// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Integer trait and functions. //! //! ## Compatibility //! //! The `num-integer` crate is tested for rustc 1.8 and greater. #![doc(html_root_url = "https://docs.rs/num-integer/0.1")] #![no_std] #[cfg(feature = "std")] extern crate std; extern crate num_traits as traits; use core::mem; use core::ops::Add; use traits::{Num, Signed, Zero}; mod roots; pub use roots::Roots; pub use roots::{cbrt, nth_root, sqrt}; mod average; pub use average::Average; pub use average::{average_ceil, average_floor}; pub trait Integer: Sized + Num + PartialOrd + Ord + Eq { /// Floored integer division. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert!(( 8).div_floor(& 3) == 2); /// assert!(( 8).div_floor(&-3) == -3); /// assert!((-8).div_floor(& 3) == -3); /// assert!((-8).div_floor(&-3) == 2); /// /// assert!(( 1).div_floor(& 2) == 0); /// assert!(( 1).div_floor(&-2) == -1); /// assert!((-1).div_floor(& 2) == -1); /// assert!((-1).div_floor(&-2) == 0); /// ~~~ fn div_floor(&self, other: &Self) -> Self; /// Floored integer modulo, satisfying: /// /// ~~~ /// # use num_integer::Integer; /// # let n = 1; let d = 1; /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) /// ~~~ /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert!(( 8).mod_floor(& 3) == 2); /// assert!(( 8).mod_floor(&-3) == -1); /// assert!((-8).mod_floor(& 3) == 1); /// assert!((-8).mod_floor(&-3) == -2); /// /// assert!(( 1).mod_floor(& 2) == 1); /// assert!(( 1).mod_floor(&-2) == -1); /// assert!((-1).mod_floor(& 2) == 1); /// assert!((-1).mod_floor(&-2) == -1); /// ~~~ fn mod_floor(&self, other: &Self) -> Self; /// Ceiled integer division. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 8).div_ceil( &3), 3); /// assert_eq!(( 8).div_ceil(&-3), -2); /// assert_eq!((-8).div_ceil( &3), -2); /// assert_eq!((-8).div_ceil(&-3), 3); /// /// assert_eq!(( 1).div_ceil( &2), 1); /// assert_eq!(( 1).div_ceil(&-2), 0); /// assert_eq!((-1).div_ceil( &2), 0); /// assert_eq!((-1).div_ceil(&-2), 1); /// ~~~ fn div_ceil(&self, other: &Self) -> Self { let (q, r) = self.div_mod_floor(other); if r.is_zero() { q } else { q + Self::one() } } /// Greatest Common Divisor (GCD). /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(6.gcd(&8), 2); /// assert_eq!(7.gcd(&3), 1); /// ~~~ fn gcd(&self, other: &Self) -> Self; /// Lowest Common Multiple (LCM). /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(7.lcm(&3), 21); /// assert_eq!(2.lcm(&4), 4); /// assert_eq!(0.lcm(&0), 0); /// ~~~ fn lcm(&self, other: &Self) -> Self; /// Greatest Common Divisor (GCD) and /// Lowest Common Multiple (LCM) together. /// /// Potentially more efficient than calling `gcd` and `lcm` /// individually for identical inputs. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(10.gcd_lcm(&4), (2, 20)); /// assert_eq!(8.gcd_lcm(&9), (1, 72)); /// ~~~ #[inline] fn gcd_lcm(&self, other: &Self) -> (Self, Self) { (self.gcd(other), self.lcm(other)) } /// Greatest common divisor and Bézout coefficients. /// /// # Examples /// /// ~~~ /// # extern crate num_integer; /// # extern crate num_traits; /// # fn main() { /// # use num_integer::{ExtendedGcd, Integer}; /// # use num_traits::NumAssign; /// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool { /// let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b); /// gcd == x * a + y * b /// } /// assert!(check(10isize, 4isize)); /// assert!