataRate kTargetBitrate = DataRate::KilobitsPerSec(1000); const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(100); const DataRate kStartBitrate = DataRate::KilobitsPerSec(600); const DataRate kSimulcastTargetBitrate = DataRate::KilobitsPerSec(3150); const int kMaxInitialFramedrop = 4; const int kDefaultFramerate = 30; const int64_t kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerate; const int64_t kProcessIntervalMs = 1000; const VideoEncoder::ResolutionBitrateLimits kEncoderBitrateLimits540p(960 * 540, 100 * 1000, 100 * 1000, 2000 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderBitrateLimits720p(1280 * 720, 200 * 1000, 200 * 1000, 4000 * 1000); uint8_t kOptimalSps[] = {0, 0, 0, 1, H264::NaluType::kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, 0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00}; const uint8_t kCodedFrameVp8Qp25[] = { 0x10, 0x02, 0x00, 0x9d, 0x01, 0x2a, 0x10, 0x00, 0x10, 0x00, 0x02, 0x47, 0x08, 0x85, 0x85, 0x88, 0x85, 0x84, 0x88, 0x0c, 0x82, 0x00, 0x0c, 0x0d, 0x60, 0x00, 0xfe, 0xfc, 0x5c, 0xd0}; VideoFrame CreateSimpleNV12Frame() { return VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( /*width=*/16, /*height=*/16)) .build(); } void PassAFrame( TaskQueueBase* encoder_queue, FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback, int64_t ntp_time_ms) { encoder_queue->PostTask([video_stream_encoder_callback, ntp_time_ms] { video_stream_encoder_callback->OnFrame(Timestamp::Millis(ntp_time_ms), 1, CreateSimpleNV12Frame()); }); } class TestBuffer : public webrtc::I420Buffer { public: TestBuffer(rtc::Event* event, int width, int height) : I420Buffer(width, height), event_(event) {} private: friend class rtc::RefCountedObject; ~TestBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; }; // A fake native buffer that can't be converted to I420. Upon scaling, it // produces another FakeNativeBuffer. class FakeNativeBuffer : public webrtc::VideoFrameBuffer { public: FakeNativeBuffer(rtc::Event* event, int width, int height) : event_(event), width_(width), height_(height) {} webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; } int width() const override { return width_; } int height() const override { return height_; } rtc::scoped_refptr ToI420() override { return nullptr; } rtc::scoped_refptr CropAndScale( int offset_x, int offset_y, int crop_width, int crop_height, int scaled_width, int scaled_height) override { return rtc::make_ref_counted(nullptr, scaled_width, scaled_height); } private: friend class rtc::RefCountedObject; ~FakeNativeBuffer() override { if (event_) event_->Set(); } rtc::Event* const event_; const int width_; const int height_; }; // A fake native buffer that is backed by an NV12 buffer. class FakeNV12NativeBuffer : public webrtc::VideoFrameBuffer { public: FakeNV12NativeBuffer(rtc::Event* event, int width, int height) : nv12_buffer_(NV12Buffer::Create(width, height)), event_(event) {} webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; } int width() const override { return nv12_buffer_->width(); } int height() const override { return nv12_buffer_->height(); } rtc::scoped_refptr ToI420() override { return nv12_buffer_->ToI420(); } rtc::scoped_refptr GetMappedFrameBuffer( rtc::ArrayView types) override { if (absl::c_find(types, Type::kNV12) != types.end()) { return nv12_buffer_; } return nullptr; } const NV12BufferInterface* GetNV12() const { return nv12_buffer_.get(); } private: friend class rtc::RefCountedObject; ~FakeNV12NativeBuffer() override { if (event_) event_->Set(); } rtc::scoped_refptr nv12_buffer_; rtc::Event* const event_; }; class CpuOveruseDetectorProxy : public OveruseFrameDetector { public: CpuOveruseDetectorProxy(CpuOveruseMetricsObserver* metrics_observer, const FieldTrialsView& field_trials) : OveruseFrameDetector(metrics_observer, field_trials), last_target_framerate_fps_(-1), framerate_updated_event_(true /* manual_reset */, false /* initially_signaled */) {} virtual ~CpuOveruseDetectorProxy() {} void OnTargetFramerateUpdated(int framerate_fps) override { MutexLock lock(&lock_); last_target_framerate_fps_ = framerate_fps; OveruseFrameDetector::OnTargetFramerateUpdated(framerate_fps); framerate_updated_event_.Set(); } int GetLastTargetFramerate() { MutexLock lock(&lock_); return last_target_framerate_fps_; } CpuOveruseOptions GetOptions() { return options_; } rtc::Event* framerate_updated_event() { return &framerate_updated_event_; } private: Mutex lock_; int last_target_framerate_fps_ RTC_GUARDED_BY(lock_); rtc::Event framerate_updated_event_; }; class FakeVideoSourceRestrictionsListener : public VideoSourceRestrictionsListener { public: FakeVideoSourceRestrictionsListener() : was_restrictions_updated_(false), restrictions_updated_event_() {} ~FakeVideoSourceRestrictionsListener() override { RTC_DCHECK(was_restrictions_updated_); } rtc::Event* restrictions_updated_event() { return &restrictions_updated_event_; } // VideoSourceRestrictionsListener implementation. void OnVideoSourceRestrictionsUpdated( VideoSourceRestrictions restrictions, const VideoAdaptationCounters& adaptation_counters, rtc::scoped_refptr reason, const VideoSourceRestrictions& unfiltered_restrictions) override { was_restrictions_updated_ = true; restrictions_updated_event_.Set(); } private: bool was_restrictions_updated_; rtc::Event restrictions_updated_event_; }; auto WantsFps(Matcher fps_matcher) { return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps, fps_matcher); } auto WantsMaxPixels(Matcher max_pixel_matcher) { return Field("max_pixel_count", &rtc::VideoSinkWants::max_pixel_count, AllOf(max_pixel_matcher, Gt(0))); } auto ResolutionMax() { return AllOf( WantsMaxPixels(Eq(std::numeric_limits::max())), Field("target_pixel_count", &rtc::VideoSinkWants::target_pixel_count, Eq(absl::nullopt))); } auto FpsMax() { return WantsFps(Eq(kDefaultFramerate)); } auto FpsUnlimited() { return WantsFps(Eq(std::numeric_limits::max())); } auto FpsMatchesResolutionMax(Matcher fps_matcher) { return AllOf(WantsFps(fps_matcher), ResolutionMax()); } auto FpsMaxResolutionMatches(Matcher pixel_matcher) { return AllOf(FpsMax(), WantsMaxPixels(pixel_matcher)); } auto FpsMaxResolutionMax() { return AllOf(FpsMax(), ResolutionMax()); } auto UnlimitedSinkWants() { return AllOf(FpsUnlimited(), ResolutionMax()); } auto FpsInRangeForPixelsInBalanced(int last_frame_pixels) { Matcher fps_range_matcher; if (last_frame_pixels <= 320 * 240) { fps_range_matcher = AllOf(Ge(7), Le(10)); } else if (last_frame_pixels <= 480 * 360) { fps_range_matcher = AllOf(Ge(10), Le(15)); } else if (last_frame_pixels <= 640 * 480) { fps_range_matcher = Ge(15); } else { fps_range_matcher = Eq(kDefaultFramerate); } return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps, fps_range_matcher); } auto FpsEqResolutionEqTo(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsMaxResolutionLt(const rtc::VideoSinkWants& other_wants) { return AllOf(FpsMax(), WantsMaxPixels(Lt(other_wants.max_pixel_count))); } auto FpsMaxResolutionGt(const rtc::VideoSinkWants& other_wants) { return AllOf(FpsMax(), WantsMaxPixels(Gt(other_wants.max_pixel_count))); } auto FpsLtResolutionEq(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Lt(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsGtResolutionEq(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Gt(other_wants.max_framerate_fps)), WantsMaxPixels(Eq(other_wants.max_pixel_count))); } auto FpsEqResolutionLt(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Lt(other_wants.max_pixel_count))); } auto FpsEqResolutionGt(const rtc::VideoSinkWants& other_wants) { return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)), WantsMaxPixels(Gt(other_wants.max_pixel_count))); } class VideoStreamEncoderUnderTest : public VideoStreamEncoder { public: VideoStreamEncoderUnderTest( TimeController* time_controller, std::unique_ptr cadence_adapter, std::unique_ptr encoder_queue, SendStatisticsProxy* stats_proxy, const VideoStreamEncoderSettings& settings, VideoStreamEncoder::BitrateAllocationCallbackType allocation_callback_type, const FieldTrialsView& field_trials, int num_cores) : VideoStreamEncoder( time_controller->GetClock(), num_cores, stats_proxy, settings, std::unique_ptr( overuse_detector_proxy_ = new CpuOveruseDetectorProxy(stats_proxy, field_trials)), std::move(cadence_adapter), std::move(encoder_queue), allocation_callback_type, field_trials), time_controller_(time_controller), fake_cpu_resource_(FakeResource::Create("FakeResource[CPU]")), fake_quality_resource_(FakeResource::Create("FakeResource[QP]")), fake_adaptation_constraint_("FakeAdaptationConstraint") { InjectAdaptationResource(fake_quality_resource_, VideoAdaptationReason::kQuality); InjectAdaptationResource(fake_cpu_resource_, VideoAdaptationReason::kCpu); InjectAdaptationConstraint(&fake_adaptation_constraint_); } void SetSourceAndWaitForRestrictionsUpdated( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { FakeVideoSourceRestrictionsListener listener; AddRestrictionsListenerForTesting(&listener); SetSource(source, degradation_preference); listener.restrictions_updated_event()->Wait(5000); RemoveRestrictionsListenerForTesting(&listener); } void SetSourceAndWaitForFramerateUpdated( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { overuse_detector_proxy_->framerate_updated_event()->Reset(); SetSource(source, degradation_preference); overuse_detector_proxy_->framerate_updated_event()->Wait(5000); } void OnBitrateUpdatedAndWaitForManagedResources( DataRate target_bitrate, DataRate stable_target_bitrate, DataRate link_allocation, uint8_t fraction_lost, int64_t round_trip_time_ms, double cwnd_reduce_ratio) { OnBitrateUpdated(target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms, cwnd_reduce_ratio); // Bitrate is updated on the encoder queue. WaitUntilTaskQueueIsIdle(); } // This is used as a synchronisation mechanism, to make sure that the // encoder queue is not blocked before we start sending it frames. void WaitUntilTaskQueueIsIdle() { time_controller_->AdvanceTime(TimeDelta::Zero()); } // Triggers resource usage measurements on the fake CPU resource. void TriggerCpuOveruse() { rtc::Event event; encoder_queue()->PostTask([this, &event] { fake_cpu_resource_->SetUsageState(ResourceUsageState::kOveruse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); time_controller_->AdvanceTime(TimeDelta::Zero()); } void TriggerCpuUnderuse() { rtc::Event event; encoder_queue()->PostTask([this, &event] { fake_cpu_resource_->SetUsageState(ResourceUsageState::kUnderuse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); time_controller_->AdvanceTime(TimeDelta::Zero()); } // Triggers resource usage measurements on the fake quality resource. void TriggerQualityLow() { rtc::Event event; encoder_queue()->PostTask([this, &event] { fake_quality_resource_->SetUsageState(ResourceUsageState::kOveruse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); time_controller_->AdvanceTime(TimeDelta::Zero()); } void TriggerQualityHigh() { rtc::Event event; encoder_queue()->PostTask([this, &event] { fake_quality_resource_->SetUsageState(ResourceUsageState::kUnderuse); event.Set(); }); ASSERT_TRUE(event.Wait(5000)); time_controller_->AdvanceTime(TimeDelta::Zero()); } TimeController* const time_controller_; CpuOveruseDetectorProxy* overuse_detector_proxy_; rtc::scoped_refptr fake_cpu_resource_; rtc::scoped_refptr fake_quality_resource_; FakeAdaptationConstraint fake_adaptation_constraint_; }; // Simulates simulcast behavior and makes highest stream resolutions divisible // by 4. class CroppingVideoStreamFactory : public VideoEncoderConfig::VideoStreamFactoryInterface { public: CroppingVideoStreamFactory() {} private: std::vector CreateEncoderStreams( int width, int height, const VideoEncoderConfig& encoder_config) override { std::vector streams = test::CreateVideoStreams( width - width % 4, height - height % 4, encoder_config); return streams; } }; class AdaptingFrameForwarder : public test::FrameForwarder { public: explicit AdaptingFrameForwarder(TimeController* time_controller) : time_controller_(time_controller), adaptation_enabled_(false) {} ~AdaptingFrameForwarder() override {} void set_adaptation_enabled(bool enabled) { MutexLock lock(&mutex_); adaptation_enabled_ = enabled; } bool adaption_enabled() const { MutexLock lock(&mutex_); return adaptation_enabled_; } // The "last wants" is a snapshot of the previous rtc::VideoSinkWants where // the resolution or frame rate was different than it is currently. If // something else is modified, such as encoder resolutions, but the resolution // and frame rate stays the same, last wants is not updated. rtc::VideoSinkWants last_wants() const { MutexLock lock(&mutex_); return last_wants_; } absl::optional last_sent_width() const { return last_width_; } absl::optional last_sent_height() const { return last_height_; } void IncomingCapturedFrame(const VideoFrame& video_frame) override { RTC_DCHECK(time_controller_->GetMainThread()->IsCurrent()); time_controller_->AdvanceTime(TimeDelta::Zero()); int cropped_width = 0; int cropped_height = 0; int out_width = 0; int out_height = 0; if (adaption_enabled()) { RTC_DLOG(LS_INFO) << "IncomingCapturedFrame: AdaptFrameResolution()" << "w=" << video_frame.width() << "h=" << video_frame.height(); if (adapter_.AdaptFrameResolution( video_frame.width(), video_frame.height(), video_frame.timestamp_us() * 1000, &cropped_width, &cropped_height, &out_width, &out_height)) { VideoFrame adapted_frame = VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( nullptr, out_width, out_height)) .set_ntp_time_ms(video_frame.ntp_time_ms()) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); if (video_frame.has_update_rect()) { adapted_frame.set_update_rect( video_frame.update_rect().ScaleWithFrame( video_frame.width(), video_frame.height(), 0, 0, video_frame.width(), video_frame.height(), out_width, out_height)); } test::FrameForwarder::IncomingCapturedFrame(adapted_frame); last_width_.emplace(adapted_frame.width()); last_height_.emplace(adapted_frame.height()); } else { last_width_ = absl::nullopt; last_height_ = absl::nullopt; } } else { RTC_DLOG(LS_INFO) << "IncomingCapturedFrame: adaptation not enabled"; test::FrameForwarder::IncomingCapturedFrame(video_frame); last_width_.emplace(video_frame.width()); last_height_.emplace(video_frame.height()); } } void OnOutputFormatRequest(int width, int height) { absl::optional> target_aspect_ratio = std::make_pair(width, height); absl::optional max_pixel_count = width * height; absl::optional max_fps; adapter_.OnOutputFormatRequest(target_aspect_ratio, max_pixel_count, max_fps); } void AddOrUpdateSink(rtc::VideoSinkInterface* sink, const rtc::VideoSinkWants& wants) override { MutexLock lock(&mutex_); rtc::VideoSinkWants prev_wants = sink_wants_locked(); bool did_adapt = prev_wants.max_pixel_count != wants.max_pixel_count || prev_wants.target_pixel_count != wants.target_pixel_count || prev_wants.max_framerate_fps != wants.max_framerate_fps; if (did_adapt) { last_wants_ = prev_wants; } adapter_.OnSinkWants(wants); test::FrameForwarder::AddOrUpdateSinkLocked(sink, wants); } void RequestRefreshFrame() override { ++refresh_frames_requested_; } TimeController* const time_controller_; cricket::VideoAdapter adapter_; bool adaptation_enabled_ RTC_GUARDED_BY(mutex_); rtc::VideoSinkWants last_wants_ RTC_GUARDED_BY(mutex_); absl::optional last_width_; absl::optional last_height_; int refresh_frames_requested_{0}; }; // TODO(nisse): Mock only VideoStreamEncoderObserver. class MockableSendStatisticsProxy : public SendStatisticsProxy { public: MockableSendStatisticsProxy(Clock* clock, const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type, const FieldTrialsView& field_trials) : SendStatisticsProxy(clock, config, content_type, field_trials) {} VideoSendStream::Stats GetStats() override { MutexLock lock(&lock_); if (mock_stats_) return *mock_stats_; return SendStatisticsProxy::GetStats(); } int GetInputFrameRate() const override { MutexLock lock(&lock_); if (mock_stats_) return mock_stats_->input_frame_rate; return SendStatisticsProxy::GetInputFrameRate(); } void SetMockStats(const VideoSendStream::Stats& stats) { MutexLock lock(&lock_); mock_stats_.emplace(stats); } void ResetMockStats() { MutexLock lock(&lock_); mock_stats_.reset(); } void SetDroppedFrameCallback(std::function callback) { on_frame_dropped_ = std::move(callback); } private: void OnFrameDropped(DropReason reason) override { SendStatisticsProxy::OnFrameDropped(reason); if (on_frame_dropped_) on_frame_dropped_(reason); } mutable Mutex lock_; absl::optional mock_stats_ RTC_GUARDED_BY(lock_); std::function on_frame_dropped_; }; class SimpleVideoStreamEncoderFactory { public: class AdaptedVideoStreamEncoder : public VideoStreamEncoder { public: using VideoStreamEncoder::VideoStreamEncoder; ~AdaptedVideoStreamEncoder() { Stop(); } }; class MockFakeEncoder : public test::FakeEncoder { public: using FakeEncoder::FakeEncoder; MOCK_METHOD(CodecSpecificInfo, EncodeHook, (EncodedImage & encoded_image, rtc::scoped_refptr buffer), (override)); }; SimpleVideoStreamEncoderFactory() { encoder_settings_.encoder_factory = &encoder_factory_; encoder_settings_.bitrate_allocator_factory = bitrate_allocator_factory_.get(); } std::unique_ptr CreateWithEncoderQueue( std::unique_ptr zero_hertz_adapter, std::unique_ptr encoder_queue, const FieldTrialsView* field_trials = nullptr) { auto result = std::make_unique( time_controller_.GetClock(), /*number_of_cores=*/1, /*stats_proxy=*/stats_proxy_.get(), encoder_settings_, std::make_unique( /*stats_proxy=*/nullptr, field_trials ? *field_trials : field_trials_), std::move(zero_hertz_adapter), std::move(encoder_queue), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation, field_trials ? *field_trials : field_trials_); result->SetSink(&sink_, /*rotation_applied=*/false); return result; } std::unique_ptr Create( std::unique_ptr zero_hertz_adapter, TaskQueueBase** encoder_queue_ptr = nullptr) { auto encoder_queue = time_controller_.GetTaskQueueFactory()->CreateTaskQueue( "EncoderQueue", TaskQueueFactory::Priority::NORMAL); if (encoder_queue_ptr) *encoder_queue_ptr = encoder_queue.get(); return CreateWithEncoderQueue(std::move(zero_hertz_adapter), std::move(encoder_queue)); } void DepleteTaskQueues() { time_controller_.AdvanceTime(TimeDelta::Zero()); } MockFakeEncoder& GetMockFakeEncoder() { return mock_fake_encoder_; } GlobalSimulatedTimeController* GetTimeController() { return &time_controller_; } private: class NullEncoderSink : public VideoStreamEncoderInterface::EncoderSink { public: ~NullEncoderSink() override = default; void OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) override {} void OnBitrateAllocationUpdated( const VideoBitrateAllocation& allocation) override {} void OnVideoLayersAllocationUpdated( VideoLayersAllocation allocation) override {} Result OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) override { return Result(EncodedImageCallback::Result::OK); } }; test::ScopedKeyValueConfig field_trials_; GlobalSimulatedTimeController time_controller_{Timestamp::Zero()}; std::unique_ptr task_queue_factory_{ time_controller_.CreateTaskQueueFactory()}; std::unique_ptr stats_proxy_ = std::make_unique( time_controller_.GetClock(), VideoSendStream::Config(nullptr), webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo, field_trials_); std::unique_ptr bitrate_allocator_factory_ = CreateBuiltinVideoBitrateAllocatorFactory(); VideoStreamEncoderSettings encoder_settings_{ VideoEncoder::Capabilities(/*loss_notification=*/false)}; MockFakeEncoder mock_fake_encoder_{time_controller_.GetClock()}; test::VideoEncoderProxyFactory encoder_factory_{&mock_fake_encoder_}; NullEncoderSink sink_; }; class MockFrameCadenceAdapter : public FrameCadenceAdapterInterface { public: MOCK_METHOD(void, Initialize, (Callback * callback), (override)); MOCK_METHOD(void, SetZeroHertzModeEnabled, (absl::optional), (override)); MOCK_METHOD(void, OnFrame, (const VideoFrame&), (override)); MOCK_METHOD(absl::optional, GetInputFrameRateFps, (), (override)); MOCK_METHOD(void, UpdateFrameRate, (), (override)); MOCK_METHOD(void, UpdateLayerQualityConvergence, (size_t spatial_index, bool converged), (override)); MOCK_METHOD(void, UpdateLayerStatus, (size_t spatial_index, bool enabled), (override)); MOCK_METHOD(void, ProcessKeyFrameRequest, (), (override)); }; class MockEncoderSelector : public VideoEncoderFactory::EncoderSelectorInterface { public: MOCK_METHOD(void, OnCurrentEncoder, (const SdpVideoFormat& format), (override)); MOCK_METHOD(absl::optional, OnAvailableBitrate, (const DataRate& rate), (override)); MOCK_METHOD(absl::optional, OnResolutionChange, (const RenderResolution& resolution), (override)); MOCK_METHOD(absl::optional, OnEncoderBroken, (), (override)); }; class MockVideoSourceInterface : public rtc::VideoSourceInterface { public: MOCK_METHOD(void, AddOrUpdateSink, (rtc::VideoSinkInterface*, const rtc::VideoSinkWants&), (override)); MOCK_METHOD(void, RemoveSink, (rtc::VideoSinkInterface*), (override)); MOCK_METHOD(void, RequestRefreshFrame, (), (override)); }; } // namespace class VideoStreamEncoderTest : public ::testing::Test { public: static const int kDefaultTimeoutMs = 1000; VideoStreamEncoderTest() : video_send_config_(VideoSendStream::Config(nullptr)), codec_width_(320), codec_height_(240), max_framerate_(kDefaultFramerate), fake_encoder_(&time_controller_), encoder_factory_(&fake_encoder_), stats_proxy_(new MockableSendStatisticsProxy( time_controller_.GetClock(), video_send_config_, webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo, field_trials_)), sink_(&time_controller_, &fake_encoder_) {} void SetUp() override { metrics::Reset(); video_send_config_ = VideoSendStream::Config(nullptr); video_send_config_.encoder_settings.encoder_factory = &encoder_factory_; video_send_config_.encoder_settings.bitrate_allocator_factory = &bitrate_allocator_factory_; video_send_config_.rtp.payload_name = "FAKE"; video_send_config_.rtp.payload_type = 125; VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); EXPECT_EQ(1u, video_encoder_config.simulcast_layers.size()); video_encoder_config.simulcast_layers[0].num_temporal_layers = 1; video_encoder_config.simulcast_layers[0].max_framerate = max_framerate_; video_encoder_config_ = video_encoder_config.Copy(); ConfigureEncoder(std::move(video_encoder_config)); } void ConfigureEncoder( VideoEncoderConfig video_encoder_config, VideoStreamEncoder::BitrateAllocationCallbackType allocation_callback_type = VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing, int num_cores = 1) { if (video_stream_encoder_) video_stream_encoder_->Stop(); auto encoder_queue = GetTaskQueueFactory()->CreateTaskQueue( "EncoderQueue", TaskQueueFactory::Priority::NORMAL); TaskQueueBase* encoder_queue_ptr = encoder_queue.get(); std::unique_ptr cadence_adapter = FrameCadenceAdapterInterface::Create(time_controller_.GetClock(), encoder_queue_ptr, field_trials_); video_stream_encoder_ = std::make_unique( &time_controller_, std::move(cadence_adapter), std::move(encoder_queue), stats_proxy_.get(), video_send_config_.encoder_settings, allocation_callback_type, field_trials_, num_cores); video_stream_encoder_->SetSink(&sink_, /*rotation_applied=*/false); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); video_stream_encoder_->SetStartBitrate(kTargetBitrate.bps()); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); } void ResetEncoder(const std::string& payload_name, size_t num_streams, size_t num_temporal_layers, unsigned char num_spatial_layers, bool screenshare, VideoStreamEncoder::BitrateAllocationCallbackType allocation_callback_type = VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing, int num_cores = 1) { video_send_config_.rtp.payload_name = payload_name; VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType(payload_name), num_streams, &video_encoder_config); for (auto& layer : video_encoder_config.simulcast_layers) { layer.num_temporal_layers = num_temporal_layers; layer.max_framerate = kDefaultFramerate; } video_encoder_config.max_bitrate_bps = num_streams == 1 ? kTargetBitrate.bps() : kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = screenshare ? VideoEncoderConfig::ContentType::kScreen : VideoEncoderConfig::ContentType::kRealtimeVideo; if (payload_name == "VP9") { VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = num_spatial_layers; vp9_settings.automaticResizeOn = num_spatial_layers <= 1; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); } ConfigureEncoder(std::move(video_encoder_config), allocation_callback_type, num_cores); } VideoFrame CreateFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { return VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( destruction_event, codec_width_, codec_height_)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); } VideoFrame CreateFrameWithUpdatedPixel(int64_t ntp_time_ms, rtc::Event* destruction_event, int offset_x) const { return VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( destruction_event, codec_width_, codec_height_)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .set_update_rect(VideoFrame::UpdateRect{offset_x, 0, 1, 1}) .build(); } VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const { auto buffer = rtc::make_ref_counted(nullptr, width, height); I420Buffer::SetBlack(buffer.get()); return VideoFrame::Builder() .set_video_frame_buffer(std::move(buffer)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(ntp_time_ms) .set_rotation(kVideoRotation_0) .build(); } VideoFrame CreateNV12Frame(int64_t ntp_time_ms, int width, int height) const { return VideoFrame::Builder() .set_video_frame_buffer(NV12Buffer::Create(width, height)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(ntp_time_ms) .set_rotation(kVideoRotation_0) .build(); } VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms, rtc::Event* destruction_event, int width, int height) const { return VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( destruction_event, width, height)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); } VideoFrame CreateFakeNV12NativeFrame(int64_t ntp_time_ms, rtc::Event* destruction_event, int width, int height) const { return VideoFrame::Builder() .set_video_frame_buffer(rtc::make_ref_counted( destruction_event, width, height)) .set_ntp_time_ms(ntp_time_ms) .set_timestamp_ms(99) .set_rotation(kVideoRotation_0) .build(); } VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms, rtc::Event* destruction_event) const { return CreateFakeNativeFrame(ntp_time_ms, destruction_event, codec_width_, codec_height_); } void VerifyAllocatedBitrate(const VideoBitrateAllocation& expected_bitrate) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(expected_bitrate, sink_.GetLastVideoBitrateAllocation()); } void WaitForEncodedFrame(int64_t expected_ntp_time) { sink_.WaitForEncodedFrame(expected_ntp_time); AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { bool ok = sink_.TimedWaitForEncodedFrame(expected_ntp_time, timeout_ms); AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); return ok; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { sink_.WaitForEncodedFrame(expected_width, expected_height); AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } void ExpectDroppedFrame() { sink_.ExpectDroppedFrame(); AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); } bool WaitForFrame(int64_t timeout_ms) { bool ok = sink_.WaitForFrame(timeout_ms); AdvanceTime(TimeDelta::Seconds(1) / max_framerate_); return ok; } class TestEncoder : public test::FakeEncoder { public: explicit TestEncoder(TimeController* time_controller) : FakeEncoder(time_controller->GetClock()), time_controller_(time_controller) { RTC_DCHECK(time_controller_); } VideoEncoder::EncoderInfo GetEncoderInfo() const override { MutexLock lock(&local_mutex_); EncoderInfo info = FakeEncoder::GetEncoderInfo(); if (initialized_ == EncoderState::kInitialized) { if (quality_scaling_) { info.scaling_settings = VideoEncoder::ScalingSettings( kQpLow, kQpHigh, kMinPixelsPerFrame); } info.is_hardware_accelerated = is_hardware_accelerated_; for (int i = 0; i < kMaxSpatialLayers; ++i) { if (temporal_layers_supported_[i]) { info.fps_allocation[i].clear(); int num_layers = temporal_layers_supported_[i].value() ? 