use core::sync::atomic::{self, AtomicUsize, Ordering}; use Backoff; /// A simple stamped lock. /// /// The state is represented as two `AtomicUsize`: `state_hi` for high bits and `state_lo` for low /// bits. pub struct SeqLock { /// The high bits of the current state of the lock. state_hi: AtomicUsize, /// The low bits of the current state of the lock. /// /// All bits except the least significant one hold the current stamp. When locked, the state_lo /// equals 1 and doesn't contain a valid stamp. state_lo: AtomicUsize, } impl SeqLock { pub const INIT: Self = Self { state_hi: AtomicUsize::new(0), state_lo: AtomicUsize::new(0), }; /// If not locked, returns the current stamp. /// /// This method should be called before optimistic reads. #[inline] pub fn optimistic_read(&self) -> Option<(usize, usize)> { // The acquire loads from `state_hi` and `state_lo` synchronize with the release stores in // `SeqLockWriteGuard::drop`. // // As a consequence, we can make sure that (1) all writes within the era of `state_hi - 1` // happens before now; and therefore, (2) if `state_lo` is even, all writes within the // critical section of (`state_hi`, `state_lo`) happens before now. let state_hi = self.state_hi.load(Ordering::Acquire); let state_lo = self.state_lo.load(Ordering::Acquire); if state_lo == 1 { None } else { Some((state_hi, state_lo)) } } /// Returns `true` if the current stamp is equal to `stamp`. /// /// This method should be called after optimistic reads to check whether they are valid. The /// argument `stamp` should correspond to the one returned by method `optimistic_read`. #[inline] pub fn validate_read(&self, stamp: (usize, usize)) -> bool { // Thanks to the fence, if we're noticing any modification to the data at the critical // section of `(a, b)`, then the critical section's write of 1 to state_lo should be // visible. atomic::fence(Ordering::Acquire); // So if `state_lo` coincides with `stamp.1`, then either (1) we're noticing no modification // to the data after the critical section of `(stamp.0, stamp.1)`, or (2) `state_lo` wrapped // around. // // If (2) is the case, the acquire ordering ensures we see the new value of `state_hi`. let state_lo = self.state_lo.load(Ordering::Acquire); // If (2) is the case and `state_hi` coincides with `stamp.0`, then `state_hi` also wrapped // around, which we give up to correctly validate the read. let state_hi = self.state_hi.load(Ordering::Relaxed); // Except for the case that both `state_hi` and `state_lo` wrapped around, the following // condition implies that we're noticing no modification to the data after the critical // section of `(stamp.0, stamp.1)`. (state_hi, state_lo) == stamp } /// Grabs the lock for writing. #[inline] pub fn write(&'static self) -> SeqLockWriteGuard { let backoff = Backoff::new(); loop { let previous = self.state_lo.swap(1, Ordering::Acquire); if previous != 1 { // To synchronize with the acquire fence in `validate_read` via any modification to // the data at the critical section of `(state_hi, previous)`. atomic::fence(Ordering::Release); return SeqLockWriteGuard { lock: self, state_lo: previous, }; } backoff.snooze(); } } } /// An RAII guard that releases the lock and increments the stamp when dropped. pub struct SeqLockWriteGuard { /// The parent lock. lock: &'static SeqLock, /// The stamp before locking. state_lo: usize, } impl SeqLockWriteGuard { /// Releases the lock without incrementing the stamp. #[inline] pub fn abort(self) { self.lock.state_lo.store(self.state_lo, Ordering::Release); } } impl Drop for SeqLockWriteGuard { #[inline] fn drop(&mut self) { let state_lo = self.state_lo.wrapping_add(2); // Increase the high bits if the low bits wrap around. // // Release ordering for synchronizing with `optimistic_read`. if state_lo == 0 { let state_hi = self.lock.state_hi.load(Ordering::Relaxed); self.lock .state_hi .store(state_hi.wrapping_add(1), Ordering::Release); } // Release the lock and increment the stamp. // // Release ordering for synchronizing with `optimistic_read`. self.lock.state_lo.store(state_lo, Ordering::Release); } }