(check(8isize, 9isize)); /// # } /// ~~~ #[inline] fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self> where Self: Clone, { let mut s = (Self::zero(), Self::one()); let mut t = (Self::one(), Self::zero()); let mut r = (other.clone(), self.clone()); while !r.0.is_zero() { let q = r.1.clone() / r.0.clone(); let f = |mut r: (Self, Self)| { mem::swap(&mut r.0, &mut r.1); r.0 = r.0 - q.clone() * r.1.clone(); r }; r = f(r); s = f(s); t = f(t); } if r.1 >= Self::zero() { ExtendedGcd { gcd: r.1, x: s.1, y: t.1, } } else { ExtendedGcd { gcd: Self::zero() - r.1, x: Self::zero() - s.1, y: Self::zero() - t.1, } } } /// Greatest common divisor, least common multiple, and Bézout coefficients. #[inline] fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) where Self: Clone + Signed, { (self.extended_gcd(other), self.lcm(other)) } /// Deprecated, use `is_multiple_of` instead. fn divides(&self, other: &Self) -> bool; /// Returns `true` if `self` is a multiple of `other`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(9.is_multiple_of(&3), true); /// assert_eq!(3.is_multiple_of(&9), false); /// ~~~ fn is_multiple_of(&self, other: &Self) -> bool; /// Returns `true` if the number is even. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(3.is_even(), false); /// assert_eq!(4.is_even(), true); /// ~~~ fn is_even(&self) -> bool; /// Returns `true` if the number is odd. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(3.is_odd(), true); /// assert_eq!(4.is_odd(), false); /// ~~~ fn is_odd(&self) -> bool; /// Simultaneous truncated integer division and modulus. /// Returns `(quotient, remainder)`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 8).div_rem( &3), ( 2, 2)); /// assert_eq!(( 8).div_rem(&-3), (-2, 2)); /// assert_eq!((-8).div_rem( &3), (-2, -2)); /// assert_eq!((-8).div_rem(&-3), ( 2, -2)); /// /// assert_eq!(( 1).div_rem( &2), ( 0, 1)); /// assert_eq!(( 1).div_rem(&-2), ( 0, 1)); /// assert_eq!((-1).div_rem( &2), ( 0, -1)); /// assert_eq!((-1).div_rem(&-2), ( 0, -1)); /// ~~~ fn div_rem(&self, other: &Self) -> (Self, Self); /// Simultaneous floored integer division and modulus. /// Returns `(quotient, remainder)`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2)); /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1)); /// assert_eq!((-8).div_mod_floor( &3), (-3, 1)); /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2)); /// /// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1)); /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1)); /// assert_eq!((-1).div_mod_floor( &2), (-1, 1)); /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1)); /// ~~~ fn div_mod_floor(&self, other: &Self) -> (Self, Self) { (self.div_floor(other), self.mod_floor(other)) } /// Rounds up to nearest multiple of argument. /// /// # Notes /// /// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 16).next_multiple_of(& 8), 16); /// assert_eq!(( 23).next_multiple_of(& 8), 24); /// assert_eq!(( 16).next_multiple_of(&-8), 16); /// assert_eq!(( 23).next_multiple_of(&-8), 16); /// assert_eq!((-16).next_multiple_of(& 8), -16); /// assert_eq!((-23).next_multiple_of(& 8), -16); /// assert_eq!((-16).next_multiple_of(&-8), -16); /// assert_eq!((-23).next_multiple_of(&-8), -24); /// ~~~ #[inline] fn next_multiple_of(&self, other: &Self) -> Self where Self: Clone, { let m = self.mod_floor(other); self.clone() + if m.is_zero() { Self::zero() } else { other.clone() - m } } /// Rounds down to nearest multiple of argument. /// /// # Notes /// /// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`. /// /// # Examples /// /// ~~~ /// # use num_integer::Integer; /// assert_eq!(( 16).prev_multiple_of(& 8), 16); /// assert_eq!(( 23).prev_multiple_of(& 8), 16); /// assert_eq!(( 16).prev_multiple_of(&-8), 16); /// assert_eq!(( 23).prev_multiple_of(&-8), 24); /// assert_eq!((-16).prev_multiple_of(& 8), -16); /// assert_eq!((-23).prev_multiple_of(& 8), -24); /// assert_eq!((-16).prev_multiple_of(&-8), -16); /// assert_eq!((-23).prev_multiple_of(&-8), -16); /// ~~~ #[inline] fn prev_multiple_of(&self, other: &Self) -> Self where Self: Clone, { self.clone() - self.mod_floor(other) } } /// Greatest common divisor and Bézout coefficients /// /// ```no_build /// let e = isize::extended_gcd(a, b); /// assert_eq!