2 : 1; for (int tid = 0; tid < num_layers; ++tid) info.fps_allocation[i].push_back(255 / (num_layers - tid)); } } } info.resolution_bitrate_limits = resolution_bitrate_limits_; info.requested_resolution_alignment = requested_resolution_alignment_; info.apply_alignment_to_all_simulcast_layers = apply_alignment_to_all_simulcast_layers_; info.preferred_pixel_formats = preferred_pixel_formats_; if (is_qp_trusted_.has_value()) { info.is_qp_trusted = is_qp_trusted_; } return info; } int32_t RegisterEncodeCompleteCallback( EncodedImageCallback* callback) override { MutexLock lock(&local_mutex_); encoded_image_callback_ = callback; return FakeEncoder::RegisterEncodeCompleteCallback(callback); } void ContinueEncode() { continue_encode_event_.Set(); } void CheckLastTimeStampsMatch(int64_t ntp_time_ms, uint32_t timestamp) const { MutexLock lock(&local_mutex_); EXPECT_EQ(timestamp_, timestamp); EXPECT_EQ(ntp_time_ms_, ntp_time_ms); } void SetQualityScaling(bool b) { MutexLock lock(&local_mutex_); quality_scaling_ = b; } void SetRequestedResolutionAlignment(int requested_resolution_alignment) { MutexLock lock(&local_mutex_); requested_resolution_alignment_ = requested_resolution_alignment; } void SetApplyAlignmentToAllSimulcastLayers(bool b) { MutexLock lock(&local_mutex_); apply_alignment_to_all_simulcast_layers_ = b; } void SetIsHardwareAccelerated(bool is_hardware_accelerated) { MutexLock lock(&local_mutex_); is_hardware_accelerated_ = is_hardware_accelerated; } void SetTemporalLayersSupported(size_t spatial_idx, bool supported) { RTC_DCHECK_LT(spatial_idx, kMaxSpatialLayers); MutexLock lock(&local_mutex_); temporal_layers_supported_[spatial_idx] = supported; } void SetResolutionBitrateLimits( std::vector thresholds) { MutexLock lock(&local_mutex_); resolution_bitrate_limits_ = thresholds; } void ForceInitEncodeFailure(bool force_failure) { MutexLock lock(&local_mutex_); force_init_encode_failed_ = force_failure; } void SimulateOvershoot(double rate_factor) { MutexLock lock(&local_mutex_); rate_factor_ = rate_factor; } uint32_t GetLastFramerate() const { MutexLock lock(&local_mutex_); return last_framerate_; } VideoFrame::UpdateRect GetLastUpdateRect() const { MutexLock lock(&local_mutex_); return last_update_rect_; } const std::vector& LastFrameTypes() const { MutexLock lock(&local_mutex_); return last_frame_types_; } void InjectFrame(const VideoFrame& input_image, bool keyframe) { const std::vector frame_type = { keyframe ? VideoFrameType::kVideoFrameKey : VideoFrameType::kVideoFrameDelta}; { MutexLock lock(&local_mutex_); last_frame_types_ = frame_type; } FakeEncoder::Encode(input_image, &frame_type); } void InjectEncodedImage(const EncodedImage& image, const CodecSpecificInfo* codec_specific_info) { MutexLock lock(&local_mutex_); encoded_image_callback_->OnEncodedImage(image, codec_specific_info); } void SetEncodedImageData( rtc::scoped_refptr encoded_image_data) { MutexLock lock(&local_mutex_); encoded_image_data_ = encoded_image_data; } void ExpectNullFrame() { MutexLock lock(&local_mutex_); expect_null_frame_ = true; } absl::optional GetAndResetLastRateControlSettings() { auto settings = last_rate_control_settings_; last_rate_control_settings_.reset(); return settings; } int GetLastInputWidth() const { MutexLock lock(&local_mutex_); return last_input_width_; } int GetLastInputHeight() const { MutexLock lock(&local_mutex_); return last_input_height_; } absl::optional GetLastInputPixelFormat() { MutexLock lock(&local_mutex_); return last_input_pixel_format_; } int GetNumSetRates() const { MutexLock lock(&local_mutex_); return num_set_rates_; } void SetPreferredPixelFormats( absl::InlinedVector pixel_formats) { MutexLock lock(&local_mutex_); preferred_pixel_formats_ = std::move(pixel_formats); } void SetIsQpTrusted(absl::optional trusted) { MutexLock lock(&local_mutex_); is_qp_trusted_ = trusted; } VideoCodecComplexity LastEncoderComplexity() { MutexLock lock(&local_mutex_); return last_encoder_complexity_; } private: int32_t Encode(const VideoFrame& input_image, const std::vector* frame_types) override { { MutexLock lock(&local_mutex_); if (expect_null_frame_) { EXPECT_EQ(input_image.timestamp(), 0u); EXPECT_EQ(input_image.width(), 1); last_frame_types_ = *frame_types; expect_null_frame_ = false; } else { EXPECT_GT(input_image.timestamp(), timestamp_); EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_); EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90); } timestamp_ = input_image.timestamp(); ntp_time_ms_ = input_image.ntp_time_ms(); last_input_width_ = input_image.width(); last_input_height_ = input_image.height(); last_update_rect_ = input_image.update_rect(); last_frame_types_ = *frame_types; last_input_pixel_format_ = input_image.video_frame_buffer()->type(); } int32_t result = FakeEncoder::Encode(input_image, frame_types); return result; } CodecSpecificInfo EncodeHook( EncodedImage& encoded_image, rtc::scoped_refptr buffer) override { CodecSpecificInfo codec_specific; { MutexLock lock(&mutex_); codec_specific.codecType = config_.codecType; } MutexLock lock(&local_mutex_); if (encoded_image_data_) { encoded_image.SetEncodedData(encoded_image_data_); } return codec_specific; } int32_t InitEncode(const VideoCodec* config, const Settings& settings) override { int res = FakeEncoder::InitEncode(config, settings); MutexLock lock(&local_mutex_); EXPECT_EQ(initialized_, EncoderState::kUninitialized); if (config->codecType == kVideoCodecVP8) { // Simulate setting up temporal layers, in order to validate the life // cycle of these objects. Vp8TemporalLayersFactory factory; frame_buffer_controller_ = factory.Create(*config, settings, &fec_controller_override_); } last_encoder_complexity_ = config->GetVideoEncoderComplexity(); if (force_init_encode_failed_) { initialized_ = EncoderState::kInitializationFailed; return -1; } initialized_ = EncoderState::kInitialized; return res; } int32_t Release() override { MutexLock lock(&local_mutex_); EXPECT_NE(initialized_, EncoderState::kUninitialized); initialized_ = EncoderState::kUninitialized; return FakeEncoder::Release(); } void SetRates(const RateControlParameters& parameters) { MutexLock lock(&local_mutex_); num_set_rates_++; VideoBitrateAllocation adjusted_rate_allocation; for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (parameters.bitrate.HasBitrate(si, ti)) { adjusted_rate_allocation.SetBitrate( si, ti, static_cast(parameters.bitrate.GetBitrate(si, ti) * rate_factor_)); } } } last_framerate_ = static_cast(parameters.framerate_fps + 0.5); last_rate_control_settings_ = parameters; RateControlParameters adjusted_paramters = parameters; adjusted_paramters.bitrate = adjusted_rate_allocation; FakeEncoder::SetRates(adjusted_paramters); } TimeController* const time_controller_; mutable Mutex local_mutex_; enum class EncoderState { kUninitialized, kInitializationFailed, kInitialized } initialized_ RTC_GUARDED_BY(local_mutex_) = EncoderState::kUninitialized; rtc::Event continue_encode_event_; uint32_t timestamp_ RTC_GUARDED_BY(local_mutex_) = 0; int64_t ntp_time_ms_ RTC_GUARDED_BY(local_mutex_) = 0; int last_input_width_ RTC_GUARDED_BY(local_mutex_) = 0; int last_input_height_ RTC_GUARDED_BY(local_mutex_) = 0; bool quality_scaling_ RTC_GUARDED_BY(local_mutex_) = true; int requested_resolution_alignment_ RTC_GUARDED_BY(local_mutex_) = 1; bool apply_alignment_to_all_simulcast_layers_ RTC_GUARDED_BY(local_mutex_) = false; bool is_hardware_accelerated_ RTC_GUARDED_BY(local_mutex_) = false; rtc::scoped_refptr encoded_image_data_ RTC_GUARDED_BY(local_mutex_); std::unique_ptr frame_buffer_controller_ RTC_GUARDED_BY(local_mutex_); absl::optional temporal_layers_supported_[kMaxSpatialLayers] RTC_GUARDED_BY( local_mutex_); bool force_init_encode_failed_ RTC_GUARDED_BY(local_mutex_) = false; double rate_factor_ RTC_GUARDED_BY(local_mutex_) = 1.0; uint32_t last_framerate_ RTC_GUARDED_BY(local_mutex_) = 0; absl::optional last_rate_control_settings_; VideoFrame::UpdateRect last_update_rect_ RTC_GUARDED_BY(local_mutex_) = { 0, 0, 0, 0}; std::vector last_frame_types_; bool expect_null_frame_ = false; EncodedImageCallback* encoded_image_callback_ RTC_GUARDED_BY(local_mutex_) = nullptr; NiceMock fec_controller_override_; std::vector resolution_bitrate_limits_ RTC_GUARDED_BY(local_mutex_); int num_set_rates_ RTC_GUARDED_BY(local_mutex_) = 0; absl::optional last_input_pixel_format_ RTC_GUARDED_BY(local_mutex_); absl::InlinedVector preferred_pixel_formats_ RTC_GUARDED_BY(local_mutex_); absl::optional is_qp_trusted_ RTC_GUARDED_BY(local_mutex_); VideoCodecComplexity last_encoder_complexity_ RTC_GUARDED_BY(local_mutex_){ VideoCodecComplexity::kComplexityNormal}; }; class TestSink : public VideoStreamEncoder::EncoderSink { public: TestSink(TimeController* time_controller, TestEncoder* test_encoder) : time_controller_(time_controller), test_encoder_(test_encoder) { RTC_DCHECK(time_controller_); } void WaitForEncodedFrame(int64_t expected_ntp_time) { EXPECT_TRUE( TimedWaitForEncodedFrame(expected_ntp_time, kDefaultTimeoutMs)); } bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) { uint32_t timestamp = 0; if (!WaitForFrame(timeout_ms)) return false; { MutexLock lock(&mutex_); timestamp = last_timestamp_; } test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp); return true; } void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) { EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs)); CheckLastFrameSizeMatches(expected_width, expected_height); } void CheckLastFrameSizeMatches(uint32_t expected_width, uint32_t expected_height) { uint32_t width = 0; uint32_t height = 0; { MutexLock lock(&mutex_); width = last_width_; height = last_height_; } EXPECT_EQ(expected_height, height); EXPECT_EQ(expected_width, width); } void CheckLastFrameRotationMatches(VideoRotation expected_rotation) { VideoRotation rotation; { MutexLock lock(&mutex_); rotation = last_rotation_; } EXPECT_EQ(expected_rotation, rotation); } void ExpectDroppedFrame() { EXPECT_FALSE(WaitForFrame(100)); } bool WaitForFrame(int64_t timeout_ms) { RTC_DCHECK(time_controller_->GetMainThread()->IsCurrent()); time_controller_->AdvanceTime(TimeDelta::Zero()); bool ret = encoded_frame_event_.Wait(timeout_ms); time_controller_->AdvanceTime(TimeDelta::Zero()); return ret; } void SetExpectNoFrames() { MutexLock lock(&mutex_); expect_frames_ = false; } int number_of_reconfigurations() const { MutexLock lock(&mutex_); return number_of_reconfigurations_; } int last_min_transmit_bitrate() const { MutexLock lock(&mutex_); return min_transmit_bitrate_bps_; } void SetNumExpectedLayers(size_t num_layers) { MutexLock lock(&mutex_); num_expected_layers_ = num_layers; } int64_t GetLastCaptureTimeMs() const { MutexLock lock(&mutex_); return last_capture_time_ms_; } const EncodedImage& GetLastEncodedImage() { MutexLock lock(&mutex_); return last_encoded_image_; } std::vector GetLastEncodedImageData() { MutexLock lock(&mutex_); return std::move(last_encoded_image_data_); } VideoBitrateAllocation GetLastVideoBitrateAllocation() { MutexLock lock(&mutex_); return last_bitrate_allocation_; } int number_of_bitrate_allocations() const { MutexLock lock(&mutex_); return number_of_bitrate_allocations_; } VideoLayersAllocation GetLastVideoLayersAllocation() { MutexLock lock(&mutex_); return last_layers_allocation_; } int number_of_layers_allocations() const { MutexLock lock(&mutex_); return number_of_layers_allocations_; } private: Result OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) override { MutexLock lock(&mutex_); EXPECT_TRUE(expect_frames_); last_encoded_image_ = EncodedImage(encoded_image); last_encoded_image_data_ = std::vector( encoded_image.data(), encoded_image.data() + encoded_image.size()); uint32_t timestamp = encoded_image.Timestamp(); if (last_timestamp_ != timestamp) { num_received_layers_ = 1; last_width_ = encoded_image._encodedWidth; last_height_ = encoded_image._encodedHeight; } else { ++num_received_layers_; last_width_ = std::max(encoded_image._encodedWidth, last_width_); last_height_ = std::max(encoded_image._encodedHeight, last_height_); } last_timestamp_ = timestamp; last_capture_time_ms_ = encoded_image.capture_time_ms_; last_rotation_ = encoded_image.rotation_; if (num_received_layers_ == num_expected_layers_) { encoded_frame_event_.Set(); } return Result(Result::OK, last_timestamp_); } void OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) override { MutexLock lock(&mutex_); ++number_of_reconfigurations_; min_transmit_bitrate_bps_ = min_transmit_bitrate_bps; } void OnBitrateAllocationUpdated( const VideoBitrateAllocation& allocation) override { MutexLock lock(&mutex_); ++number_of_bitrate_allocations_; last_bitrate_allocation_ = allocation; } void OnVideoLayersAllocationUpdated( VideoLayersAllocation allocation) override { MutexLock lock(&mutex_); ++number_of_layers_allocations_; last_layers_allocation_ = allocation; rtc::StringBuilder log; for (const auto& layer : allocation.active_spatial_layers) { log << layer.width << "x" << layer.height << "@" << layer.frame_rate_fps << "["; for (const auto target_bitrate : layer.target_bitrate_per_temporal_layer) { log << target_bitrate.kbps() << ","; } log << "]"; } RTC_DLOG(LS_INFO) << "OnVideoLayersAllocationUpdated " << log.str(); } TimeController* const time_controller_; mutable Mutex mutex_; TestEncoder* test_encoder_; rtc::Event encoded_frame_event_; EncodedImage last_encoded_image_; std::vector last_encoded_image_data_; uint32_t last_timestamp_ = 0; int64_t last_capture_time_ms_ = 0; uint32_t last_height_ = 0; uint32_t last_width_ = 0; VideoRotation last_rotation_ = kVideoRotation_0; size_t num_expected_layers_ = 1; size_t num_received_layers_ = 0; bool expect_frames_ = true; int number_of_reconfigurations_ = 0; int min_transmit_bitrate_bps_ = 0; VideoBitrateAllocation last_bitrate_allocation_ RTC_GUARDED_BY(&mutex_); int number_of_bitrate_allocations_ RTC_GUARDED_BY(&mutex_) = 0; VideoLayersAllocation last_layers_allocation_ RTC_GUARDED_BY(&mutex_); int number_of_layers_allocations_ RTC_GUARDED_BY(&mutex_) = 0; }; class VideoBitrateAllocatorProxyFactory : public VideoBitrateAllocatorFactory { public: VideoBitrateAllocatorProxyFactory() : bitrate_allocator_factory_( CreateBuiltinVideoBitrateAllocatorFactory()) {} std::unique_ptr CreateVideoBitrateAllocator( const VideoCodec& codec) override { MutexLock lock(&mutex_); codec_config_ = codec; return bitrate_allocator_factory_->CreateVideoBitrateAllocator(codec); } VideoCodec codec_config() const { MutexLock lock(&mutex_); return codec_config_; } private: std::unique_ptr bitrate_allocator_factory_; mutable Mutex mutex_; VideoCodec codec_config_ RTC_GUARDED_BY(mutex_); }; Clock* clock() { return time_controller_.GetClock(); } void AdvanceTime(TimeDelta duration) { time_controller_.AdvanceTime(duration); } int64_t CurrentTimeMs() { return clock()->CurrentTime().ms(); } protected: virtual TaskQueueFactory* GetTaskQueueFactory() { return time_controller_.GetTaskQueueFactory(); } test::ScopedKeyValueConfig field_trials_; GlobalSimulatedTimeController time_controller_{Timestamp::Micros(1234)}; VideoSendStream::Config video_send_config_; VideoEncoderConfig video_encoder_config_; int codec_width_; int codec_height_; int max_framerate_; TestEncoder fake_encoder_; test::VideoEncoderProxyFactory encoder_factory_; VideoBitrateAllocatorProxyFactory bitrate_allocator_factory_; std::unique_ptr stats_proxy_; TestSink sink_; AdaptingFrameForwarder video_source_{&time_controller_}; std::unique_ptr video_stream_encoder_; }; TEST_F(VideoStreamEncoderTest, EncodeOneFrame) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); WaitForEncodedFrame(1); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) { // Dropped since no target bitrate has been set. rtc::Event frame_destroyed_event; // The encoder will cache up to one frame for a short duration. Adding two // frames means that the first frame will be dropped and the second frame will // be sent when the encoder is enabled. video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event)); AdvanceTime(TimeDelta::Millis(10)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); AdvanceTime(TimeDelta::Zero()); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // The pending frame should be received. WaitForEncodedFrame(2); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenRateSetToZero) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0); // The encoder will cache up to one frame for a short duration. Adding two // frames means that the first frame will be dropped and the second frame will // be sent when the encoder is resumed. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); WaitForEncodedFrame(3); video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr)); WaitForEncodedFrame(4); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // This frame will be dropped since it has the same ntp timestamp. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFrameAfterStop) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->Stop(); sink_.SetExpectNoFrames(); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event)); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); } TEST_F(VideoStreamEncoderTest, DropsPendingFramesOnSlowEncode) { test::FrameForwarder source; video_stream_encoder_->SetSource(&source, DegradationPreference::MAINTAIN_FRAMERATE); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); int dropped_count = 0; stats_proxy_->SetDroppedFrameCallback( [&dropped_count](VideoStreamEncoderObserver::DropReason) { ++dropped_count; }); source.IncomingCapturedFrame(CreateFrame(1, nullptr)); source.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); EXPECT_EQ(1, dropped_count); } TEST_F(VideoStreamEncoderTest, NativeFrameWithoutI420SupportGetsDelivered) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame( CreateFakeNativeFrame(1, &frame_destroyed_event)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); EXPECT_EQ(fake_encoder_.config().width, fake_encoder_.GetLastInputWidth()); EXPECT_EQ(fake_encoder_.config().height, fake_encoder_.GetLastInputHeight()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NativeFrameWithoutI420SupportGetsCroppedIfNecessary) { // Use the cropping factory. video_encoder_config_.video_stream_factory = rtc::make_ref_counted(); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config_), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Capture a frame at codec_width_/codec_height_. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.config().width); EXPECT_EQ(codec_height_, fake_encoder_.config().height); // Now send in a fake frame that needs to be cropped as the width/height // aren't divisible by 4 (see CreateEncoderStreams above). rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNativeFrame( 2, &frame_destroyed_event, codec_width_ + 1, codec_height_ + 1)); WaitForEncodedFrame(2); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); EXPECT_EQ(fake_encoder_.config().width, fake_encoder_.GetLastInputWidth()); EXPECT_EQ(fake_encoder_.config().height, fake_encoder_.GetLastInputHeight()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NonI420FramesShouldNotBeConvertedToI420) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateNV12Frame(1, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNV12, fake_encoder_.GetLastInputPixelFormat()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_NoFrameTypePreference) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); fake_encoder_.SetPreferredPixelFormats({}); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame( 1, &frame_destroyed_event, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_PixelFormatPreferenceMatches) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); fake_encoder_.SetPreferredPixelFormats({VideoFrameBuffer::Type::kNV12}); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame( 1, &frame_destroyed_event, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_MappingIsNotFeasible) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Fake NV12 native frame does not allow mapping to I444. fake_encoder_.SetPreferredPixelFormats({VideoFrameBuffer::Type::kI444}); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame( 1, &frame_destroyed_event, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_BackedByNV12) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame( 1, &frame_destroyed_event, codec_width_, codec_height_)); WaitForEncodedFrame(1); EXPECT_EQ(VideoFrameBuffer::Type::kNative, fake_encoder_.GetLastInputPixelFormat()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenCongestionWindowPushbackSet) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0.5); // The congestion window pushback is set to 0.5, which will drop 1/2 of // frames. Adding two frames means that the first frame will be dropped and // the second frame will be sent to the encoder. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr)); video_source_.IncomingCapturedFrame(CreateFrame(5, nullptr)); WaitForEncodedFrame(5); EXPECT_EQ(2u, stats_proxy_->GetStats().frames_dropped_by_congestion_window); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfigureEncoderTriggersOnEncoderConfigurationChanged) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); EXPECT_EQ(0, sink_.number_of_reconfigurations()); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.min_transmit_bitrate_bps = 9999; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); EXPECT_EQ(9999, sink_.last_min_transmit_bitrate()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FrameResolutionChangeReconfigureEncoder) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(codec_width_, fake_encoder_.config().width); EXPECT_EQ(codec_height_, fake_encoder_.config().height); codec_width_ *= 2; codec_height_ *= 2; // Capture a frame with a higher resolution and wait for it to synchronize // with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(codec_width_, fake_encoder_.config().width); EXPECT_EQ(codec_height_, fake_encoder_.config().height); EXPECT_EQ(2, sink_.number_of_reconfigurations()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderInstanceDestroyedBeforeAnotherInstanceCreated) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Changing the max payload data length recreates encoder. video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength / 2); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(1, encoder_factory_.GetMaxNumberOfSimultaneousEncoderInstances()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, BitrateLimitsChangeReconfigureRateAllocator) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = kTargetBitrate.bps(); video_stream_encoder_->SetStartBitrate(kStartBitrate.bps()); video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); // The encoder will have been configured once when the first frame is // received. EXPECT_EQ(1, sink_.number_of_reconfigurations()); EXPECT_EQ(kTargetBitrate.bps(), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_EQ(kStartBitrate.bps(), bitrate_allocator_factory_.codec_config().startBitrate * 1000); test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); //??? video_encoder_config.max_bitrate_bps = kTargetBitrate.bps() * 2; video_stream_encoder_->SetStartBitrate(kStartBitrate.bps() * 2); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); // Capture a frame and wait for it to synchronize with the encoder thread. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(2, sink_.number_of_reconfigurations()); // Bitrate limits have changed - rate allocator should be reconfigured, // encoder should not be reconfigured. EXPECT_EQ(kTargetBitrate.bps() * 2, bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_EQ(kStartBitrate.bps() * 2, bitrate_allocator_factory_.codec_config().startBitrate * 1000); EXPECT_EQ(1, fake_encoder_.GetNumInitializations()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, IntersectionOfEncoderAndAppBitrateLimitsUsedWhenBothProvided) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const uint32_t kMinEncBitrateKbps = 100; const uint32_t kMaxEncBitrateKbps = 1000; const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( /*frame_size_pixels=*/codec_width_ * codec_height_, /*min_start_bitrate_bps=*/0, /*min_bitrate_bps=*/kMinEncBitrateKbps * 1000, /*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps + 1) * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = (kMinEncBitrateKbps + 1) * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // When both encoder and app provide bitrate limits, the intersection of // provided sets should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ(kMaxEncBitrateKbps, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinEncBitrateKbps + 1, bitrate_allocator_factory_.codec_config().minBitrate); video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps - 1) * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = (kMinEncBitrateKbps - 1) * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_EQ(kMaxEncBitrateKbps - 1, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinEncBitrateKbps, bitrate_allocator_factory_.codec_config().minBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderAndAppLimitsDontIntersectEncoderLimitsIgnored) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const uint32_t kMinAppBitrateKbps = 100; const uint32_t kMaxAppBitrateKbps = 200; const uint32_t kMinEncBitrateKbps = kMaxAppBitrateKbps + 1; const uint32_t kMaxEncBitrateKbps = kMaxAppBitrateKbps * 2; const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( /*frame_size_pixels=*/codec_width_ * codec_height_, /*min_start_bitrate_bps=*/0, /*min_bitrate_bps=*/kMinEncBitrateKbps * 1000, /*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = kMaxAppBitrateKbps * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = kMinAppBitrateKbps * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ(kMaxAppBitrateKbps, bitrate_allocator_factory_.codec_config().maxBitrate); EXPECT_EQ(kMinAppBitrateKbps, bitrate_allocator_factory_.codec_config().minBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRecommendedMaxAndMinBitratesUsedForGivenResolution) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); fake_encoder_.SetResolutionBitrateLimits( {encoder_bitrate_limits_270p, encoder_bitrate_limits_360p}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 0; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // 270p. The bitrate limits recommended by encoder for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270)); WaitForEncodedFrame(1); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // 360p. The bitrate limits recommended by encoder for 360p should be used. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); WaitForEncodedFrame(2); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution between 270p and 360p. The bitrate limits recommended by // encoder for 360p should be used. video_source_.IncomingCapturedFrame( CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2)); WaitForEncodedFrame(3); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution higher than 360p. The caps recommended by encoder should be // ignored. video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540)); WaitForEncodedFrame(4); EXPECT_NE(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_360p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_NE(static_cast(encoder_bitrate_limits_360p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); // Resolution lower than 270p. The max bitrate limit recommended by encoder // for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(5, 320, 180)); WaitForEncodedFrame(5); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.min_bitrate_bps), bitrate_allocator_factory_.codec_config().minBitrate * 1000); EXPECT_EQ(static_cast(encoder_bitrate_limits_270p.max_bitrate_bps), bitrate_allocator_factory_.codec_config().maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRecommendedMaxBitrateCapsTargetBitrate) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 0; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Encode 720p frame to get the default encoder target bitrate. video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); const uint32_t kDefaultTargetBitrateFor720pKbps = bitrate_allocator_factory_.codec_config() .simulcastStream[0] .targetBitrate; // Set the max recommended encoder bitrate to something lower than the default // target bitrate. const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( 1280 * 720, 10 * 1000, 10 * 1000, kDefaultTargetBitrateFor720pKbps / 2 * 1000); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); // Change resolution to trigger encoder reinitialization. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); WaitForEncodedFrame(2); video_source_.IncomingCapturedFrame(CreateFrame(3, 1280, 720)); WaitForEncodedFrame(3); // Ensure the target bitrate is capped by the max bitrate. EXPECT_EQ(bitrate_allocator_factory_.codec_config().maxBitrate * 1000, static_cast(encoder_bitrate_limits.max_bitrate_bps)); EXPECT_EQ(bitrate_allocator_factory_.codec_config() .simulcastStream[0] .targetBitrate * 1000, static_cast(encoder_bitrate_limits.max_bitrate_bps)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxAndMinBitratesUsedForTwoStreamsHighestActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits270p, kEncoderLimits360p}); // Two streams, highest stream active. VideoEncoderConfig config; const int kNumStreams = 2; test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config); config.max_bitrate_bps = 0; config.simulcast_layers[0].active = false; config.simulcast_layers[1].active = true; config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); // The encoder bitrate limits for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams); EXPECT_EQ(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // The encoder bitrate limits for 360p should be used. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits360p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Resolution b/w 270p and 360p. The encoder limits for 360p should be used. video_source_.IncomingCapturedFrame( CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits360p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Resolution higher than 360p. Encoder limits should be ignored. video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_NE(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_NE(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); EXPECT_NE(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_NE(static_cast(kEncoderLimits360p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Resolution lower than 270p. The encoder limits for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(5, 320, 180)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DefaultEncoderMaxAndMinBitratesUsedForTwoStreamsHighestActive) { // Two streams, highest stream active. VideoEncoderConfig config; const int kNumStreams = 2; test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config); config.max_bitrate_bps = 0; config.simulcast_layers[0].active = false; config.simulcast_layers[1].active = true; config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); // Default bitrate limits for 270p should be used. const absl::optional kDefaultLimits270p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP8, 480 * 270); video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams); EXPECT_EQ(static_cast(kDefaultLimits270p->min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kDefaultLimits270p->max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Default bitrate limits for 360p should be used. const absl::optional kDefaultLimits360p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP8, 640 * 360); video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kDefaultLimits360p->min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kDefaultLimits360p->max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Resolution b/w 270p and 360p. The default limits for 360p should be used. video_source_.IncomingCapturedFrame( CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kDefaultLimits360p->min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kDefaultLimits360p->max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // Default bitrate limits for 540p should be used. const absl::optional kDefaultLimits540p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP8, 960 * 540); video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kDefaultLimits540p->min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kDefaultLimits540p->max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxAndMinBitratesUsedForThreeStreamsMiddleActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p( 1280 * 720, 54 * 1000, 31 * 1000, 3456 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p}); // Three streams, middle stream active. VideoEncoderConfig config; const int kNumStreams = 3; test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config); config.simulcast_layers[0].active = false; config.simulcast_layers[1].active = true; config.simulcast_layers[2].active = false; config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); // The encoder bitrate limits for 360p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams); EXPECT_EQ(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits360p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // The encoder bitrate limits for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxAndMinBitratesNotUsedForThreeStreamsLowestActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p( 1280 * 720, 54 * 1000, 31 * 1000, 3456 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p}); // Three streams, lowest stream active. VideoEncoderConfig config; const int kNumStreams = 3; test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config); config.simulcast_layers[0].active = true; config.simulcast_layers[1].active = false; config.simulcast_layers[2].active = false; config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); // Resolution on lowest stream lower than 270p. The encoder limits not applied // on lowest stream, limits for 270p should not be used video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams); EXPECT_NE(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_NE(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxBitrateCappedByConfigForTwoStreamsHighestActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits270p, kEncoderLimits360p}); const int kMaxBitrateBps = kEncoderLimits360p.max_bitrate_bps - 100 * 1000; // Two streams, highest stream active. VideoEncoderConfig config; const int kNumStreams = 2; test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config); config.simulcast_layers[0].active = false; config.simulcast_layers[1].active = true; config.simulcast_layers[1].max_bitrate_bps = kMaxBitrateBps; config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); // The encoder bitrate limits for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams); EXPECT_EQ(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); // The max configured bitrate is less than the encoder limit for 360p. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().simulcastStream[1].minBitrate * 1000); EXPECT_EQ(static_cast(kMaxBitrateBps), fake_encoder_.config().simulcastStream[1].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchSourceDeregisterEncoderAsSink) { EXPECT_TRUE(video_source_.has_sinks()); test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_FALSE(video_source_.has_sinks()); EXPECT_TRUE(new_video_source.has_sinks()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsRotationApplied) { EXPECT_FALSE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->SetSink(&sink_, true /*rotation_applied*/); EXPECT_TRUE(video_source_.sink_wants().rotation_applied); video_stream_encoder_->Stop(); } class ResolutionAlignmentTest : public VideoStreamEncoderTest, public ::testing::WithParamInterface< ::testing::tuple>> { public: ResolutionAlignmentTest() : requested_alignment_(::testing::get<0>(GetParam())), scale_factors_(::testing::get<1>(GetParam())) {} protected: const int requested_alignment_; const std::vector scale_factors_; }; INSTANTIATE_TEST_SUITE_P( AlignmentAndScaleFactors, ResolutionAlignmentTest, ::testing::Combine( ::testing::Values(1, 2, 3, 4, 5, 6, 16, 22), // requested_alignment_ ::testing::Values(std::vector{-1.0}, // scale_factors_ std::vector{-1.0, -1.0}, std::vector{-1.0, -1.0, -1.0}, std::vector{4.0, 2.0, 1.0}, std::vector{9999.0, -1.0, 1.0}, std::vector{3.99, 2.01, 1.0}, std::vector{4.9, 1.7, 1.25}, std::vector{10.0, 4.0, 3.0}, std::vector{1.75, 3.5}, std::vector{1.5, 2.5}, std::vector{1.3, 1.0}))); TEST_P(ResolutionAlignmentTest, SinkWantsAlignmentApplied) { // Set requested resolution alignment. video_source_.set_adaptation_enabled(true); fake_encoder_.SetRequestedResolutionAlignment(requested_alignment_); fake_encoder_.SetApplyAlignmentToAllSimulcastLayers(true); // Fill config with the scaling factor by which to reduce encoding size. const int num_streams = scale_factors_.size(); VideoEncoderConfig config; test::FillEncoderConfiguration(kVideoCodecVP8, num_streams, &config); for (int i = 0; i < num_streams; ++i) { config.simulcast_layers[i].scale_resolution_down_by = scale_factors_[i]; } config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->ConfigureEncoder(std::move(config), kMaxPayloadLength); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); // Wait for all layers before triggering event. sink_.SetNumExpectedLayers(num_streams); // On the 1st frame, we should have initialized the encoder and // asked for its resolution requirements. int64_t timestamp_ms = kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumInitializations()); // On the 2nd frame, we should be receiving a correctly aligned resolution. // (It's up the to the encoder to potentially drop the previous frame, // to avoid coding back-to-back keyframes.) timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_GE(fake_encoder_.GetNumInitializations(), 1); VideoCodec codec = fake_encoder_.config(); EXPECT_EQ(codec.numberOfSimulcastStreams, num_streams); // Frame size should be a multiple of the requested alignment. for (int i = 0; i < codec.numberOfSimulcastStreams; ++i) { EXPECT_EQ(codec.simulcastStream[i].width % requested_alignment_, 0); EXPECT_EQ(codec.simulcastStream[i].height % requested_alignment_, 0); // Aspect ratio should match. EXPECT_EQ(codec.width * codec.simulcastStream[i].height, codec.height * codec.simulcastStream[i].width); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TestCpuDowngrades_BalancedMode) { const int kFramerateFps = 30; const int kWidth = 1280; const int kHeight = 720; // We rely on the automatic resolution adaptation, but we handle framerate // adaptation manually by mocking the stats proxy. video_source_.set_adaptation_enabled(true); // Enable BALANCED preference, no initial limitation. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Adapt down as far as possible. rtc::VideoSinkWants last_wants; int64_t t = 1; int loop_count = 0; do { ++loop_count; last_wants = video_source_.sink_wants(); // Simulate the framerate we've been asked to adapt to. const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps); const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps; VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = fps; stats_proxy_->SetMockStats(mock_stats); video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t); t += frame_interval_ms; video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT( video_source_.sink_wants(), FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() * *video_source_.last_sent_height())); } while (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count || video_source_.sink_wants().max_framerate_fps < last_wants.max_framerate_fps); // Verify that we've adapted all the way down. stats_proxy_->ResetMockStats(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(loop_count - 1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(kMinPixelsPerFrame, *video_source_.last_sent_width() * *video_source_.last_sent_height()); EXPECT_EQ(kMinBalancedFramerateFps, video_source_.sink_wants().max_framerate_fps); // Adapt back up the same number of times we adapted down. for (int i = 0; i < loop_count - 1; ++i) { last_wants = video_source_.sink_wants(); // Simulate the framerate we've been asked to adapt to. const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps); const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps; VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = fps; stats_proxy_->SetMockStats(mock_stats); video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight)); sink_.WaitForEncodedFrame(t); t += frame_interval_ms; video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT( video_source_.sink_wants(), FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() * *video_source_.last_sent_height())); EXPECT_TRUE(video_source_.sink_wants().max_pixel_count > last_wants.max_pixel_count || video_source_.sink_wants().max_framerate_fps > last_wants.max_framerate_fps); } EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax()); stats_proxy_->ResetMockStats(); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ((loop_count - 1) * 2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsNotChangedByResourceLimitedBeforeDegradationPreferenceChange) { video_stream_encoder_->OnBitrateUpdated(kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); const int kFrameWidth = 1280; const int kFrameHeight = 720; int64_t ntp_time = kFrameIntervalMs; // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. const int kInputFps = 30; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); video_source_.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); // Some framerate constraint should be set. int restricted_fps = video_source_.sink_wants().max_framerate_fps; EXPECT_LT(restricted_fps, kInputFps); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += 100; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; // Some resolution constraint should be set. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps); int pixel_count = video_source_.sink_wants().max_pixel_count; // Triggering a CPU underuse should not change the sink wants since it has // not been overused for resolution since we changed degradation preference. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_EQ(video_source_.sink_wants().max_pixel_count, pixel_count); EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps); // Change the degradation preference back. CPU underuse should not adapt since // QP is most limited. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += 100; // Resolution adaptations is gone after changing degradation preference. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), video_source_.sink_wants().max_pixel_count); // The fps adaptation from above is now back. EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps); // Trigger CPU underuse. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps); // Trigger QP underuse, fps should return to normal. video_stream_encoder_->TriggerQualityHigh(); video_source_.IncomingCapturedFrame( CreateFrame(ntp_time, kFrameWidth, kFrameHeight)); sink_.WaitForEncodedFrame(ntp_time); ntp_time += kFrameIntervalMs; EXPECT_THAT(video_source_.sink_wants(), FpsMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinkWantsStoredByDegradationPreference) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); const int kFrameWidth = 1280; const int kFrameHeight = 720; int64_t frame_timestamp = 1; video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Default degradation preference is maintain-framerate, so will lower max // wanted resolution. EXPECT_FALSE(video_source_.sink_wants().target_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_EQ(kDefaultFramerate, video_source_.sink_wants().max_framerate_fps); // Set new source, switch to maintain-resolution. test::FrameForwarder new_video_source; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Initially no degradation registered. EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt form. const int kInputFps = 30; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Some framerate constraint should be set. EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); // Turn off degradation completely. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::DISABLED); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->TriggerCpuOveruse(); new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; // Still no degradation. EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Calling SetSource with resolution scaling enabled apply the old SinkWants. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_LT(new_video_source.sink_wants().max_pixel_count, kFrameWidth * kFrameHeight); EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(kDefaultFramerate, new_video_source.sink_wants().max_framerate_fps); // Calling SetSource with framerate scaling enabled apply the old SinkWants. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame( CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth)); sink_.WaitForEncodedFrame(frame_timestamp); frame_timestamp += kFrameIntervalMs; EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count); EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksQualityAdaptationStats) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Trigger adapt up. video_stream_encoder_->TriggerQualityHigh(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_EQ(2, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStats) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsCpuAdaptation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation disabled. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::DISABLED); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set adaptation back to enabled. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Trigger CPU normal use. video_stream_encoder_->TriggerCpuUnderuse(); new_video_source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight)); WaitForEncodedFrame(6); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsQualityAdaptation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::BALANCED); new_video_source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Set new source with adaptation still enabled. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::BALANCED); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); // Disable resolution scaling. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight)); WaitForEncodedFrame(5); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.bw_limited_resolution); EXPECT_FALSE(stats.bw_limited_framerate); EXPECT_EQ(1, stats.number_of_quality_adapt_changes); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityAdaptationStatsAreResetWhenScalerIsDisabled) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int64_t timestamp_ms = kFrameIntervalMs; video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger overuse. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Leave source unchanged, but disable quality scaler. fake_encoder_.SetQualityScaling(false); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Make format different, to force recreation of encoder. video_encoder_config.video_format.parameters["foo"] = "foo"; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStatsWhenSwitchingSource_Balanced) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int sequence = 1; // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse, should now adapt down. video_stream_encoder_->TriggerCpuOveruse(); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new degradation preference should clear restrictions since we changed // from BALANCED. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt from. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); // We have now adapted once. stats = stats_proxy_->GetStats(); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Back to BALANCED, should clear the restrictions again. video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStatsWhenSwitchingSource) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 1280; const int kHeight = 720; int sequence = 1; video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); VideoSendStream::Stats stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(0, stats.number_of_cpu_adapt_changes); // Trigger CPU overuse, should now adapt down. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set new source with adaptation still enabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Set cpu adaptation by frame dropping. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Not adapted at first. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(1, stats.number_of_cpu_adapt_changes); // Force an input frame rate to be available, or the adaptation call won't // know what framerate to adapt from. VideoSendStream::Stats mock_stats = stats_proxy_->GetStats(); mock_stats.input_frame_rate = 30; stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); // Framerate now adapted. stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Disable CPU adaptation. video_stream_encoder_->SetSource(&new_video_source, webrtc::DegradationPreference::DISABLED); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Try to trigger overuse. Should not succeed. stats_proxy_->SetMockStats(mock_stats); video_stream_encoder_->TriggerCpuOveruse(); stats_proxy_->ResetMockStats(); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Switch back the source with resolution adaptation enabled. video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_TRUE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(2, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Back to the source with adaptation off, set it back to maintain-resolution. video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); // Disabled, since we previously switched the source to disabled. EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_TRUE(stats.cpu_limited_framerate); EXPECT_EQ(3, stats.number_of_cpu_adapt_changes); // Trigger CPU normal usage. video_stream_encoder_->TriggerCpuUnderuse(); new_video_source.IncomingCapturedFrame( CreateFrame(sequence, kWidth, kHeight)); WaitForEncodedFrame(sequence++); stats = stats_proxy_->GetStats(); EXPECT_FALSE(stats.cpu_limited_resolution); EXPECT_FALSE(stats.cpu_limited_framerate); EXPECT_EQ(4, stats.number_of_cpu_adapt_changes); EXPECT_EQ(0, stats.number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ScalingUpAndDownDoesNothingWithMaintainResolution) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Expect no scaling to begin with. EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); // Expect a scale down. EXPECT_TRUE(video_source_.sink_wants().max_pixel_count); EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); // Set resolution scaling disabled. test::FrameForwarder new_video_source; video_stream_encoder_->SetSource( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger scale down. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); WaitForEncodedFrame(3); // Expect no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); // Trigger scale up. video_stream_encoder_->TriggerQualityHigh(); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); WaitForEncodedFrame(4); // Expect nothing to change, still no scaling. EXPECT_EQ(std::numeric_limits::max(), new_video_source.sink_wants().max_pixel_count); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameAdaptDownRequest_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down for same input resolution, expect no change. video_stream_encoder_->TriggerCpuOveruse(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SkipsSameOrLargerAdaptDownRequest_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); const int kLastMaxPixelCount = source.sink_wants().max_pixel_count; // Trigger adapt down for same input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down for larger input resolution, expect no change. source.IncomingCapturedFrame(CreateFrame(3, kWidth + 1, kHeight + 1)); sink_.WaitForEncodedFrame(3); video_stream_encoder_->TriggerQualityLow(); EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FpsCountReturnsToZeroForFewerAdaptationsUpThanDown) { const int kWidth = 640; const int kHeight = 360; const int64_t kFrameIntervalMs = 150; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Lt(kDefaultFramerate))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Source requests 270p, expect reduced resolution (480x270@15fps). source.OnOutputFormatRequest(480, 270); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(480, 270); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Source requests QVGA, expect reduced resolution (320x180@10fps). source.OnOutputFormatRequest(320, 180); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(320, 180); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (320x180@7fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Source requests VGA, expect increased resolution (640x360@7fps). source.OnOutputFormatRequest(640, 360); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@(max-2)fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@(max-1)fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@maxfps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FpsCountReturnsToZeroForFewerAdaptationsUpThanDownWithTwoResources) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (960x540@maxfps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (640x360@maxfps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Source requests QVGA, expect reduced resolution (320x180@15fps). source.OnOutputFormatRequest(320, 180); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(320, 180); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect reduced fps (320x180@7fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Source requests HD, expect increased resolution (640x360@7fps). source.OnOutputFormatRequest(1280, 720); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect increased fps (640x360@(max-1)fps). video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect increased fps (640x360@maxfps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect increased resolution (960x570@maxfps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect increased resolution (1280x720@maxfps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_RESOLUTION preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerCpuUnderuse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_DisabledMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable DISABLED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::DISABLED); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionForLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); WaitForEncodedFrame(1); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); WaitForEncodedFrame(2); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateForLowQuality_MaintainResolutionMode) { const int kWidth = 1280; const int kHeight = 720; const int kInputFps = 30; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); // Expect no scaling to begin with (preference: MAINTAIN_FRAMERATE). video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); sink_.WaitForEncodedFrame(1); EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); sink_.WaitForEncodedFrame(2); EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); // Enable MAINTAIN_RESOLUTION preference. test::FrameForwarder new_video_source; video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated( &new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Give the encoder queue time to process the change in degradation preference // by waiting for an encoded frame. new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); sink_.WaitForEncodedFrame(3); EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect reduced framerate. video_stream_encoder_->TriggerQualityLow(); new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight)); sink_.WaitForEncodedFrame(4); EXPECT_THAT(new_video_source.sink_wants(), FpsMatchesResolutionMax(Lt(kInputFps))); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotScaleBelowSetResolutionLimit) { const int kWidth = 1280; const int kHeight = 720; const size_t kNumFrames = 10; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable adapter, expected input resolutions when downscaling: // 1280x720 -> 960x540 -> 640x360 -> 480x270 -> 320x180 (kMinPixelsPerFrame) video_source_.set_adaptation_enabled(true); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); int downscales = 0; for (size_t i = 1; i <= kNumFrames; i++) { video_source_.IncomingCapturedFrame( CreateFrame(i * kFrameIntervalMs, kWidth, kHeight)); WaitForEncodedFrame(i * kFrameIntervalMs); // Trigger scale down. rtc::VideoSinkWants last_wants = video_source_.sink_wants(); video_stream_encoder_->TriggerQualityLow(); EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame); if (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count) ++downscales; EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(downscales, stats_proxy_->GetStats().number_of_quality_adapt_changes); EXPECT_GT(downscales, 0); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceOnOveruse_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionUpAndDownTwiceForLowQuality_BalancedMode_NoFpsLimit) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction. video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); sink_.WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptUpIfBwEstimateIsHigherThanMinBitrate) { fake_encoder_.SetResolutionBitrateLimits( {kEncoderBitrateLimits540p, kEncoderBitrateLimits720p}); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Insert 720p frame. int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(1280, 720); // Reduce bitrate and trigger adapt down. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0, 0, 0); video_stream_encoder_->TriggerQualityLow(); // Insert 720p frame. It should be downscaled and encoded. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(960, 540); // Trigger adapt up. Higher resolution should not be requested duo to lack // of bitrate. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(1280 * 720))); // Increase bitrate. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0, 0, 0); // Trigger adapt up. Higher resolution should be requested. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropFirstFramesIfBwEstimateIsTooLow) { fake_encoder_.SetResolutionBitrateLimits( {kEncoderBitrateLimits540p, kEncoderBitrateLimits720p}); // Set bitrate equal to min bitrate of 540p. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); // Insert 720p frame. It should be dropped and lower resolution should be // requested. int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); ExpectDroppedFrame(); EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < 1280 * 720, 5000); // Insert 720p frame. It should be downscaled and encoded. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(960, 540); video_stream_encoder_->Stop(); } class BalancedDegradationTest : public VideoStreamEncoderTest { protected: void SetupTest() { // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config_.Copy()); OnBitrateUpdated(kTargetBitrate); // Enable BALANCED preference. source_.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source_, DegradationPreference::BALANCED); } void OnBitrateUpdated(DataRate bitrate) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( bitrate, bitrate, bitrate, 0, 0, 0); } void InsertFrame() { timestamp_ms_ += kFrameIntervalMs; source_.IncomingCapturedFrame(CreateFrame(timestamp_ms_, kWidth, kHeight)); } void InsertFrameAndWaitForEncoded() { InsertFrame(); sink_.WaitForEncodedFrame(timestamp_ms_); } const int kWidth = 640; // pixels:640x360=230400 const int kHeight = 360; const int64_t kFrameIntervalMs = 150; // Use low fps to not drop any frame. int64_t timestamp_ms_ = 0; AdaptingFrameForwarder source_{&time_controller_}; }; TEST_F(BalancedDegradationTest, AdaptDownTwiceIfMinFpsDiffLtThreshold) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/"); SetupTest(); // Force input frame rate. const int kInputFps = 24; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate and resolution, // since Fps diff (input-requested:0) < threshold. video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source_.sink_wants(), AllOf(WantsFps(Eq(24)), WantsMaxPixels(Le(230400)))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, AdaptDownOnceIfFpsDiffGeThreshold) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/"); SetupTest(); // Force input frame rate. const int kInputFps = 25; VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kInputFps; stats_proxy_->SetMockStats(stats); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate only (640x360@24fps). // Fps diff (input-requested:1) == threshold. video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(24))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, AdaptDownUsesCodecSpecificFps) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|24,vp8_fps:8|11|22/"); SetupTest(); EXPECT_EQ(kVideoCodecVP8, video_encoder_config_.codec_type); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); // Trigger adapt down, expect scaled down framerate (640x360@22fps). video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(22))); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpIfBwEstimateIsLessThanMinBitrate) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425/"); SetupTest(); const DataRate kMinBitrate = DataRate::KilobitsPerSec(425); const DataRate kTooLowMinBitrate = DataRate::KilobitsPerSec(424); OnBitrateUpdated(kTooLowMinBitrate); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 10); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in fps (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (target bitrate == min bitrate). OnBitrateUpdated(kMinBitrate); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 14); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, InitialFrameDropAdaptsFpsAndResolutionInOneStep) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|24|24/"); SetupTest(); OnBitrateUpdated(kLowTargetBitrate); EXPECT_THAT(source_.sink_wants(), UnlimitedSinkWants()); // Insert frame, expect scaled down: // framerate (640x360@24fps) -> resolution (480x270@24fps). InsertFrame(); EXPECT_FALSE(WaitForFrame(1000)); EXPECT_LT(source_.sink_wants().max_pixel_count, kWidth * kHeight); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24); // Insert frame, expect scaled down: // resolution (320x180@24fps). InsertFrame(); EXPECT_FALSE(WaitForFrame(1000)); EXPECT_LT(source_.sink_wants().max_pixel_count, source_.last_wants().max_pixel_count); EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24); // Frame should not be dropped (min pixels per frame reached). InsertFrameAndWaitForEncoded(); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpInResolutionIfBwEstimateIsLessThanMinBitrate) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps_res:0|0|435/"); SetupTest(); const DataRate kResolutionMinBitrate = DataRate::KilobitsPerSec(435); const DataRate kTooLowMinResolutionBitrate = DataRate::KilobitsPerSec(434); OnBitrateUpdated(kTooLowMinResolutionBitrate); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (no bitrate limit) (480x270@14fps). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants())); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in res (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled res (target bitrate == min bitrate). OnBitrateUpdated(kResolutionMinBitrate); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants())); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(BalancedDegradationTest, NoAdaptUpInFpsAndResolutionIfBwEstimateIsLessThanMinBitrate) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-BalancedDegradationSettings/" "pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425,kbps_res:0|0|435/"); SetupTest(); const DataRate kMinBitrate = DataRate::KilobitsPerSec(425); const DataRate kTooLowMinBitrate = DataRate::KilobitsPerSec(424); const DataRate kResolutionMinBitrate = DataRate::KilobitsPerSec(435); const DataRate kTooLowMinResolutionBitrate = DataRate::KilobitsPerSec(434); OnBitrateUpdated(kTooLowMinBitrate); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (640x360@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14))); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@14fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants())); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down framerate (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants())); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale (target bitrate < min bitrate). video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled fps (target bitrate == min bitrate). OnBitrateUpdated(kMinBitrate); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants())); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no upscale in res (target bitrate < min bitrate). OnBitrateUpdated(kTooLowMinResolutionBitrate); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled res (target bitrate == min bitrate). OnBitrateUpdated(kResolutionMinBitrate); video_stream_encoder_->TriggerQualityHigh(); InsertFrameAndWaitForEncoded(); EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants())); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruseAndLowQuality_MaintainFramerateMode) { const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (480x270). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (320x180). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect no change (min resolution reached). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMax()); EXPECT_EQ(source.sink_wants().max_pixel_count, last_wants.max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect upscaled resolution (480x270). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up since both are most limited, expect // upscaled resolution (640x360). video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up since both are most limited, expect // upscaled resolution (960x540). video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change since not most limited (960x540). // However the stats will change since the CPU resource is no longer limited. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants)); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up, expect no restriction (1280x720). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsReported) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->TriggerCpuOveruse(); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame( SendStatisticsProxy::kMinRequiredMetricsSamples + i, kWidth, kHeight)); WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_METRIC_EQ( 1, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); EXPECT_METRIC_EQ( 1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50)); } TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsNotReportedForDisabledDegradation) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::DISABLED); for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); } video_stream_encoder_->Stop(); video_stream_encoder_.reset(); stats_proxy_.reset(); EXPECT_EQ(0, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent")); } TEST_F(VideoStreamEncoderTest, ReportsVideoBitrateAllocation) { ResetEncoder("FAKE", 1, 1, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation); const int kDefaultFps = 30; const VideoBitrateAllocation expected_bitrate = SimulcastRateAllocator(fake_encoder_.config()) .Allocate(VideoBitrateAllocationParameters(kLowTargetBitrate.bps(), kDefaultFps)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.GetLastVideoBitrateAllocation(), expected_bitrate); EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1); // Check that encoder has been updated too, not just allocation observer. EXPECT_TRUE(fake_encoder_.GetAndResetLastRateControlSettings().has_value()); AdvanceTime(TimeDelta::Seconds(1) / kDefaultFps); // VideoBitrateAllocation not updated on second frame. video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1); AdvanceTime(TimeDelta::Millis(1) / kDefaultFps); // VideoBitrateAllocation updated after a process interval. const int64_t start_time_ms = CurrentTimeMs(); while (CurrentTimeMs() - start_time_ms < 5 * kProcessIntervalMs) { video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); AdvanceTime(TimeDelta::Millis(1) / kDefaultFps); } EXPECT_GT(sink_.number_of_bitrate_allocations(), 3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForVP8Simulcast) { ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); const int kDefaultFps = 30; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); // kLowTargetBitrate is only enough for one spatial layer. ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 1u); VideoBitrateAllocation bitrate_allocation = fake_encoder_.GetAndResetLastRateControlSettings()->target_bitrate; // Check that encoder has been updated too, not just allocation observer. EXPECT_EQ(bitrate_allocation.get_sum_bps(), kLowTargetBitrate.bps()); AdvanceTime(TimeDelta::Seconds(1) / kDefaultFps); // VideoLayersAllocation might be updated if frame rate changes. int number_of_layers_allocation = 1; const int64_t start_time_ms = CurrentTimeMs(); while (CurrentTimeMs() - start_time_ms < 10 * kProcessIntervalMs) { video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); if (number_of_layers_allocation != sink_.number_of_layers_allocations()) { number_of_layers_allocation = sink_.number_of_layers_allocations(); VideoLayersAllocation new_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_EQ(new_allocation.active_spatial_layers.size(), 1u); EXPECT_NE(new_allocation.active_spatial_layers[0].frame_rate_fps, last_layer_allocation.active_spatial_layers[0].frame_rate_fps); EXPECT_EQ(new_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer); last_layer_allocation = new_allocation; } } EXPECT_LE(sink_.number_of_layers_allocations(), 3); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForVP8WithMiddleLayerDisabled) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP8, /* num_streams*/ 3, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( VideoEncoder::GetDefaultVp8Settings()); for (auto& layer : video_encoder_config.simulcast_layers) { layer.num_temporal_layers = 2; } // Simulcast layers are used for enabling/disabling streams. video_encoder_config.simulcast_layers[0].active = true; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = true; ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_LT(last_layer_allocation.active_spatial_layers[0].width, 1280); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForVP8WithMiddleAndHighestLayerDisabled) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP8, /* num_streams*/ 3, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( VideoEncoder::GetDefaultVp8Settings()); for (auto& layer : video_encoder_config.simulcast_layers) { layer.num_temporal_layers = 2; } // Simulcast layers are used for enabling/disabling streams. video_encoder_config.simulcast_layers[0].active = true; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = false; ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_LT(last_layer_allocation.active_spatial_layers[0].width, 1280); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForV9SvcWithTemporalLayerSupport) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 2; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOn; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 640); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].height, 360); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].frame_rate_fps, 30); EXPECT_THAT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].height, 720); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].frame_rate_fps, 30); // Since full SVC is used, expect the top layer to utilize the full target // rate. EXPECT_EQ(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer[1], kTargetBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForV9SvcWithoutTemporalLayerSupport) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, false); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, false); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 2; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOn; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(1)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer, SizeIs(1)); // Since full SVC is used, expect the top layer to utilize the full target // rate. EXPECT_EQ(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer[0], kTargetBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForVP9KSvcWithTemporalLayerSupport) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 2; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOnKeyPic; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer, SizeIs(2)); // Since KSVC is, spatial layers are independend except on key frames. EXPECT_LT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer[1], kTargetBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForV9SvcWithLowestLayerDisabled) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOn; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); // Simulcast layers are used for enabling/disabling streams. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = true; video_encoder_config.simulcast_layers[2].active = true; ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 640); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].spatial_id, 1); EXPECT_THAT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer, SizeIs(2)); // Since full SVC is used, expect the top layer to utilize the full target // rate. EXPECT_EQ(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer[1], kTargetBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForV9SvcWithHighestLayerDisabled) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOn; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); // Simulcast layers are used for enabling/disabling streams. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[2].active = false; ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 320); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 640); EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].spatial_id, 1); EXPECT_THAT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer, SizeIs(2)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForV9SvcWithAllButHighestLayerDisabled) { fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true); fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9, /* num_streams*/ 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; vp9_settings.numberOfTemporalLayers = 2; vp9_settings.interLayerPred = InterLayerPredMode::kOn; vp9_settings.automaticResizeOn = false; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); // Simulcast layers are used for enabling/disabling streams. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = true; ConfigureEncoder(std::move(video_encoder_config), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1)); EXPECT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(2)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 1280); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer[1], kTargetBitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForH264) { ResetEncoder("H264", 1, 1, 1, false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1)); ASSERT_THAT(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer, SizeIs(1)); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer[0], kTargetBitrate); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 1280); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].height, 720); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].frame_rate_fps, 30); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsUpdatedVideoLayersAllocationWhenBweChanges) { ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); VideoLayersAllocation last_layer_allocation = sink_.GetLastVideoLayersAllocation(); // kLowTargetBitrate is only enough for one spatial layer. ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 1u); EXPECT_EQ(last_layer_allocation.active_spatial_layers[0] .target_bitrate_per_temporal_layer[0], kLowTargetBitrate); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 2); last_layer_allocation = sink_.GetLastVideoLayersAllocation(); ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 2u); EXPECT_GT(last_layer_allocation.active_spatial_layers[1] .target_bitrate_per_temporal_layer[0], DataRate::Zero()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ReportsUpdatedVideoLayersAllocationWhenResolutionChanges) { ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_, codec_height_)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 1); ASSERT_THAT(sink_.GetLastVideoLayersAllocation().active_spatial_layers, SizeIs(2)); EXPECT_EQ(sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].width, codec_width_); EXPECT_EQ( sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].height, codec_height_); video_source_.IncomingCapturedFrame( CreateFrame(CurrentTimeMs(), codec_width_ / 2, codec_height_ / 2)); WaitForEncodedFrame(CurrentTimeMs()); EXPECT_EQ(sink_.number_of_layers_allocations(), 2); ASSERT_THAT(sink_.GetLastVideoLayersAllocation().active_spatial_layers, SizeIs(2)); EXPECT_EQ(sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].width, codec_width_ / 2); EXPECT_EQ( sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].height, codec_height_ / 2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TemporalLayersNotDisabledIfSupported) { // 2 TLs configured, temporal layers supported by encoder. const int kNumTemporalLayers = 2; ResetEncoder("VP8", 1, kNumTemporalLayers, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation); fake_encoder_.SetTemporalLayersSupported(0, true); // Bitrate allocated across temporal layers. const int kTl0Bps = kTargetBitrate.bps() * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( kNumTemporalLayers, /*temporal_id*/ 0, /*base_heavy_tl3_alloc*/ false); const int kTl1Bps = kTargetBitrate.bps() * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( kNumTemporalLayers, /*temporal_id*/ 1, /*base_heavy_tl3_alloc*/ false); VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTl0Bps); expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kTl1Bps - kTl0Bps); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, TemporalLayersDisabledIfNotSupported) { // 2 TLs configured, temporal layers not supported by encoder. ResetEncoder("VP8", 1, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation); fake_encoder_.SetTemporalLayersSupported(0, false); // Temporal layers not supported by the encoder. // Total bitrate should be at ti:0. VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTargetBitrate.bps()); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, VerifyBitrateAllocationForTwoStreams) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-QualityScalerSettings/" "initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/"); // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config_.Copy()); // 2 TLs configured, temporal layers only supported for first stream. ResetEncoder("VP8", 2, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation); fake_encoder_.SetTemporalLayersSupported(0, true); fake_encoder_.SetTemporalLayersSupported(1, false); const int kS0Bps = 150000; const int kS0Tl0Bps = kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( /*num_layers*/ 2, /*temporal_id*/ 0, /*base_heavy_tl3_alloc*/ false); const int kS0Tl1Bps = kS0Bps * webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( /*num_layers*/ 2, /*temporal_id*/ 1, /*base_heavy_tl3_alloc*/ false); const int kS1Bps = kTargetBitrate.bps() - kS0Tl1Bps; // Temporal layers not supported by si:1. VideoBitrateAllocation expected_bitrate; expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kS0Tl0Bps); expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kS0Tl1Bps - kS0Tl0Bps); expected_bitrate.SetBitrate(/*si*/ 1, /*ti*/ 0, kS1Bps); VerifyAllocatedBitrate(expected_bitrate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnReconfigureAndAdaption) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Insert a single frame, triggering initial configuration. source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kDefaultFramerate); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.simulcast_layers[0].max_framerate = kFramerate; video_encoder_config.max_bitrate_bps = kTargetBitrate.bps(); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Detector should be updated with fps limit from codec config. EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Trigger underuse, max framerate should go back to codec configured fps. // Set extra low fps, to make sure it's actually reset, not just incremented. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate / 2; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedRespectsFramerateAfterUnderuse) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFramerate = 15; const int kHighFramerate = 25; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.simulcast_layers[0].max_framerate = kLowFramerate; video_encoder_config.max_bitrate_bps = kTargetBitrate.bps(); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kLowFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kLowFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kLowFramerate); // Reconfigure the encoder with a new (higher max framerate), max fps should // still respect the adaptation. video_encoder_config.simulcast_layers[0].max_framerate = kHighFramerate; source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), adapted_framerate); // Trigger underuse, max framerate should go back to codec configured fps. stats = stats_proxy_->GetStats(); stats.input_frame_rate = adapted_framerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuUnderuse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kHighFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnDegradationPreferenceChange) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); // Trigger initial configuration. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.simulcast_layers[0].max_framerate = kFramerate; video_encoder_config.max_bitrate_bps = kTargetBitrate.bps(); source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight)); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); // Trigger overuse, max framerate should be reduced. VideoSendStream::Stats stats = stats_proxy_->GetStats(); stats.input_frame_rate = kFramerate; stats_proxy_->SetMockStats(stats); video_stream_encoder_->TriggerCpuOveruse(); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); int adapted_framerate = video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(); EXPECT_LT(adapted_framerate, kFramerate); // Change degradation preference to not enable framerate scaling. Target // framerate should be changed to codec defined limit. video_stream_encoder_->SetSourceAndWaitForFramerateUpdated( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_EQ( video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(), kFramerate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); const int kWidth = 640; const int kHeight = 360; video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); int last_pixel_count = video_source_.sink_wants().max_pixel_count; // Next frame is scaled. video_source_.IncomingCapturedFrame( CreateFrame(2, kWidth * 3 / 4, kHeight * 3 / 4)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < last_pixel_count, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NumberOfDroppedFramesLimitedWhenBitrateIsTooLow) { const int kTooLowBitrateForFrameSizeBps = 10000; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); const int kWidth = 640; const int kHeight = 360; // We expect the n initial frames to get dropped. int i; for (i = 1; i <= kMaxInitialFramedrop; ++i) { video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); ExpectDroppedFrame(); } // The n+1th frame should not be dropped, even though it's size is too large. video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight)); WaitForEncodedFrame(i); // Expect the sink_wants to specify a scaled frame. EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWithMaintainResolutionPreference) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); // Set degradation preference. video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) { const int kWidth = 640; const int kHeight = 360; fake_encoder_.SetQualityScaling(false); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); // Make format different, to force recreation of encoder. video_encoder_config.video_format.parameters["foo"] = "foo"; video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); // Force quality scaler reconfiguration by resetting the source. video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped, even if it's too large. WaitForEncodedFrame(1); video_stream_encoder_->Stop(); fake_encoder_.SetQualityScaling(true); } TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenBweDrops) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-QualityScalerSettings/" "initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/"); // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config_.Copy()); const int kNotTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.2; const int kTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.19; const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(2); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Expect to drop this frame, the wait should time out. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropNotReactivatedWhenBweDropsWhenScalingDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-QualityScalerSettings/" "initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/"); fake_encoder_.SetQualityScaling(false); ConfigureEncoder(video_encoder_config_.Copy()); const int kNotTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.2; const int kTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.19; const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(2); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Not dropped since quality scaling is disabled. WaitForEncodedFrame(3); // Expect the sink_wants to specify a scaled frame. video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(video_source_.sink_wants(), ResolutionMax()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenLayersChange) { const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(400); // Set simulcast. ResetEncoder("VP8", 3, 1, 1, false); fake_encoder_.SetQualityScaling(true); const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(1); // Trigger QVGA "singlecast" // Update the config. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP8"), 3, &video_encoder_config); video_encoder_config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); for (auto& layer : video_encoder_config.simulcast_layers) { layer.num_temporal_layers = 1; layer.max_framerate = kDefaultFramerate; } video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; video_encoder_config.simulcast_layers[0].active = true; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = false; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(2); // Trigger HD "singlecast" video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = true; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Frame should be dropped because of initial frame drop. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenSVCLayersChange) { const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(400); // Set simulcast. ResetEncoder("VP9", 1, 1, 3, false); fake_encoder_.SetQualityScaling(true); const int kWidth = 1280; const int kHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(1); // Trigger QVGA "singlecast" // Update the config. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1, &video_encoder_config); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; // Since only one layer is active - automatic resize should be enabled. vp9_settings.automaticResizeOn = true; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; // Currently simulcast layers `active` flags are used to inidicate // which SVC layers are active. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = true; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = false; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight)); // Frame should not be dropped. WaitForEncodedFrame(2); // Trigger HD "singlecast" video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = true; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Frame should be dropped because of initial frame drop. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxAndMinBitratesUsedIfMiddleStreamActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p( 480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p( 640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p( 1280 * 720, 54 * 1000, 31 * 1000, 2500 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1, &video_encoder_config); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; // Since only one layer is active - automatic resize should be enabled. vp9_settings.automaticResizeOn = true; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; // Simulcast layers are used to indicate which spatial layers are active. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = true; video_encoder_config.simulcast_layers[2].active = false; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // The encoder bitrate limits for 360p should be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height); EXPECT_EQ(static_cast(kEncoderLimits360p.min_bitrate_bps), fake_encoder_.config().spatialLayers[0].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits360p.max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); // The encoder bitrate limits for 270p should be used. video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(480, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(270, fake_encoder_.config().spatialLayers[0].height); EXPECT_EQ(static_cast(kEncoderLimits270p.min_bitrate_bps), fake_encoder_.config().spatialLayers[0].minBitrate * 1000); EXPECT_EQ(static_cast(kEncoderLimits270p.max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DefaultMaxAndMinBitratesUsedIfMiddleStreamActive) { VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1, &video_encoder_config); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; // Since only one layer is active - automatic resize should be enabled. vp9_settings.automaticResizeOn = true; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; // Simulcast layers are used to indicate which spatial layers are active. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = true; video_encoder_config.simulcast_layers[2].active = false; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // The default bitrate limits for 360p should be used. const absl::optional kLimits360p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP9, 640 * 360); video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height); EXPECT_EQ(static_cast(kLimits360p->min_bitrate_bps), fake_encoder_.config().spatialLayers[0].minBitrate * 1000); EXPECT_EQ(static_cast(kLimits360p->max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); // The default bitrate limits for 270p should be used. const absl::optional kLimits270p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP9, 480 * 270); video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(480, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(270, fake_encoder_.config().spatialLayers[0].height); EXPECT_EQ(static_cast(kLimits270p->min_bitrate_bps), fake_encoder_.config().spatialLayers[0].minBitrate * 1000); EXPECT_EQ(static_cast(kLimits270p->max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DefaultMaxAndMinBitratesNotUsedIfDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-DefaultBitrateLimitsKillSwitch/Enabled/"); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1, &video_encoder_config); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; // Since only one layer is active - automatic resize should be enabled. vp9_settings.automaticResizeOn = true; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; // Simulcast layers are used to indicate which spatial layers are active. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = false; video_encoder_config.simulcast_layers[1].active = true; video_encoder_config.simulcast_layers[2].active = false; // Reset encoder for field trials to take effect. ConfigureEncoder(video_encoder_config.Copy()); video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // The default bitrate limits for 360p should not be used. const absl::optional kLimits360p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP9, 640 * 360); video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height); EXPECT_NE(static_cast(kLimits360p->max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SinglecastBitrateLimitsNotUsedForOneStream) { ResetEncoder("VP9", /*num_streams=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/1, /*screenshare=*/false); // The default singlecast bitrate limits for 720p should not be used. const absl::optional kLimits720p = EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution( kVideoCodecVP9, 1280 * 720); video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 1); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(1280, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(720, fake_encoder_.config().spatialLayers[0].height); EXPECT_NE(static_cast(kLimits720p->max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderMaxAndMinBitratesNotUsedIfLowestStreamActive) { const VideoEncoder::ResolutionBitrateLimits kEncoderLimits180p( 320 * 180, 34 * 1000, 12 * 1000, 1234 * 1000); const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p( 1280 * 720, 54 * 1000, 31 * 1000, 2500 * 1000); fake_encoder_.SetResolutionBitrateLimits( {kEncoderLimits180p, kEncoderLimits720p}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1, &video_encoder_config); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = 3; // Since only one layer is active - automatic resize should be enabled. vp9_settings.automaticResizeOn = true; video_encoder_config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); video_encoder_config.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; // Simulcast layers are used to indicate which spatial layers are active. video_encoder_config.simulcast_layers.resize(3); video_encoder_config.simulcast_layers[0].active = true; video_encoder_config.simulcast_layers[1].active = false; video_encoder_config.simulcast_layers[2].active = false; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Limits not applied on lowest stream, limits for 180p should not be used. video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1); EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9); EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 3); EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active); EXPECT_EQ(320, fake_encoder_.config().spatialLayers[0].width); EXPECT_EQ(180, fake_encoder_.config().spatialLayers[0].height); EXPECT_NE(static_cast(kEncoderLimits180p.min_bitrate_bps), fake_encoder_.config().spatialLayers[0].minBitrate * 1000); EXPECT_NE(static_cast(kEncoderLimits180p.max_bitrate_bps), fake_encoder_.config().spatialLayers[0].maxBitrate * 1000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenResolutionIncreases) { const int kWidth = 640; const int kHeight = 360; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth / 2, kHeight / 2)); // Frame should not be dropped. WaitForEncodedFrame(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth / 2, kHeight / 2)); // Frame should not be dropped, bitrate not too low for frame. WaitForEncodedFrame(2); // Incoming resolution increases. video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight)); // Expect to drop this frame, bitrate too low for frame. ExpectDroppedFrame(); // Expect the sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT( video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, InitialFrameDropIsNotReactivatedWhenAdaptingUp) { const int kWidth = 640; const int kHeight = 360; // So that quality scaling doesn't happen by itself. fake_encoder_.SetQp(kQpHigh); AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); int timestamp = 1; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight)); WaitForEncodedFrame(timestamp); timestamp += 9000; // Long pause to disable all first BWE drop logic. AdvanceTime(TimeDelta::Millis(1000)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0); source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight)); // Not dropped frame, as initial frame drop is disabled by now. WaitForEncodedFrame(timestamp); timestamp += 9000; AdvanceTime(TimeDelta::Millis(100)); // Quality adaptation down. video_stream_encoder_->TriggerQualityLow(); // Adaptation has an effect. EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < kWidth * kHeight, 5000); // Frame isn't dropped as initial frame dropper is disabled. source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight)); WaitForEncodedFrame(timestamp); timestamp += 9000; AdvanceTime(TimeDelta::Millis(100)); // Quality adaptation up. video_stream_encoder_->TriggerQualityHigh(); // Adaptation has an effect. EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count > kWidth * kHeight, 5000); source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight)); // Frame should not be dropped, as initial framedropper is off. WaitForEncodedFrame(timestamp); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FrameDroppedWhenResolutionIncreasesAndLinkAllocationIsLow) { const int kMinStartBps360p = 222000; fake_encoder_.SetResolutionBitrateLimits( {VideoEncoder::ResolutionBitrateLimits(320 * 180, 0, 30000, 400000), VideoEncoder::ResolutionBitrateLimits(640 * 360, kMinStartBps360p, 30000, 800000)}); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kMinStartBps360p - 1), // target_bitrate DataRate::BitsPerSec(kMinStartBps360p - 1), // stable_target_bitrate DataRate::BitsPerSec(kMinStartBps360p - 1), // link_allocation 0, 0, 0); // Frame should not be dropped, bitrate not too low for frame. video_source_.IncomingCapturedFrame(CreateFrame(1, 320, 180)); WaitForEncodedFrame(1); // Incoming resolution increases, initial frame drop activates. // Frame should be dropped, link allocation too low for frame. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); ExpectDroppedFrame(); // Expect sink_wants to specify a scaled frame. EXPECT_TRUE_WAIT(video_source_.sink_wants().max_pixel_count < 640 * 360, 5000); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FrameNotDroppedWhenResolutionIncreasesAndLinkAllocationIsHigh) { const int kMinStartBps360p = 222000; fake_encoder_.SetResolutionBitrateLimits( {VideoEncoder::ResolutionBitrateLimits(320 * 180, 0, 30000, 400000), VideoEncoder::ResolutionBitrateLimits(640 * 360, kMinStartBps360p, 30000, 800000)}); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(kMinStartBps360p - 1), // target_bitrate DataRate::BitsPerSec(kMinStartBps360p - 1), // stable_target_bitrate DataRate::BitsPerSec(kMinStartBps360p), // link_allocation 0, 0, 0); // Frame should not be dropped, bitrate not too low for frame. video_source_.IncomingCapturedFrame(CreateFrame(1, 320, 180)); WaitForEncodedFrame(1); // Incoming resolution increases, initial frame drop activates. // Frame should be dropped, link allocation not too low for frame. video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360)); WaitForEncodedFrame(2); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RampsUpInQualityWhenBwIsHigh) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-QualityRampupSettings/" "min_pixels:921600,min_duration_ms:2000/"); const int kWidth = 1280; const int kHeight = 720; const int kFps = 10; max_framerate_ = kFps; // Reset encoder for field trials to take effect. VideoEncoderConfig config = video_encoder_config_.Copy(); config.max_bitrate_bps = kTargetBitrate.bps(); DataRate max_bitrate = DataRate::BitsPerSec(config.max_bitrate_bps); ConfigureEncoder(std::move(config)); fake_encoder_.SetQp(kQpLow); // Enable MAINTAIN_FRAMERATE preference. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, DegradationPreference::MAINTAIN_FRAMERATE); // Start at low bitrate. const DataRate kLowBitrate = DataRate::KilobitsPerSec(200); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kLowBitrate, kLowBitrate, kLowBitrate, 0, 0, 0); // Expect first frame to be dropped and resolution to be limited. const int64_t kFrameIntervalMs = 1000 / kFps; int64_t timestamp_ms = kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); ExpectDroppedFrame(); EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < kWidth * kHeight, 5000); // Increase bitrate to encoder max. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( max_bitrate, max_bitrate, max_bitrate, 0, 0, 0); // Insert frames and advance `min_duration_ms`. const int64_t start_bw_high_ms = CurrentTimeMs(); for (size_t i = 1; i <= 10; i++) { timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); } // Advance to `min_duration_ms` - 1, frame should not trigger high BW. int64_t elapsed_bw_high_ms = CurrentTimeMs() - start_bw_high_ms; AdvanceTime(TimeDelta::Millis(2000 - elapsed_bw_high_ms - 1)); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_LT(source.sink_wants().max_pixel_count, kWidth * kHeight); // Frame should trigger high BW and release quality limitation. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); // The ramp-up code involves the adaptation queue, give it time to execute. // TODO(hbos): Can we await an appropriate event instead? video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); // Frame should not be adapted. timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalerAdaptationsRemovedWhenQualityScalingDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-Video-QualityScaling/Disabled/"); AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, DegradationPreference::MAINTAIN_FRAMERATE); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); fake_encoder_.SetQp(kQpHigh + 1); const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 100; int64_t timestamp_ms = kFrameIntervalMs; for (size_t i = 1; i <= 100; i++) { timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); } // Wait for QualityScaler, which will wait for 2000*2.5 ms until checking QP // for the first time. // TODO(eshr): We should avoid these waits by using threads with simulated // time. EXPECT_TRUE_WAIT(stats_proxy_->GetStats().bw_limited_resolution, 2000 * 2.5 * 2); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(source.sink_wants(), WantsMaxPixels(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); // Disable Quality scaling by turning off scaler on the encoder and // reconfiguring. fake_encoder_.SetQualityScaling(false); video_stream_encoder_->ConfigureEncoder(video_encoder_config_.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); AdvanceTime(TimeDelta::Zero()); // Since we turned off the quality scaler, the adaptations made by it are // removed. EXPECT_THAT(source.sink_wants(), ResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_MaintainFramerateMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable MAINTAIN_FRAMERATE preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerCpuOveruse(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ResolutionNotAdaptedForTooSmallFrame_BalancedMode) { const int kTooSmallWidth = 10; const int kTooSmallHeight = 10; const int kFpsLimit = 7; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. test::FrameForwarder source; video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); // Trigger adapt down, expect limited framerate. source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, too small frame, expect no change. source.IncomingCapturedFrame(CreateFrame(2, kTooSmallWidth, kTooSmallHeight)); WaitForEncodedFrame(2); video_stream_encoder_->TriggerQualityLow(); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, FailingInitEncodeDoesntCauseCrash) { fake_encoder_.ForceInitEncodeFailure(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); ResetEncoder("VP8", 2, 1, 1, false); const int kFrameWidth = 1280; const int kFrameHeight = 720; video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); video_stream_encoder_->Stop(); } // TODO(sprang): Extend this with fps throttling and any "balanced" extensions. TEST_F(VideoStreamEncoderTest, AdaptsResolutionOnOveruse_MaintainFramerateMode) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); const int kFrameWidth = 1280; const int kFrameHeight = 720; // Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as // requested by // VideoStreamEncoder::VideoSourceProxy::RequestResolutionLowerThan(). video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4); // Trigger CPU normal use, return to original resolution. video_stream_encoder_->TriggerCpuUnderuse(); video_source_.IncomingCapturedFrame( CreateFrame(3 * kFrameIntervalMs, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsFramerateOnOveruse_MaintainResolutionMode) { const int kFrameWidth = 1280; const int kFrameHeight = 720; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = CurrentTimeMs(); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Try to trigger overuse. No fps estimate available => no effect. video_stream_encoder_->TriggerCpuOveruse(); // Insert frames for one second to get a stable estimate. for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); } // Trigger CPU overuse, reduce framerate by 2/3. video_stream_encoder_->TriggerCpuOveruse(); int num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } // Add some slack to account for frames dropped by the frame dropper. const int kErrorMargin = 1; EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Trigger CPU overuse, reduce framerate by 2/3 again. video_stream_encoder_->TriggerCpuOveruse(); num_frames_dropped = 0; for (int i = 0; i <= max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 4 / 9), kErrorMargin); // Go back up one step. video_stream_encoder_->TriggerCpuUnderuse(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3), kErrorMargin); // Go back up to original mode. video_stream_encoder_->TriggerCpuUnderuse(); num_frames_dropped = 0; for (int i = 0; i < max_framerate_; ++i) { timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (!WaitForFrame(kFrameTimeoutMs)) { ++num_frames_dropped; } else { sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight); } } EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesntAdaptDownPastMinFramerate) { const int kFramerateFps = 5; const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps; const int kFrameWidth = 1280; const int kFrameHeight = 720; // Reconfigure encoder with two temporal layers and screensharing, which will // disable frame dropping and make testing easier. ResetEncoder("VP8", 1, 2, 1, true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->SetSource( &video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION); video_source_.set_adaptation_enabled(true); int64_t timestamp_ms = CurrentTimeMs(); // Trigger overuse as much as we can. rtc::VideoSinkWants last_wants; do { last_wants = video_source_.sink_wants(); // Insert frames to get a new fps estimate... for (int j = 0; j < kFramerateFps; ++j) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); if (video_source_.last_sent_width()) { sink_.WaitForEncodedFrame(timestamp_ms); } timestamp_ms += kFrameIntervalMs; AdvanceTime(TimeDelta::Millis(kFrameIntervalMs)); } // ...and then try to adapt again. video_stream_encoder_->TriggerCpuOveruse(); } while (video_source_.sink_wants().max_framerate_fps < last_wants.max_framerate_fps); EXPECT_THAT(video_source_.sink_wants(), FpsMatchesResolutionMax(Eq(kMinFramerateFps))); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptsResolutionAndFramerateForLowQuality_BalancedMode) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Restrict bitrate, trigger adapt down, expect reduced fps (480x270@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect scaled down resolution (320x180@10fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, expect reduced fps (320x180@7fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); rtc::VideoSinkWants last_wants = source.sink_wants(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt down, min resolution reached, expect no change. video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants)); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (320x180@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(8, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (480x270@10fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(9, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Increase bitrate, trigger adapt up, expect increased fps (480x270@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(10, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(11, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMax()); EXPECT_EQ(source.sink_wants().max_pixel_count, source.last_wants().max_pixel_count); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(12, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect upscaled resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(13, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Framerate) { const int kWidth = 1280; const int kHeight = 720; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (960x540@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(kWidth * kHeight))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down resolution (640x360@30fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect reduced fps (640x360@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change since QP is most limited. { // Store current sink wants since we expect no change and if there is no // change then last_wants() is not updated. auto previous_sink_wants = source.sink_wants(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants)); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); } // Trigger quality adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up and Cpu adapt up since both are most limited, // expect increased resolution (960x540@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt up and Cpu adapt up since both are most limited, // expect no restriction (1280x720fps@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants())); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Resolution) { const int kWidth = 640; const int kHeight = 360; const int kFpsLimit = 15; const int64_t kFrameIntervalMs = 150; int64_t timestamp_ms = kFrameIntervalMs; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Enable BALANCED preference, no initial limitation. AdaptingFrameForwarder source(&time_controller_); source.set_adaptation_enabled(true); video_stream_encoder_->SetSource(&source, webrtc::DegradationPreference::BALANCED); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(kWidth, kHeight); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt down, expect scaled down framerate (640x360@15fps). video_stream_encoder_->TriggerCpuOveruse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit))); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality adapt down, expect scaled down resolution (480x270@15fps). video_stream_encoder_->TriggerQualityLow(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants())); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger cpu adapt up, expect no change because quality is most limited. { auto previous_sink_wants = source.sink_wants(); // Store current sink wants since we expect no change ind if there is no // change then last__wants() is not updated. video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants)); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes); } // Trigger quality adapt up, expect upscaled resolution (640x360@15fps). video_stream_encoder_->TriggerQualityHigh(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants())); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger quality and cpu adapt up, expect increased fps (640x360@30fps). video_stream_encoder_->TriggerQualityHigh(); video_stream_encoder_->TriggerCpuUnderuse(); timestamp_ms += kFrameIntervalMs; source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution); EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); // Trigger adapt up, expect no change. video_stream_encoder_->TriggerQualityHigh(); EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax()); EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes); EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AcceptsFullHdAdaptedDownSimulcastFrames) { const int kFrameWidth = 1920; const int kFrameHeight = 1080; // 2/3 of 1920. const int kAdaptedFrameWidth = 1280; // 2/3 of 1080. const int kAdaptedFrameHeight = 720; const int kFramerate = 24; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Trigger reconfigure encoder (without resetting the entire instance). VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config); video_encoder_config.simulcast_layers[0].max_framerate = kFramerate; video_encoder_config.max_bitrate_bps = kTargetBitrate.bps(); video_encoder_config.video_stream_factory = rtc::make_ref_counted(); video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_source_.set_adaptation_enabled(true); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kFrameWidth, kFrameHeight); // Trigger CPU overuse, downscale by 3/4. video_stream_encoder_->TriggerCpuOveruse(); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kAdaptedFrameWidth, kAdaptedFrameHeight); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, PeriodicallyUpdatesChannelParameters) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const int kLowFps = 2; const int kHighFps = 30; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); int64_t timestamp_ms = CurrentTimeMs(); max_framerate_ = kLowFps; // Insert 2 seconds of 2fps video. for (int i = 0; i < kLowFps * 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; } // Make sure encoder is updated with new target. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kLowFps; EXPECT_EQ(kLowFps, fake_encoder_.GetConfiguredInputFramerate()); // Insert 30fps frames for just a little more than the forced update period. const int kVcmTimerIntervalFrames = (kProcessIntervalMs * kHighFps) / 1000; const int kFrameIntervalMs = 1000 / kHighFps; max_framerate_ = kHighFps; for (int i = 0; i < kVcmTimerIntervalFrames + 2; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait for encoded frame, but skip ahead if it doesn't arrive as it might // be dropped if the encoder hans't been updated with the new higher target // framerate yet, causing it to overshoot the target bitrate and then // suffering the wrath of the media optimizer. TimedWaitForEncodedFrame(timestamp_ms, 2 * kFrameIntervalMs); timestamp_ms += kFrameIntervalMs; } // Don expect correct measurement just yet, but it should be higher than // before. EXPECT_GT(fake_encoder_.GetConfiguredInputFramerate(), kLowFps); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotUpdateBitrateAllocationWhenSuspended) { const int kFrameWidth = 1280; const int kFrameHeight = 720; ResetEncoder("FAKE", 1, 1, 1, false, VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Insert a first video frame, causes another bitrate update. int64_t timestamp_ms = CurrentTimeMs(); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1); // Next, simulate video suspension due to pacer queue overrun. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 1, 0); // Skip ahead until a new periodic parameter update should have occured. timestamp_ms += kProcessIntervalMs; AdvanceTime(TimeDelta::Millis(kProcessIntervalMs)); // No more allocations has been made. video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); ExpectDroppedFrame(); EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DefaultCpuAdaptationThresholdsForSoftwareEncoder) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const test::ScopedKeyValueConfig kFieldTrials; const CpuOveruseOptions default_options(kFieldTrials); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(1); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, default_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, default_options.high_encode_usage_threshold_percent); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, HigherCpuAdaptationThresholdsForHardwareEncoder) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const test::ScopedKeyValueConfig kFieldTrials; CpuOveruseOptions hardware_options(kFieldTrials); hardware_options.low_encode_usage_threshold_percent = 150; hardware_options.high_encode_usage_threshold_percent = 200; fake_encoder_.SetIsHardwareAccelerated(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(1); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, hardware_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, hardware_options.high_encode_usage_threshold_percent); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CpuAdaptationThresholdsUpdatesWhenHardwareAccelerationChange) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const test::ScopedKeyValueConfig kFieldTrials; const CpuOveruseOptions default_options(kFieldTrials); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(1); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, default_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, default_options.high_encode_usage_threshold_percent); CpuOveruseOptions hardware_options(kFieldTrials); hardware_options.low_encode_usage_threshold_percent = 150; hardware_options.high_encode_usage_threshold_percent = 200; fake_encoder_.SetIsHardwareAccelerated(true); video_source_.IncomingCapturedFrame( CreateFrame(2, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(2); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .low_encode_usage_threshold_percent, hardware_options.low_encode_usage_threshold_percent); EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions() .high_encode_usage_threshold_percent, hardware_options.high_encode_usage_threshold_percent); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DropsFramesWhenEncoderOvershoots) { const int kFrameWidth = 320; const int kFrameHeight = 240; const int kFps = 30; const DataRate kTargetBitrate = DataRate::KilobitsPerSec(120); const int kNumFramesInRun = kFps * 5; // Runs of five seconds. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); int64_t timestamp_ms = CurrentTimeMs(); max_framerate_ = kFps; // Insert 3 seconds of video, verify number of drops with normal bitrate. fake_encoder_.SimulateOvershoot(1.0); int num_dropped = 0; for (int i = 0; i < kNumFramesInRun; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) { ++num_dropped; } timestamp_ms += 1000 / kFps; } // Framerate should be measured to be near the expected target rate. EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1); // Frame drops should be within 5% of expected 0%. EXPECT_NEAR(num_dropped, 0, 5 * kNumFramesInRun / 100); // Make encoder produce frames at double the expected bitrate during 3 seconds // of video, verify number of drops. Rate needs to be slightly changed in // order to force the rate to be reconfigured. double overshoot_factor = 2.0; const RateControlSettings trials = RateControlSettings::ParseFromFieldTrials(); if (trials.UseEncoderBitrateAdjuster()) { // With bitrate adjuster, when need to overshoot even more to trigger // frame dropping since the adjuter will try to just lower the target // bitrate rather than drop frames. If network headroom can be used, it // doesn't push back as hard so we don't need quite as much overshoot. // These numbers are unfortunately a bit magical but there's not trivial // way to algebraically infer them. overshoot_factor = 3.0; } fake_encoder_.SimulateOvershoot(overshoot_factor); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate + DataRate::KilobitsPerSec(1), kTargetBitrate + DataRate::KilobitsPerSec(1), kTargetBitrate + DataRate::KilobitsPerSec(1), 0, 0, 0); num_dropped = 0; for (int i = 0; i < kNumFramesInRun; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) { ++num_dropped; } timestamp_ms += 1000 / kFps; } video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Target framerate should be still be near the expected target, despite // the frame drops. EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1); // Frame drops should be within 5% of expected 50%. EXPECT_NEAR(num_dropped, kNumFramesInRun / 2, 5 * kNumFramesInRun / 100); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfiguresCorrectFrameRate) { const int kFrameWidth = 320; const int kFrameHeight = 240; const int kActualInputFps = 24; const DataRate kTargetBitrate = DataRate::KilobitsPerSec(120); ASSERT_GT(max_framerate_, kActualInputFps); int64_t timestamp_ms = CurrentTimeMs(); max_framerate_ = kActualInputFps; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Insert 3 seconds of video, with an input fps lower than configured max. for (int i = 0; i < kActualInputFps * 3; ++i) { video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); // Wait up to two frame durations for a frame to arrive. WaitForEncodedFrame(timestamp_ms); timestamp_ms += 1000 / kActualInputFps; } EXPECT_NEAR(kActualInputFps, fake_encoder_.GetLastFramerate(), 1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AccumulatesUpdateRectOnDroppedFrames) { VideoFrame::UpdateRect rect; test::FrameForwarder source; video_stream_encoder_->SetSource(&source, DegradationPreference::MAINTAIN_FRAMERATE); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(1, nullptr, 0)); WaitForEncodedFrame(1); // On the very first frame full update should be forced. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 0); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.height, codec_height_); EXPECT_EQ(rect.width, codec_width_); // Frame with NTP timestamp 2 will be dropped due to outstanding frames // scheduled for processing during encoder queue processing of frame 2. source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(2, nullptr, 1)); source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(3, nullptr, 10)); WaitForEncodedFrame(3); // Updates to pixels 1 and 10 should be accumulated to one 10x1 rect. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 1); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.width, 10); EXPECT_EQ(rect.height, 1); source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(4, nullptr, 0)); WaitForEncodedFrame(4); // Previous frame was encoded, so no accumulation should happen. rect = fake_encoder_.GetLastUpdateRect(); EXPECT_EQ(rect.offset_x, 0); EXPECT_EQ(rect.offset_y, 0); EXPECT_EQ(rect.width, 1); EXPECT_EQ(rect.height, 1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SetsFrameTypes) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // First frame is always keyframe. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); // Insert delta frame. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta})); // Request next frame be a key-frame. video_stream_encoder_->SendKeyFrame(); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); EXPECT_THAT( fake_encoder_.LastFrameTypes(), ::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, SetsFrameTypesSimulcast) { // Setup simulcast with three streams. ResetEncoder("VP8", 3, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); // Wait for all three layers before triggering event. sink_.SetNumExpectedLayers(3); // First frame is always keyframe. video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); // Insert delta frame. video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr)); WaitForEncodedFrame(2); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta})); // Request next frame be a key-frame. // Only first stream is configured to produce key-frame. video_stream_encoder_->SendKeyFrame(); video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr)); WaitForEncodedFrame(3); // TODO(webrtc:10615): Map keyframe request to spatial layer. Currently // keyframe request on any layer triggers keyframe on all layers. EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, DoesNotRewriteH264BitstreamWithOptimalSps) { // SPS contains VUI with restrictions on the maximum number of reordered // pictures, there is no need to rewrite the bitstream to enable faster // decoding. ResetEncoder("H264", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); fake_encoder_.SetEncodedImageData( EncodedImageBuffer::Create(kOptimalSps, sizeof(kOptimalSps))); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(sink_.GetLastEncodedImageData(), testing::ElementsAreArray(kOptimalSps)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RewritesH264BitstreamWithNonOptimalSps) { // SPS does not contain VUI, the bitstream is will be rewritten with added // VUI with restrictions on the maximum number of reordered pictures to // enable faster decoding. uint8_t original_sps[] = {0, 0, 0, 1, H264::NaluType::kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, 0xC7, 0xC0}; ResetEncoder("H264", 1, 1, 1, false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); fake_encoder_.SetEncodedImageData( EncodedImageBuffer::Create(original_sps, sizeof(original_sps))); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_THAT(sink_.GetLastEncodedImageData(), testing::ElementsAreArray(kOptimalSps)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, CopiesVideoFrameMetadataAfterDownscale) { const int kFrameWidth = 1280; const int kFrameHeight = 720; const DataRate kTargetBitrate = DataRate::KilobitsPerSec(300); // Too low for HD resolution. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Insert a first video frame. It should be dropped because of downscale in // resolution. int64_t timestamp_ms = CurrentTimeMs(); VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); ExpectDroppedFrame(); // Second frame is downscaled. timestamp_ms = CurrentTimeMs(); frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2); frame.set_rotation(kVideoRotation_90); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); sink_.CheckLastFrameRotationMatches(kVideoRotation_90); // Insert another frame, also downscaled. timestamp_ms = CurrentTimeMs(); frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2); frame.set_rotation(kVideoRotation_180); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); sink_.CheckLastFrameRotationMatches(kVideoRotation_180); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, BandwidthAllocationLowerBound) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Initial rate. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(300), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(300), /*link_allocation=*/DataRate::KilobitsPerSec(300), /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = CurrentTimeMs(); VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); // Set a target rate below the minimum allowed by the codec settings. VideoCodec codec_config = fake_encoder_.config(); DataRate min_rate = DataRate::KilobitsPerSec(codec_config.minBitrate); DataRate target_rate = min_rate - DataRate::KilobitsPerSec(1); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/target_rate, /*stable_target_bitrate=*/target_rate, /*link_allocation=*/target_rate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Target bitrate and bandwidth allocation should both be capped at min_rate. auto rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); ASSERT_TRUE(rate_settings.has_value()); DataRate allocation_sum = DataRate::BitsPerSec(rate_settings->bitrate.get_sum_bps()); EXPECT_EQ(min_rate, allocation_sum); EXPECT_EQ(rate_settings->bandwidth_allocation, min_rate); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderRatesPropagatedOnReconfigure) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Capture a frame and wait for it to synchronize with the encoder thread. int64_t timestamp_ms = CurrentTimeMs(); video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(1); auto prev_rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); ASSERT_TRUE(prev_rate_settings.has_value()); EXPECT_EQ(static_cast(prev_rate_settings->framerate_fps), kDefaultFramerate); // Send 1s of video to ensure the framerate is stable at kDefaultFramerate. for (int i = 0; i < 2 * kDefaultFramerate; i++) { timestamp_ms += 1000 / kDefaultFramerate; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(timestamp_ms); } EXPECT_EQ(static_cast(fake_encoder_.GetLastFramerate()), kDefaultFramerate); // Capture larger frame to trigger a reconfigure. codec_height_ *= 2; codec_width_ *= 2; timestamp_ms += 1000 / kDefaultFramerate; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(2, sink_.number_of_reconfigurations()); auto current_rate_settings = fake_encoder_.GetAndResetLastRateControlSettings(); // Ensure we have actually reconfigured twice // The rate settings should have been set again even though // they haven't changed. ASSERT_TRUE(current_rate_settings.has_value()); EXPECT_EQ(prev_rate_settings, current_rate_settings); video_stream_encoder_->Stop(); } struct MockEncoderSwitchRequestCallback : public EncoderSwitchRequestCallback { MOCK_METHOD(void, RequestEncoderFallback, (), (override)); MOCK_METHOD(void, RequestEncoderSwitch, (const webrtc::SdpVideoFormat& format, bool allow_default_fallback), (override)); }; TEST_F(VideoStreamEncoderTest, EncoderSelectorCurrentEncoderIsSignaled) { constexpr int kDontCare = 100; StrictMock encoder_selector; auto encoder_factory = std::make_unique( &fake_encoder_, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); EXPECT_CALL(encoder_selector, OnCurrentEncoder); video_source_.IncomingCapturedFrame( CreateFrame(kDontCare, kDontCare, kDontCare)); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); // The encoders produced by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // `video_stream_encoder_` to be destroyed before the `encoder_factory` we // reset the `video_stream_encoder_` here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorBitrateSwitch) { constexpr int kDontCare = 100; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &fake_encoder_, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); ON_CALL(encoder_selector, OnAvailableBitrate) .WillByDefault(Return(SdpVideoFormat("AV1"))); EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV1"), /*allow_default_fallback=*/false)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(50), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(kDontCare), /*link_allocation=*/DataRate::KilobitsPerSec(kDontCare), /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorResolutionSwitch) { NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &fake_encoder_, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); EXPECT_CALL(encoder_selector, OnResolutionChange(RenderResolution(640, 480))) .WillOnce(Return(absl::nullopt)); EXPECT_CALL(encoder_selector, OnResolutionChange(RenderResolution(320, 240))) .WillOnce(Return(SdpVideoFormat("AV1"))); EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV1"), /*allow_default_fallback=*/false)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(800), /*stable_target_bitrate=*/DataRate::KilobitsPerSec(1000), /*link_allocation=*/DataRate::KilobitsPerSec(1000), /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); video_source_.IncomingCapturedFrame(CreateFrame(1, 640, 480)); video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 480)); video_source_.IncomingCapturedFrame(CreateFrame(3, 320, 240)); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderSelectorBrokenEncoderSwitch) { constexpr int kSufficientBitrateToNotDrop = 1000; constexpr int kDontCare = 100; NiceMock video_encoder; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &video_encoder, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); // The VideoStreamEncoder needs some bitrate before it can start encoding, // setting some bitrate so that subsequent calls to WaitForEncodedFrame does // not fail. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*stable_target_bitrate=*/ DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); ON_CALL(video_encoder, Encode) .WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE)); ON_CALL(encoder_selector, OnEncoderBroken) .WillByDefault(Return(SdpVideoFormat("AV2"))); rtc::Event encode_attempted; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"), /*allow_default_fallback=*/true)) .WillOnce([&encode_attempted]() { encode_attempted.Set(); }); video_source_.IncomingCapturedFrame(CreateFrame(1, kDontCare, kDontCare)); encode_attempted.Wait(3000); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); // The encoders produced by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // `video_stream_encoder_` to be destroyed before the `encoder_factory` we // reset the `video_stream_encoder_` here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, SwitchEncoderOnInitFailureWithEncoderSelector) { NiceMock video_encoder; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &video_encoder, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); ASSERT_EQ(0, sink_.number_of_reconfigurations()); ON_CALL(video_encoder, InitEncode(_, _)) .WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE)); ON_CALL(encoder_selector, OnEncoderBroken) .WillByDefault(Return(SdpVideoFormat("AV2"))); rtc::Event encode_attempted; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"), /*allow_default_fallback=*/true)) .WillOnce([&encode_attempted]() { encode_attempted.Set(); }); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); encode_attempted.Wait(3000); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); // The encoders produced by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // `video_stream_encoder_` to be destroyed before the `encoder_factory` we // reset the `video_stream_encoder_` here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, SwitchEncoderOnInitFailureWithoutEncoderSelector) { NiceMock video_encoder; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( &video_encoder, /*encoder_selector=*/nullptr); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); ASSERT_EQ(0, sink_.number_of_reconfigurations()); ON_CALL(video_encoder, InitEncode(_, _)) .WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE)); rtc::Event encode_attempted; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "VP8"), /*allow_default_fallback=*/true)) .WillOnce([&encode_attempted]() { encode_attempted.Set(); }); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); encode_attempted.Wait(3000); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); // The encoders produced by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // `video_stream_encoder_` to be destroyed before the `encoder_factory` we // reset the `video_stream_encoder_` here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, NullEncoderReturnSwitch) { // As a variant of EncoderSelectorBrokenEncoderSwitch, when a null // VideoEncoder is passed in encoder_factory, it checks whether // Codec Switch occurs without a crash. constexpr int kSufficientBitrateToNotDrop = 1000; constexpr int kDontCare = 100; NiceMock encoder_selector; StrictMock switch_callback; video_send_config_.encoder_settings.encoder_switch_request_callback = &switch_callback; auto encoder_factory = std::make_unique( /*encoder=*/nullptr, &encoder_selector); video_send_config_.encoder_settings.encoder_factory = encoder_factory.get(); // Reset encoder for new configuration to take effect. ConfigureEncoder(video_encoder_config_.Copy()); // The VideoStreamEncoder needs some bitrate before it can start encoding, // setting some bitrate so that subsequent calls to WaitForEncodedFrame does // not fail. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*stable_target_bitrate=*/ DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop), /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); ON_CALL(encoder_selector, OnEncoderBroken) .WillByDefault(Return(SdpVideoFormat("AV2"))); rtc::Event encode_attempted; EXPECT_CALL(switch_callback, RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"), /*allow_default_fallback=*/_)) .WillOnce([&encode_attempted]() { encode_attempted.Set(); }); video_source_.IncomingCapturedFrame(CreateFrame(1, kDontCare, kDontCare)); encode_attempted.Wait(3000); AdvanceTime(TimeDelta::Zero()); video_stream_encoder_->Stop(); // The encoders produced by the VideoEncoderProxyFactory have a pointer back // to it's factory, so in order for the encoder instance in the // `video_stream_encoder_` to be destroyed before the `encoder_factory` we // reset the `video_stream_encoder_` here. video_stream_encoder_.reset(); } TEST_F(VideoStreamEncoderTest, AllocationPropagatedToEncoderWhenTargetRateChanged) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Set initial rate. auto rate = DataRate::KilobitsPerSec(100); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = CurrentTimeMs(); VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); // Change of target bitrate propagates to the encoder. auto new_stable_rate = rate - DataRate::KilobitsPerSec(5); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/new_stable_rate, /*stable_target_bitrate=*/new_stable_rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(2, fake_encoder_.GetNumSetRates()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AllocationNotPropagatedToEncoderWhenTargetRateUnchanged) { const int kFrameWidth = 320; const int kFrameHeight = 180; // Set initial rate. auto rate = DataRate::KilobitsPerSec(100); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); // Insert a first video frame so that encoder gets configured. int64_t timestamp_ms = CurrentTimeMs(); VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight); frame.set_rotation(kVideoRotation_270); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); // Set a higher target rate without changing the link_allocation. Should not // reset encoder's rate. auto new_stable_rate = rate - DataRate::KilobitsPerSec(5); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( /*target_bitrate=*/rate, /*stable_target_bitrate=*/new_stable_rate, /*link_allocation=*/rate, /*fraction_lost=*/0, /*round_trip_time_ms=*/0, /*cwnd_reduce_ratio=*/0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(1, fake_encoder_.GetNumSetRates()); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, AutomaticAnimationDetection) { test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-AutomaticAnimationDetectionScreenshare/" "enabled:true,min_fps:20,min_duration_ms:1000,min_area_ratio:0.8/"); const int kFramerateFps = 30; const int kWidth = 1920; const int kHeight = 1080; const int kNumFrames = 2 * kFramerateFps; // >1 seconds of frames. // Works on screenshare mode. ResetEncoder("VP8", 1, 1, 1, /*screenshare*/ true); // We rely on the automatic resolution adaptation, but we handle framerate // adaptation manually by mocking the stats proxy. video_source_.set_adaptation_enabled(true); // BALANCED degradation preference is required for this feature. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->SetSource(&video_source_, webrtc::DegradationPreference::BALANCED); EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants()); VideoFrame frame = CreateFrame(1, kWidth, kHeight); frame.set_update_rect(VideoFrame::UpdateRect{0, 0, kWidth, kHeight}); // Pass enough frames with the full update to trigger animation detection. for (int i = 0; i < kNumFrames; ++i) { int64_t timestamp_ms = CurrentTimeMs(); frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); } // Resolution should be limited. rtc::VideoSinkWants expected; expected.max_framerate_fps = kFramerateFps; expected.max_pixel_count = 1280 * 720 + 1; EXPECT_THAT(video_source_.sink_wants(), FpsEqResolutionLt(expected)); // Pass one frame with no known update. // Resolution cap should be removed immediately. int64_t timestamp_ms = CurrentTimeMs(); frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); frame.clear_update_rect(); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); // Resolution should be unlimited now. EXPECT_THAT(video_source_.sink_wants(), FpsMatchesResolutionMax(Eq(kFramerateFps))); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, ConfiguresVp9SvcAtOddResolutions) { const int kWidth = 720; // 540p adapted down. const int kHeight = 405; const int kNumFrames = 3; // Works on screenshare mode. ResetEncoder("VP9", /*num_streams=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/2, /*screenshare=*/true); video_source_.set_adaptation_enabled(true); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); VideoFrame frame = CreateFrame(1, kWidth, kHeight); // Pass enough frames with the full update to trigger animation detection. for (int i = 0; i < kNumFrames; ++i) { int64_t timestamp_ms = CurrentTimeMs(); frame.set_ntp_time_ms(timestamp_ms); frame.set_timestamp_us(timestamp_ms * 1000); video_source_.IncomingCapturedFrame(frame); WaitForEncodedFrame(timestamp_ms); } video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderResetAccordingToParameterChange) { const float downscale_factors[] = {4.0, 2.0, 1.0}; const int number_layers = sizeof(downscale_factors) / sizeof(downscale_factors[0]); VideoEncoderConfig config; test::FillEncoderConfiguration(kVideoCodecVP8, number_layers, &config); for (int i = 0; i < number_layers; ++i) { config.simulcast_layers[i].scale_resolution_down_by = downscale_factors[i]; config.simulcast_layers[i].active = true; } config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); // First initialization. // Encoder should be initialized. Next frame should be key frame. video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); sink_.SetNumExpectedLayers(number_layers); int64_t timestamp_ms = kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumInitializations()); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); // Disable top layer. // Encoder shouldn't be re-initialized. Next frame should be delta frame. config.simulcast_layers[number_layers - 1].active = false; video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); sink_.SetNumExpectedLayers(number_layers - 1); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(1, fake_encoder_.GetNumInitializations()); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta})); // Re-enable top layer. // Encoder should be re-initialized. Next frame should be key frame. config.simulcast_layers[number_layers - 1].active = true; video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); sink_.SetNumExpectedLayers(number_layers); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(2, fake_encoder_.GetNumInitializations()); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); // Top layer max rate change. // Encoder shouldn't be re-initialized. Next frame should be delta frame. config.simulcast_layers[number_layers - 1].max_bitrate_bps -= 100; video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); sink_.SetNumExpectedLayers(number_layers); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(2, fake_encoder_.GetNumInitializations()); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta, VideoFrameType::kVideoFrameDelta})); // Top layer resolution change. // Encoder should be re-initialized. Next frame should be key frame. config.simulcast_layers[number_layers - 1].scale_resolution_down_by += 0.1; video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); sink_.SetNumExpectedLayers(number_layers); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720)); WaitForEncodedFrame(timestamp_ms); EXPECT_EQ(3, fake_encoder_.GetNumInitializations()); EXPECT_THAT(fake_encoder_.LastFrameTypes(), ::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey, VideoFrameType::kVideoFrameKey})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderResolutionsExposedInSinglecast) { const int kFrameWidth = 1280; const int kFrameHeight = 720; SetUp(); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); // Capturing a frame should reconfigure the encoder and expose the encoder // resolution, which is the same as the input frame. int64_t timestamp_ms = kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(video_source_.sink_wants().resolutions, ::testing::ElementsAreArray( {rtc::VideoSinkWants::FrameSize(kFrameWidth, kFrameHeight)})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderResolutionsExposedInSimulcast) { // Pick downscale factors such that we never encode at full resolution - this // is an interesting use case. The frame resolution influences the encoder // resolutions, but if no layer has `scale_resolution_down_by` == 1 then the // encoder should not ask for the frame resolution. This allows video frames // to have the appearence of one resolution but optimize its internal buffers // for what is actually encoded. const size_t kNumSimulcastLayers = 3u; const float kDownscaleFactors[] = {8.0, 4.0, 2.0}; const int kFrameWidth = 1280; const int kFrameHeight = 720; const rtc::VideoSinkWants::FrameSize kLayer0Size( kFrameWidth / kDownscaleFactors[0], kFrameHeight / kDownscaleFactors[0]); const rtc::VideoSinkWants::FrameSize kLayer1Size( kFrameWidth / kDownscaleFactors[1], kFrameHeight / kDownscaleFactors[1]); const rtc::VideoSinkWants::FrameSize kLayer2Size( kFrameWidth / kDownscaleFactors[2], kFrameHeight / kDownscaleFactors[2]); VideoEncoderConfig config; test::FillEncoderConfiguration(kVideoCodecVP8, kNumSimulcastLayers, &config); for (size_t i = 0; i < kNumSimulcastLayers; ++i) { config.simulcast_layers[i].scale_resolution_down_by = kDownscaleFactors[i]; config.simulcast_layers[i].active = true; } config.video_stream_factory = rtc::make_ref_counted( "VP8", /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); // Capture a frame with all layers active. int64_t timestamp_ms = kFrameIntervalMs; sink_.SetNumExpectedLayers(kNumSimulcastLayers); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Expect encoded resolutions to match the expected simulcast layers. video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT( video_source_.sink_wants().resolutions, ::testing::ElementsAreArray({kLayer0Size, kLayer1Size, kLayer2Size})); // Capture a frame with one of the layers inactive. timestamp_ms += kFrameIntervalMs; config.simulcast_layers[2].active = false; sink_.SetNumExpectedLayers(kNumSimulcastLayers - 1); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Expect encoded resolutions to match the expected simulcast layers. video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(video_source_.sink_wants().resolutions, ::testing::ElementsAreArray({kLayer0Size, kLayer1Size})); // Capture a frame with all but one layer turned off. timestamp_ms += kFrameIntervalMs; config.simulcast_layers[1].active = false; sink_.SetNumExpectedLayers(kNumSimulcastLayers - 2); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(timestamp_ms); // Expect encoded resolutions to match the expected simulcast layers. video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_THAT(video_source_.sink_wants().resolutions, ::testing::ElementsAreArray({kLayer0Size})); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QpPresent_QpKept) { ResetEncoder("VP8", 1, 1, 1, false); // Force encoder reconfig. video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Set QP on encoded frame and pass the frame to encode complete callback. // Since QP is present QP parsing won't be triggered and the original value // should be kept. EncodedImage encoded_image; encoded_image.qp_ = 123; encoded_image.SetEncodedData(EncodedImageBuffer::Create( kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25))); CodecSpecificInfo codec_info; codec_info.codecType = kVideoCodecVP8; fake_encoder_.InjectEncodedImage(encoded_image, &codec_info); EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs)); EXPECT_EQ(sink_.GetLastEncodedImage().qp_, 123); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QpAbsent_QpParsed) { ResetEncoder("VP8", 1, 1, 1, false); // Force encoder reconfig. video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Pass an encoded frame without QP to encode complete callback. QP should be // parsed and set. EncodedImage encoded_image; encoded_image.qp_ = -1; encoded_image.SetEncodedData(EncodedImageBuffer::Create( kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25))); CodecSpecificInfo codec_info; codec_info.codecType = kVideoCodecVP8; fake_encoder_.InjectEncodedImage(encoded_image, &codec_info); EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs)); EXPECT_EQ(sink_.GetLastEncodedImage().qp_, 25); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QpAbsentParsingDisabled_QpAbsent) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-QpParsingKillSwitch/Enabled/"); ResetEncoder("VP8", 1, 1, 1, false); // Force encoder reconfig. video_source_.IncomingCapturedFrame( CreateFrame(1, codec_width_, codec_height_)); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EncodedImage encoded_image; encoded_image.qp_ = -1; encoded_image.SetEncodedData(EncodedImageBuffer::Create( kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25))); CodecSpecificInfo codec_info; codec_info.codecType = kVideoCodecVP8; fake_encoder_.InjectEncodedImage(encoded_image, &codec_info); EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs)); EXPECT_EQ(sink_.GetLastEncodedImage().qp_, -1); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingNotAllowed_QualityScalingDisabled) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Disable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = false; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingNotAllowed_IsQpTrustedSetTrue) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(true); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = false; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingNotAllowedAndQPIsTrusted_BandwidthScalerDisable) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(true); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = false; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingNotAllowedAndQPIsNotTrusted_BandwidthScalerDisable) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(false); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = false; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderProvideLimitsWhenQPIsNotTrusted) { // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(false); const int MinEncBitrateKbps = 30; const int MaxEncBitrateKbps = 100; const int MinStartBitrateKbp = 50; const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits( /*frame_size_pixels=*/codec_width_ * codec_height_, /*min_start_bitrate_bps=*/MinStartBitrateKbp, /*min_bitrate_bps=*/MinEncBitrateKbps * 1000, /*max_bitrate_bps=*/MaxEncBitrateKbps * 1000); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits}); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecH264, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = MaxEncBitrateKbps * 1000; video_encoder_config.simulcast_layers[0].min_bitrate_bps = MinEncBitrateKbps * 1000; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ( MaxEncBitrateKbps, static_cast(bitrate_allocator_factory_.codec_config().maxBitrate)); EXPECT_EQ( MinEncBitrateKbps, static_cast(bitrate_allocator_factory_.codec_config().minBitrate)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, EncoderDoesnotProvideLimitsWhenQPIsNotTrusted) { // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(false); absl::optional suitable_bitrate_limit = EncoderInfoSettings:: GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted( codec_width_ * codec_height_, EncoderInfoSettings:: GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted()); EXPECT_TRUE(suitable_bitrate_limit.has_value()); const int MaxEncBitrate = suitable_bitrate_limit->max_bitrate_bps; const int MinEncBitrate = suitable_bitrate_limit->min_bitrate_bps; const int TargetEncBitrate = MaxEncBitrate; video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::BitsPerSec(TargetEncBitrate), DataRate::BitsPerSec(TargetEncBitrate), DataRate::BitsPerSec(TargetEncBitrate), 0, 0, 0); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecH264, 1, &video_encoder_config); video_encoder_config.max_bitrate_bps = MaxEncBitrate; video_encoder_config.simulcast_layers[0].min_bitrate_bps = MinEncBitrate; video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr)); WaitForEncodedFrame(1); EXPECT_EQ( MaxEncBitrate / 1000, static_cast(bitrate_allocator_factory_.codec_config().maxBitrate)); EXPECT_EQ( MinEncBitrate / 1000, static_cast(bitrate_allocator_factory_.codec_config().minBitrate)); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NormalComplexityWithMoreThanTwoCores) { ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/1, /*screenshare=*/false, /*allocation_callback_type=*/ VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing, /*num_cores=*/3); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, /*width=*/320, /*height=*/180)); WaitForEncodedFrame(1); EXPECT_EQ(fake_encoder_.LastEncoderComplexity(), VideoCodecComplexity::kComplexityNormal); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, NormalComplexityWhenLowTierOptimizationsAreDisabled) { webrtc::test::ScopedKeyValueConfig field_trials( field_trials_, "WebRTC-VP9-LowTierOptimizations/Disabled/"); ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/1, /*screenshare=*/false, /*allocation_callback_type=*/ VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing, /*num_cores=*/2); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, /*width=*/320, /*height=*/180)); WaitForEncodedFrame(1); EXPECT_EQ(fake_encoder_.LastEncoderComplexity(), VideoCodecComplexity::kComplexityNormal); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, LowComplexityWithTwoCores) { ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1, /*num_spatial_layers=*/1, /*screenshare=*/false, /*allocation_callback_type=*/ VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing, /*num_cores=*/2); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_source_.IncomingCapturedFrame( CreateFrame(1, /*width=*/320, /*height=*/180)); WaitForEncodedFrame(1); EXPECT_EQ(fake_encoder_.LastEncoderComplexity(), VideoCodecComplexity::kComplexityLow); video_stream_encoder_->Stop(); } #if !defined(WEBRTC_IOS) // TODO(bugs.webrtc.org/12401): Disabled because WebRTC-Video-QualityScaling is // disabled by default on iOS. TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_QualityScalingEnabled) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = true; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_IsQpTrustedSetTrue) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(true); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = true; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_IsQpTrustedSetFalse) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP not trusted in encoder info. fake_encoder_.SetIsQpTrusted(false); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = true; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); // When quality_scaler doesn't work and is_quality_scaling_allowed is // true,the bandwidth_quality_scaler_ works,so bw_limited_resolution is true. EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingAllowedAndQPIsTrusted_BandwidthScalerDisable) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(true); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = true; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); // bandwidth_quality_scaler isn't working, but quality_scaler is working. EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, QualityScalingAllowedAndQPIsNotTrusted_BandwidthScalerEnabled) { VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy(); // Disable scaling settings in encoder info. fake_encoder_.SetQualityScaling(false); // Set QP trusted in encoder info. fake_encoder_.SetIsQpTrusted(false); // Enable quality scaling in encoder config. video_encoder_config.is_quality_scaling_allowed = true; ConfigureEncoder(std::move(video_encoder_config)); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); test::FrameForwarder source; video_stream_encoder_->SetSource( &source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants()); EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution); source.IncomingCapturedFrame(CreateFrame(1, 1280, 720)); WaitForEncodedFrame(1); video_stream_encoder_->TriggerQualityLow(); EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution); video_stream_encoder_->Stop(); } TEST_F(VideoStreamEncoderTest, RequestsRefreshFrameAfterEarlyDroppedNativeFrame) { // Send a native frame before encoder rates have been set. The encoder is // seen as paused at this time. rtc::Event frame_destroyed_event; video_source_.IncomingCapturedFrame(CreateFakeNativeFrame( /*ntp_time_ms=*/1, &frame_destroyed_event, codec_width_, codec_height_)); // Frame should be dropped and destroyed. ExpectDroppedFrame(); EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs)); EXPECT_EQ(video_source_.refresh_frames_requested_, 0); // Set bitrates, unpausing the encoder and triggering a request for a refresh // frame. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); EXPECT_EQ(video_source_.refresh_frames_requested_, 1); video_stream_encoder_->Stop(); } #endif // !defined(WEBRTC_IOS) // Test parameters: (VideoCodecType codec, bool allow_i420_conversion) class VideoStreamEncoderWithRealEncoderTest : public VideoStreamEncoderTest, public ::testing::WithParamInterface> { public: VideoStreamEncoderWithRealEncoderTest() : VideoStreamEncoderTest(), codec_type_(std::get<0>(GetParam())), allow_i420_conversion_(std::get<1>(GetParam())) {} void SetUp() override { VideoStreamEncoderTest::SetUp(); std::unique_ptr encoder; switch (codec_type_) { case kVideoCodecVP8: encoder = VP8Encoder::Create(); break; case kVideoCodecVP9: encoder = VP9Encoder::Create(); break; case kVideoCodecAV1: encoder = CreateLibaomAv1Encoder(); break; case kVideoCodecH264: encoder = H264Encoder::Create(cricket::VideoCodec(cricket::kH264CodecName)); break; case kVideoCodecMultiplex: mock_encoder_factory_for_multiplex_ = std::make_unique(); EXPECT_CALL(*mock_encoder_factory_for_multiplex_, Die); EXPECT_CALL(*mock_encoder_factory_for_multiplex_, CreateVideoEncoder) .WillRepeatedly([] { return VP8Encoder::Create(); }); encoder = std::make_unique( mock_encoder_factory_for_multiplex_.get(), SdpVideoFormat("VP8"), false); break; default: RTC_DCHECK_NOTREACHED(); } ConfigureEncoderAndBitrate(codec_type_, std::move(encoder)); } void TearDown() override { video_stream_encoder_->Stop(); // Ensure `video_stream_encoder_` is destroyed before // `encoder_proxy_factory_`. video_stream_encoder_.reset(); VideoStreamEncoderTest::TearDown(); } protected: void ConfigureEncoderAndBitrate(VideoCodecType codec_type, std::unique_ptr encoder) { // Configure VSE to use the encoder. encoder_ = std::move(encoder); encoder_proxy_factory_ = std::make_unique( encoder_.get(), &encoder_selector_); video_send_config_.encoder_settings.encoder_factory = encoder_proxy_factory_.get(); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(codec_type, 1, &video_encoder_config); video_encoder_config_ = video_encoder_config.Copy(); ConfigureEncoder(video_encoder_config_.Copy()); // Set bitrate to ensure frame is not dropped. video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0); } const VideoCodecType codec_type_; const bool allow_i420_conversion_; NiceMock encoder_selector_; std::unique_ptr encoder_proxy_factory_; std::unique_ptr encoder_; std::unique_ptr mock_encoder_factory_for_multiplex_; }; TEST_P(VideoStreamEncoderWithRealEncoderTest, EncoderMapsNativeI420) { auto native_i420_frame = test::CreateMappableNativeFrame( 1, VideoFrameBuffer::Type::kI420, codec_width_, codec_height_); video_source_.IncomingCapturedFrame(native_i420_frame); WaitForEncodedFrame(codec_width_, codec_height_); auto mappable_native_buffer = test::GetMappableNativeBufferFromVideoFrame(native_i420_frame); std::vector> mapped_frame_buffers = mappable_native_buffer->GetMappedFramedBuffers(); ASSERT_EQ(mapped_frame_buffers.size(), 1u); EXPECT_EQ(mapped_frame_buffers[0]->width(), codec_width_); EXPECT_EQ(mapped_frame_buffers[0]->height(), codec_height_); EXPECT_EQ(mapped_frame_buffers[0]->type(), VideoFrameBuffer::Type::kI420); } TEST_P(VideoStreamEncoderWithRealEncoderTest, EncoderMapsNativeNV12) { auto native_nv12_frame = test::CreateMappableNativeFrame( 1, VideoFrameBuffer::Type::kNV12, codec_width_, codec_height_); video_source_.IncomingCapturedFrame(native_nv12_frame); WaitForEncodedFrame(codec_width_, codec_height_); auto mappable_native_buffer = test::GetMappableNativeBufferFromVideoFrame(native_nv12_frame); std::vector> mapped_frame_buffers = mappable_native_buffer->GetMappedFramedBuffers(); ASSERT_EQ(mapped_frame_buffers.size(), 1u); EXPECT_EQ(mapped_frame_buffers[0]->width(), codec_width_); EXPECT_EQ(mapped_frame_buffers[0]->height(), codec_height_); EXPECT_EQ(mapped_frame_buffers[0]->type(), VideoFrameBuffer::Type::kNV12); if (!allow_i420_conversion_) { EXPECT_FALSE(mappable_native_buffer->DidConvertToI420()); } } TEST_P(VideoStreamEncoderWithRealEncoderTest, HandlesLayerToggling) { if (codec_type_ == kVideoCodecMultiplex) { // Multiplex codec here uses wrapped mock codecs, ignore for this test. return; } const size_t kNumSpatialLayers = 3u; const float kDownscaleFactors[] = {4.0, 2.0, 1.0}; const int kFrameWidth = 1280; const int kFrameHeight = 720; const rtc::VideoSinkWants::FrameSize kLayer0Size( kFrameWidth / kDownscaleFactors[0], kFrameHeight / kDownscaleFactors[0]); const rtc::VideoSinkWants::FrameSize kLayer1Size( kFrameWidth / kDownscaleFactors[1], kFrameHeight / kDownscaleFactors[1]); const rtc::VideoSinkWants::FrameSize kLayer2Size( kFrameWidth / kDownscaleFactors[2], kFrameHeight / kDownscaleFactors[2]); VideoEncoderConfig config; if (codec_type_ == VideoCodecType::kVideoCodecVP9) { test::FillEncoderConfiguration(codec_type_, 1, &config); config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings(); vp9_settings.numberOfSpatialLayers = kNumSpatialLayers; vp9_settings.numberOfTemporalLayers = 3; vp9_settings.automaticResizeOn = false; config.encoder_specific_settings = rtc::make_ref_counted( vp9_settings); config.spatial_layers = GetSvcConfig(kFrameWidth, kFrameHeight, /*fps=*/30.0, /*first_active_layer=*/0, /*num_spatial_layers=*/3, /*num_temporal_layers=*/3, /*is_screenshare=*/false); } else if (codec_type_ == VideoCodecType::kVideoCodecAV1) { test::FillEncoderConfiguration(codec_type_, 1, &config); config.max_bitrate_bps = kSimulcastTargetBitrate.bps(); config.spatial_layers = GetSvcConfig(kFrameWidth, kFrameHeight, /*fps=*/30.0, /*first_active_layer=*/0, /*num_spatial_layers=*/3, /*num_temporal_layers=*/3, /*is_screenshare=*/false); config.simulcast_layers[0].scalability_mode = ScalabilityMode::kL3T3_KEY; } else { // Simulcast for VP8/H264. test::FillEncoderConfiguration(codec_type_, kNumSpatialLayers, &config); for (size_t i = 0; i < kNumSpatialLayers; ++i) { config.simulcast_layers[i].scale_resolution_down_by = kDownscaleFactors[i]; config.simulcast_layers[i].active = true; } if (codec_type_ == VideoCodecType::kVideoCodecH264) { // Turn off frame dropping to prevent flakiness. config.frame_drop_enabled = false; } } auto set_layer_active = [&](int layer_idx, bool active) { if (codec_type_ == VideoCodecType::kVideoCodecVP9 || codec_type_ == VideoCodecType::kVideoCodecAV1) { config.spatial_layers[layer_idx].active = active; } else { config.simulcast_layers[layer_idx].active = active; } }; config.video_stream_factory = rtc::make_ref_counted( CodecTypeToPayloadString(codec_type_), /*max qp*/ 56, /*screencast*/ false, /*screenshare enabled*/ false); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate, 0, 0, 0); // Capture a frame with all layers active. sink_.SetNumExpectedLayers(kNumSpatialLayers); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); int64_t timestamp_ms = kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kLayer2Size.width, kLayer2Size.height); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Capture a frame with one of the layers inactive. set_layer_active(2, false); sink_.SetNumExpectedLayers(kNumSpatialLayers - 1); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kLayer1Size.width, kLayer1Size.height); // New target bitrates signaled based on lower resolution. DataRate kTwoLayerBitrate = DataRate::KilobitsPerSec(833); video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( kTwoLayerBitrate, kTwoLayerBitrate, kTwoLayerBitrate, 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Re-enable the top layer. set_layer_active(2, true); sink_.SetNumExpectedLayers(kNumSpatialLayers); video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // Bitrate target adjusted back up to enable HD layer... video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( DataRate::KilobitsPerSec(1800), DataRate::KilobitsPerSec(1800), DataRate::KilobitsPerSec(1800), 0, 0, 0); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); // ...then add a new frame. timestamp_ms += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight)); WaitForEncodedFrame(kLayer2Size.width, kLayer2Size.height); video_stream_encoder_->WaitUntilTaskQueueIsIdle(); video_stream_encoder_->Stop(); } std::string TestParametersVideoCodecAndAllowI420ConversionToString( testing::TestParamInfo> info) { VideoCodecType codec_type = std::get<0>(info.param); bool allow_i420_conversion = std::get<1>(info.param); std::string str; switch (codec_type) { case kVideoCodecGeneric: str = "Generic"; break; case kVideoCodecVP8: str = "VP8"; break; case kVideoCodecVP9: str = "VP9"; break; case kVideoCodecAV1: str = "AV1"; break; case kVideoCodecH264: str = "H264"; break; case kVideoCodecMultiplex: str = "Multiplex"; break; default: RTC_DCHECK_NOTREACHED(); } str += allow_i420_conversion ? "_AllowToI420" : "_DisallowToI420"; return str; } constexpr std::pair kVP8DisallowConversion = std::make_pair(kVideoCodecVP8, /*allow_i420_conversion=*/false); constexpr std::pair kVP9DisallowConversion = std::make_pair(kVideoCodecVP9, /*allow_i420_conversion=*/false); constexpr std::pair kAV1AllowConversion = std::make_pair(kVideoCodecAV1, /*allow_i420_conversion=*/false); constexpr std::pair kMultiplexDisallowConversion = std::make_pair(kVideoCodecMultiplex, /*allow_i420_conversion=*/false); #if defined(WEBRTC_USE_H264) constexpr std::pair kH264AllowConversion = std::make_pair(kVideoCodecH264, /*allow_i420_conversion=*/true); // The windows compiler does not tolerate #if statements inside the // INSTANTIATE_TEST_SUITE_P() macro, so we have to have two definitions (with // and without H264). INSTANTIATE_TEST_SUITE_P( All, VideoStreamEncoderWithRealEncoderTest, ::testing::Values(kVP8DisallowConversion, kVP9DisallowConversion, kAV1AllowConversion, kMultiplexDisallowConversion, kH264AllowConversion), TestParametersVideoCodecAndAllowI420ConversionToString); #else INSTANTIATE_TEST_SUITE_P( All, VideoStreamEncoderWithRealEncoderTest, ::testing::Values(kVP8DisallowConversion, kVP9DisallowConversion, kAV1AllowConversion, kMultiplexDisallowConversion), TestParametersVideoCodecAndAllowI420ConversionToString); #endif class ReconfigureEncoderTest : public VideoStreamEncoderTest { protected: void RunTest(const std::vector& configs, const int expected_num_init_encode) { ConfigureEncoder(configs[0]); OnBitrateUpdated(kTargetBitrate); InsertFrameAndWaitForEncoded(); EXPECT_EQ(1, sink_.number_of_reconfigurations()); ExpectEqual(bitrate_allocator_factory_.codec_config(), configs[0]); EXPECT_EQ(1, fake_encoder_.GetNumInitializations()); ExpectEqual(fake_encoder_.config(), configs[0]); // Reconfigure encoder, the encoder should only be reconfigured if needed. ConfigureEncoder(configs[1]); InsertFrameAndWaitForEncoded(); EXPECT_EQ(2, sink_.number_of_reconfigurations()); ExpectEqual(bitrate_allocator_factory_.codec_config(), configs[1]); EXPECT_EQ(expected_num_init_encode, fake_encoder_.GetNumInitializations()); if (expected_num_init_encode > 1) ExpectEqual(fake_encoder_.config(), configs[1]); video_stream_encoder_->Stop(); } void ConfigureEncoder(const VideoStream& stream) { VideoEncoderConfig config; test::FillEncoderConfiguration(kVideoCodecVP8, /*num_streams=*/1, &config); config.max_bitrate_bps = stream.max_bitrate_bps; config.simulcast_layers[0] = stream; config.video_stream_factory = rtc::make_ref_counted( /*codec_name=*/"VP8", /*max_qp=*/0, /*is_screenshare=*/false, /*conference_mode=*/false); video_stream_encoder_->ConfigureEncoder(std::move(config), kMaxPayloadLength); } void OnBitrateUpdated(DataRate bitrate) { video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources( bitrate, bitrate, bitrate, 0, 0, 0); } void InsertFrameAndWaitForEncoded() { timestamp_ms_ += kFrameIntervalMs; video_source_.IncomingCapturedFrame( CreateFrame(timestamp_ms_, kWidth, kHeight)); sink_.WaitForEncodedFrame(timestamp_ms_); } void ExpectEqual(const VideoCodec& actual, const VideoStream& expected) const { EXPECT_EQ(actual.numberOfSimulcastStreams, 1); EXPECT_EQ(actual.simulcastStream[0].maxFramerate, expected.max_framerate); EXPECT_EQ(actual.simulcastStream[0].minBitrate * 1000, static_cast(expected.min_bitrate_bps)); EXPECT_EQ(actual.simulcastStream[0].maxBitrate * 1000, static_cast(expected.max_bitrate_bps)); EXPECT_EQ(actual.simulcastStream[0].width, kWidth / expected.scale_resolution_down_by); EXPECT_EQ(actual.simulcastStream[0].height, kHeight / expected.scale_resolution_down_by); EXPECT_EQ(actual.simulcastStream[0].numberOfTemporalLayers, expected.num_temporal_layers); EXPECT_EQ(actual.GetScalabilityMode(), expected.scalability_mode); } VideoStream DefaultConfig() const { VideoStream stream; stream.max_framerate = 25; stream.min_bitrate_bps = 35000; stream.max_bitrate_bps = 900000; stream.scale_resolution_down_by = 1.0; stream.num_temporal_layers = 1; stream.bitrate_priority = 1.0; stream.scalability_mode = absl::nullopt; return stream; } const int kWidth = 640; const int kHeight = 360; int64_t timestamp_ms_ = 0; }; TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMaxFramerateChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.max_framerate++; RunTest({config1, config2}, /*expected_num_init_encode=*/1); } TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMinBitrateChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.min_bitrate_bps += 10000; RunTest({config1, config2}, /*expected_num_init_encode=*/1); } TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMaxBitrateChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.max_bitrate_bps += 100000; RunTest({config1, config2}, /*expected_num_init_encode=*/1); } TEST_F(ReconfigureEncoderTest, NotReconfiguredIfBitratePriorityChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.bitrate_priority = config1.bitrate_priority.value() * 2.0; RunTest({config1, config2}, /*expected_num_init_encode=*/1); } TEST_F(ReconfigureEncoderTest, ReconfiguredIfResolutionChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.scale_resolution_down_by *= 2; RunTest({config1, config2}, /*expected_num_init_encode=*/2); } TEST_F(ReconfigureEncoderTest, ReconfiguredIfNumTemporalLayerChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.num_temporal_layers = config1.num_temporal_layers.value() + 1; RunTest({config1, config2}, /*expected_num_init_encode=*/2); } TEST_F(ReconfigureEncoderTest, ReconfiguredIfScalabilityModeChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.scalability_mode = ScalabilityMode::kL2T1; RunTest({config1, config2}, /*expected_num_init_encode=*/2); } TEST_F(ReconfigureEncoderTest, UpdatesNumTemporalLayersFromScalabilityModeChanges) { VideoStream config1 = DefaultConfig(); VideoStream config2 = config1; config2.scalability_mode = ScalabilityMode::kL1T2; config2.num_temporal_layers = 2; RunTest({config1, config2}, /*expected_num_init_encode=*/2); } // Simple test that just creates and then immediately destroys an encoder. // The purpose of the test is to make sure that nothing bad happens if the // initialization step on the encoder queue, doesn't run. TEST(VideoStreamEncoderSimpleTest, CreateDestroy) { class SuperLazyTaskQueue : public webrtc::TaskQueueBase { public: SuperLazyTaskQueue() = default; ~SuperLazyTaskQueue() override = default; private: void Delete() override { delete this; } void PostTask(absl::AnyInvocable task) override { // meh. } void PostDelayedTask(absl::AnyInvocable task, TimeDelta delay) override { ASSERT_TRUE(false); } void PostDelayedHighPrecisionTask(absl::AnyInvocable task, TimeDelta delay) override { ADD_FAILURE(); } }; // Lots of boiler plate. test::ScopedKeyValueConfig field_trials; GlobalSimulatedTimeController time_controller(Timestamp::Zero()); auto stats_proxy = std::make_unique( time_controller.GetClock(), VideoSendStream::Config(nullptr), webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo, field_trials); SimpleVideoStreamEncoderFactory::MockFakeEncoder mock_fake_encoder( time_controller.GetClock()); test::VideoEncoderProxyFactory encoder_factory(&mock_fake_encoder); std::unique_ptr bitrate_allocator_factory = CreateBuiltinVideoBitrateAllocatorFactory(); VideoStreamEncoderSettings encoder_settings{ VideoEncoder::Capabilities(/*loss_notification=*/false)}; encoder_settings.encoder_factory = &encoder_factory; encoder_settings.bitrate_allocator_factory = bitrate_allocator_factory.get(); auto adapter = std::make_unique(); EXPECT_CALL((*adapter.get()), Initialize).WillOnce(Return()); std::unique_ptr encoder_queue(new SuperLazyTaskQueue()); // Construct a VideoStreamEncoder instance and let it go out of scope without // doing anything else (including calling Stop()). This should be fine since // the posted init task will simply be deleted. auto encoder = std::make_unique( time_controller.GetClock(), 1, stats_proxy.get(), encoder_settings, std::make_unique(stats_proxy.get(), field_trials), std::move(adapter), std::move(encoder_queue), VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation, field_trials); // Stop the encoder explicitly. This additional step tests if we could // hang when calling stop and the TQ has been stopped and/or isn't accepting // any more tasks. encoder->Stop(); } TEST(VideoStreamEncoderFrameCadenceTest, ActivatesFrameCadenceOnContentType) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); SimpleVideoStreamEncoderFactory factory; FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback = nullptr; EXPECT_CALL(*adapter_ptr, Initialize) .WillOnce(Invoke([&video_stream_encoder_callback]( FrameCadenceAdapterInterface::Callback* callback) { video_stream_encoder_callback = callback; })); TaskQueueBase* encoder_queue = nullptr; auto video_stream_encoder = factory.Create(std::move(adapter), &encoder_queue); // First a call before we know the frame size and hence cannot compute the // number of simulcast layers. EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Optional(Field( &FrameCadenceAdapterInterface:: ZeroHertzModeParams::num_simulcast_layers, Eq(0u))))); VideoEncoderConfig config; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config); config.content_type = VideoEncoderConfig::ContentType::kScreen; video_stream_encoder->ConfigureEncoder(std::move(config), 0); factory.DepleteTaskQueues(); // Then a call as we've computed the number of simulcast layers after a passed // frame. EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Optional(Field( &FrameCadenceAdapterInterface:: ZeroHertzModeParams::num_simulcast_layers, Gt(0u))))); PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); // Expect a disabled zero-hertz mode after passing realtime video. EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Eq(absl::nullopt))); VideoEncoderConfig config2; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config2); config2.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo; video_stream_encoder->ConfigureEncoder(std::move(config2), 0); PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2); factory.DepleteTaskQueues(); } TEST(VideoStreamEncoderFrameCadenceTest, ForwardsFramesIntoFrameCadenceAdapter) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); test::FrameForwarder video_source; SimpleVideoStreamEncoderFactory factory; auto video_stream_encoder = factory.Create(std::move(adapter)); video_stream_encoder->SetSource( &video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); EXPECT_CALL(*adapter_ptr, OnFrame); auto buffer = rtc::make_ref_counted(/*width=*/16, /*height=*/16); video_source.IncomingCapturedFrame( VideoFrame::Builder().set_video_frame_buffer(std::move(buffer)).build()); } TEST(VideoStreamEncoderFrameCadenceTest, UsesFrameCadenceAdapterForFrameRate) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); test::FrameForwarder video_source; SimpleVideoStreamEncoderFactory factory; FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback = nullptr; EXPECT_CALL(*adapter_ptr, Initialize) .WillOnce(Invoke([&video_stream_encoder_callback]( FrameCadenceAdapterInterface::Callback* callback) { video_stream_encoder_callback = callback; })); TaskQueueBase* encoder_queue = nullptr; auto video_stream_encoder = factory.Create(std::move(adapter), &encoder_queue); // This is just to make the VSE operational. We'll feed a frame directly by // the callback interface. video_stream_encoder->SetSource( &video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecGeneric, 1, &video_encoder_config); video_stream_encoder->ConfigureEncoder(std::move(video_encoder_config), /*max_data_payload_length=*/1000); EXPECT_CALL(*adapter_ptr, GetInputFrameRateFps); EXPECT_CALL(*adapter_ptr, UpdateFrameRate); PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1); factory.DepleteTaskQueues(); } TEST(VideoStreamEncoderFrameCadenceTest, DeactivatesActivatesLayersOnBitrateChanges) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); SimpleVideoStreamEncoderFactory factory; FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback = nullptr; EXPECT_CALL(*adapter_ptr, Initialize) .WillOnce(Invoke([&video_stream_encoder_callback]( FrameCadenceAdapterInterface::Callback* callback) { video_stream_encoder_callback = callback; })); TaskQueueBase* encoder_queue = nullptr; auto video_stream_encoder = factory.Create(std::move(adapter), &encoder_queue); // Configure 2 simulcast layers. FillEncoderConfiguration sets min bitrates to // {150000, 450000}. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 2, &video_encoder_config); video_stream_encoder->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); // Ensure an encoder is created. PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1); // Both layers enabled at 1 MBit/s. video_stream_encoder->OnBitrateUpdated( DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), 0, 0, 0); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true)); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/true)); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); // Layer 1 disabled at 200 KBit/s. video_stream_encoder->OnBitrateUpdated( DataRate::KilobitsPerSec(200), DataRate::KilobitsPerSec(200), DataRate::KilobitsPerSec(200), 0, 0, 0); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true)); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/false)); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); // All layers off at suspended video. video_stream_encoder->OnBitrateUpdated(DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/false)); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/false)); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); // Both layers enabled again back at 1 MBit/s. video_stream_encoder->OnBitrateUpdated( DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), 0, 0, 0); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true)); EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/true)); factory.DepleteTaskQueues(); } TEST(VideoStreamEncoderFrameCadenceTest, UpdatesQualityConvergence) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); SimpleVideoStreamEncoderFactory factory; FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback = nullptr; EXPECT_CALL(*adapter_ptr, Initialize) .WillOnce(Invoke([&video_stream_encoder_callback]( FrameCadenceAdapterInterface::Callback* callback) { video_stream_encoder_callback = callback; })); TaskQueueBase* encoder_queue = nullptr; auto video_stream_encoder = factory.Create(std::move(adapter), &encoder_queue); // Configure 2 simulcast layers and setup 1 MBit/s to unpause the encoder. VideoEncoderConfig video_encoder_config; test::FillEncoderConfiguration(kVideoCodecVP8, 2, &video_encoder_config); video_stream_encoder->ConfigureEncoder(video_encoder_config.Copy(), kMaxPayloadLength); video_stream_encoder->OnBitrateUpdated( DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000), 0, 0, 0); // Pass a frame which has unconverged results. PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1); EXPECT_CALL(factory.GetMockFakeEncoder(), EncodeHook) .WillRepeatedly(Invoke([](EncodedImage& encoded_image, rtc::scoped_refptr buffer) { EXPECT_FALSE(encoded_image.IsAtTargetQuality()); CodecSpecificInfo codec_specific; codec_specific.codecType = kVideoCodecGeneric; return codec_specific; })); EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(0, false)); EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(1, false)); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); Mock::VerifyAndClearExpectations(&factory.GetMockFakeEncoder()); // Pass a frame which converges in layer 0 and not in layer 1. PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2); EXPECT_CALL(factory.GetMockFakeEncoder(), EncodeHook) .WillRepeatedly(Invoke([](EncodedImage& encoded_image, rtc::scoped_refptr buffer) { encoded_image.SetAtTargetQuality(encoded_image.SpatialIndex() == 0); CodecSpecificInfo codec_specific; codec_specific.codecType = kVideoCodecGeneric; return codec_specific; })); EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(0, true)); EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(1, false)); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); Mock::VerifyAndClearExpectations(&factory.GetMockFakeEncoder()); } TEST(VideoStreamEncoderFrameCadenceTest, RequestsRefreshFramesWhenCadenceAdapterInstructs) { auto adapter = std::make_unique(); auto* adapter_ptr = adapter.get(); MockVideoSourceInterface mock_source; SimpleVideoStreamEncoderFactory factory; FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback = nullptr; EXPECT_CALL(*adapter_ptr, Initialize) .WillOnce(Invoke([&video_stream_encoder_callback]( FrameCadenceAdapterInterface::Callback* callback) { video_stream_encoder_callback = callback; })); TaskQueueBase* encoder_queue = nullptr; auto video_stream_encoder = factory.Create(std::move(adapter), &encoder_queue); video_stream_encoder->SetSource( &mock_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); VideoEncoderConfig config; config.content_type = VideoEncoderConfig::ContentType::kScreen; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config); video_stream_encoder->ConfigureEncoder(std::move(config), 0); PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2); // Ensure the encoder is set up. factory.DepleteTaskQueues(); EXPECT_CALL(*adapter_ptr, ProcessKeyFrameRequest) .WillOnce(Invoke([video_stream_encoder_callback] { video_stream_encoder_callback->RequestRefreshFrame(); })); EXPECT_CALL(mock_source, RequestRefreshFrame); video_stream_encoder->SendKeyFrame(); factory.DepleteTaskQueues(); Mock::VerifyAndClearExpectations(adapter_ptr); Mock::VerifyAndClearExpectations(&mock_source); EXPECT_CALL(*adapter_ptr, ProcessKeyFrameRequest); EXPECT_CALL(mock_source, RequestRefreshFrame).Times(0); video_stream_encoder->SendKeyFrame(); factory.DepleteTaskQueues(); } TEST(VideoStreamEncoderFrameCadenceTest, RequestsRefreshFrameForEarlyZeroHertzKeyFrameRequest) { SimpleVideoStreamEncoderFactory factory; auto encoder_queue = factory.GetTimeController()->GetTaskQueueFactory()->CreateTaskQueue( "EncoderQueue", TaskQueueFactory::Priority::NORMAL); // Enables zero-hertz mode. test::ScopedKeyValueConfig field_trials( "WebRTC-ZeroHertzScreenshare/Enabled/"); auto adapter = FrameCadenceAdapterInterface::Create( factory.GetTimeController()->GetClock(), encoder_queue.get(), field_trials); FrameCadenceAdapterInterface* adapter_ptr = adapter.get(); MockVideoSourceInterface mock_source; auto video_stream_encoder = factory.CreateWithEncoderQueue( std::move(adapter), std::move(encoder_queue), &field_trials); video_stream_encoder->SetSource( &mock_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE); VideoEncoderConfig config; config.content_type = VideoEncoderConfig::ContentType::kScreen; test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config); video_stream_encoder->ConfigureEncoder(std::move(config), 0); // Eventually expect a refresh frame request when requesting a key frame // before initializing zero-hertz mode. This can happen in reality because the // threads invoking key frame requests and constraints setup aren't // synchronized. EXPECT_CALL(mock_source, RequestRefreshFrame); video_stream_encoder->SendKeyFrame(); constexpr int kMaxFps = 30; adapter_ptr->OnConstraintsChanged(VideoTrackSourceConstraints{0, kMaxFps}); factory.GetTimeController()->AdvanceTime( TimeDelta::Seconds(1) * FrameCadenceAdapterInterface::kOnDiscardedFrameRefreshFramePeriod / kMaxFps); } } // namespace webrtc