(e.gcd, e.x*a + e.y*b); /// ``` #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct ExtendedGcd<A> { pub gcd: A, pub x: A, pub y: A, } /// Simultaneous integer division and modulus #[inline] pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { x.div_rem(&y) } /// Floored integer division #[inline] pub fn div_floor<T: Integer>(x: T, y: T) -> T { x.div_floor(&y) } /// Floored integer modulus #[inline] pub fn mod_floor<T: Integer>(x: T, y: T) -> T { x.mod_floor(&y) } /// Simultaneous floored integer division and modulus #[inline] pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { x.div_mod_floor(&y) } /// Ceiled integer division #[inline] pub fn div_ceil<T: Integer>(x: T, y: T) -> T { x.div_ceil(&y) } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The /// result is always non-negative. #[inline(always)] pub fn gcd<T: Integer>(x: T, y: T) -> T { x.gcd(&y) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline(always)] pub fn lcm<T: Integer>(x: T, y: T) -> T { x.lcm(&y) } /// Calculates the Greatest Common Divisor (GCD) and /// Lowest Common Multiple (LCM) of the number and `other`. #[inline(always)] pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) { x.gcd_lcm(&y) } macro_rules! impl_integer_for_isize { ($T:ty, $test_mod:ident) => { impl Integer for $T { /// Floored integer division #[inline] fn div_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) let (d, r) = self.div_rem(other); if (r > 0 && *other < 0) || (r < 0 && *other > 0) { d - 1 } else { d } } /// Floored integer modulo #[inline] fn mod_floor(&self, other: &Self) -> Self { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) let r = *self % *other; if (r > 0 && *other < 0) || (r < 0 && *other > 0) { r + *other } else { r } } /// Calculates `div_floor` and `mod_floor` simultaneously #[inline] fn div_mod_floor(&self, other: &Self) -> (Self, Self) { // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) let (d, r) = self.div_rem(other); if (r > 0 && *other < 0) || (r < 0 && *other > 0) { (d - 1, r + *other) } else { (d, r) } } #[inline] fn div_ceil(&self, other: &Self) -> Self { let (d, r) = self.div_rem(other); if (r > 0 && *other > 0) || (r < 0 && *other < 0) { d + 1 } else { d } } /// Calculates the Greatest Common Divisor (GCD) of the number and /// `other`. The result is always non-negative. #[inline] fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; if m == 0 || n == 0 { return (m | n).abs(); } // find common factors of 2 let shift = (m | n).trailing_zeros(); // The algorithm needs positive numbers, but the minimum value // can't be represented as a positive one. // It's also a power of two, so the gcd can be // calculated by bitshifting in that case // Assuming two's complement, the number created by the shift // is positive for all numbers except gcd = abs(min value) // The call to .abs() causes a panic in debug mode if m == Self::min_value() || n == Self::min_value() { return (1 << shift).abs(); } // guaranteed to be positive now, rest like unsigned algorithm m = m.abs(); n = n.abs(); // divide n and m by 2 until odd m >>= m.trailing_zeros(); n >>= n.trailing_zeros(); while m != n { if m > n { m -= n; m >>= m.trailing_zeros(); } else { n -= m; n >>= n.trailing_zeros(); } } m << shift } #[inline] fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) { let egcd = self.extended_gcd(other); // should not have to recalculate abs let lcm = if egcd.gcd.is_zero() { Self::zero() } else { (*self * (*other / egcd.gcd)).abs() }; (egcd, lcm) } /// Calculates the Lowest Common Multiple (LCM) of the number and /// `other`. #[inline] fn lcm(&self, other: &Self) -> Self { self.gcd_lcm(other).1 } /// Calculates the Greatest Common Divisor (GCD) and /// Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn gcd_lcm(&self, other: &Self) -> (Self, Self) { if self.is_zero() && other.is_zero() { return (Self::zero(), Self::zero()); } let gcd = self.gcd(other); // should not have to recalculate abs let lcm = (*self * (*other / gcd)).abs(); (gcd, lcm) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &Self) -> bool { self.is_multiple_of(other) } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &Self) -> bool { if other.is_zero() { return self.is_zero(); } *self % *other == 0 } /// Returns `true` if the number is divisible by `2` #[inline] fn is_even(&self) -> bool { (*self) & 1 == 0 } /// Returns `true` if the number is not divisible by `2` #[inline] fn is_odd(&self) -> bool { !self.is_even() } /// Simultaneous truncated integer division and modulus. #[inline] fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } /// Rounds up to nearest multiple of argument. #[inline] fn next_multiple_of(&self, other: &Self) -> Self { // Avoid the overflow of `MIN % -1` if *other == -1 { return *self; } let m = Integer::mod_floor(self, other); *self + if m == 0 { 0 } else { other - m } } /// Rounds down to nearest multiple of argument. #[inline] fn prev_multiple_of(&self, other: &Self) -> Self { // Avoid the overflow of `MIN % -1` if *other == -1 { return *self; } *self - Integer::mod_floor(self, other) } } #[cfg(test)] mod $test_mod { use core::mem; use Integer; /// Checks that the division rule holds for: /// /// - `n`: numerator (dividend) /// - `d`: denominator (divisor) /// - `qr`: quotient and remainder #[cfg(test)] fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) { assert_eq!(d * q + r, n); } #[test] fn test_div_rem() { fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) { let (n, d) = nd; let separate_div_rem = (n / d, n % d); let combined_div_rem = n.div_rem(&d); assert_eq!(separate_div_rem, qr); assert_eq!(combined_div_rem, qr); test_division_rule(nd, separate_div_rem); test_division_rule(nd, combined_div_rem); } test_nd_dr((8, 3), (2, 2)); test_nd_dr((8, -3), (-2, 2)); test_nd_dr((-8, 3), (-2, -2)); test_nd_dr((-8, -3), (2, -2)); test_nd_dr((1, 2), (0, 1)); test_nd_dr((1, -2), (0, 1)); test_nd_dr((-1, 2), (0, -1)); test_nd_dr((-1, -2), (0, -1)); } #[test] fn test_div_mod_floor() { fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) { let (n, d) = nd; let separate_div_mod_floor = (Integer::div_floor(&n, &d), Integer::mod_floor(&n, &d)); let combined_div_mod_floor = Integer::div_mod_floor(&n, &d); assert_eq!(separate_div_mod_floor, dm); assert_eq!(combined_div_mod_floor, dm); test_division_rule(nd, separate_div_mod_floor); test_division_rule(nd, combined_div_mod_floor); } test_nd_dm((8, 3), (2, 2)); test_nd_dm((8, -3), (-3, -1)); test_nd_dm((-8, 3), (-3, 1)); test_nd_dm((-8, -3), (2, -2)); test_nd_dm((1, 2), (0, 1)); test_nd_dm((1, -2), (-1, -1)); test_nd_dm((-1, 2), (-1, 1)); test_nd_dm((-1, -2), (0, -1)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); assert_eq!((3 as $T).gcd(&-3), 3 as $T); assert_eq!((-6 as $T).gcd(&3), 3 as $T); assert_eq!((-4 as $T).gcd(&-2), 2 as $T); } #[test] fn test_gcd_cmp_with_euclidean() { fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { while m != 0 { mem::swap(&mut m, &mut n); m %= n; } n.abs() } // gcd(-128, b) = 128 is not representable as positive value // for i8 for i in -127..127 { for j in -127..127 { assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); } } // last value // FIXME: Use inclusive ranges for above loop when implemented let i = 127; for j in -127..127 { assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); } assert_eq!(127.gcd(&127), 127); } #[test] fn test_gcd_min_val() { let min = <$T>::min_value(); let max = <$T>::max_value(); let max_pow2 = max / 2 + 1; assert_eq!(min.gcd(&max), 1 as $T); assert_eq!(max.gcd(&min), 1 as $T); assert_eq!(min.gcd(&max_pow2), max_pow2); assert_eq!(max_pow2.gcd(&min), max_pow2); assert_eq!(min.gcd(&42), 2 as $T); assert_eq!((42 as $T).gcd(&min), 2 as $T); } #[test] #[should_panic] fn test_gcd_min_val_min_val() { let min = <$T>::min_value(); assert!(min.gcd(&min) >= 0); } #[test] #[should_panic] fn test_gcd_min_val_0() { let min = <$T>::min_value(); assert!(min.gcd(&0) >= 0); } #[test] #[should_panic] fn test_gcd_0_min_val() { let min = <$T>::min_value(); assert!((0 as $T).gcd(&min) >= 0); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((-1 as $T).lcm(&1), 1 as $T); assert_eq!((1 as $T).lcm(&-1), 1 as $T); assert_eq!((-1 as $T).lcm(&-1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); } #[test] fn test_gcd_lcm() { use core::iter::once; for i in once(0) .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) .chain(once(-128)) { for j in once(0) .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) .chain(once(-128)) { assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j))); } } } #[test] fn test_extended_gcd_lcm() { use core::fmt::Debug; use traits::NumAssign; use ExtendedGcd; fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) { let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b); assert_eq!(gcd, x * a + y * b); } use core::iter::once; for i in once(0) .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) .chain(once(-128)) { for j in once(0) .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) .chain(once(-128)) { check(i, j); let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j); assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j))); } } } #[test] fn test_even() { assert_eq!((-4 as $T).is_even(), true); assert_eq!((-3 as $T).is_even(), false); assert_eq!((-2 as $T).is_even(), true); assert_eq!((-1 as $T).is_even(), false); assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((-4 as $T).is_odd(), false); assert_eq!((-3 as $T).is_odd(), true); assert_eq!((-2 as $T).is_odd(), false); assert_eq!((-1 as $T).is_odd(), true); assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } #[test] fn test_multiple_of_one_limits() { for x in &[<$T>::min_value(), <$T>::max_value()] { for one in &[1, -1] { assert_eq!(Integer::next_multiple_of(x, one), *x); assert_eq!(Integer::prev_multiple_of(x, one), *x); } } } } }; } impl_integer_for_isize!(i8, test_integer_i8); impl_integer_for_isize!(i16, test_integer_i16); impl_integer_for_isize!(i32, test_integer_i32); impl_integer_for_isize!(i64, test_integer_i64); impl_integer_for_isize!(isize, test_integer_isize); #[cfg(has_i128)] impl_integer_for_isize!(i128, test_integer_i128); macro_rules! impl_integer_for_usize { ($T:ty, $test_mod:ident) => { impl Integer for $T { /// Unsigned integer division. Returns the same result as `div` (`/`). #[inline] fn div_floor(&self, other: &Self) -> Self { *self / *other } /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). #[inline] fn mod_floor(&self, other: &Self) -> Self { *self % *other } #[inline] fn div_ceil(&self, other: &Self) -> Self { *self / *other + (0 != *self % *other) as Self } /// Calculates the Greatest Common Divisor (GCD) of the number and `other` #[inline] fn gcd(&self, other: &Self) -> Self { // Use Stein's algorithm let mut m = *self; let mut n = *other; if m == 0 || n == 0 { return m | n; } // find common factors of 2 let shift = (m | n).trailing_zeros(); // divide n and m by 2 until odd m >>= m.trailing_zeros(); n >>= n.trailing_zeros(); while m != n { if m > n { m -= n; m >>= m.trailing_zeros(); } else { n -= m; n >>= n.trailing_zeros(); } } m << shift } #[inline] fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) { let egcd = self.extended_gcd(other); // should not have to recalculate abs let lcm = if egcd.gcd.is_zero() { Self::zero() } else { *self * (*other / egcd.gcd) }; (egcd, lcm) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &Self) -> Self { self.gcd_lcm(other).1 } /// Calculates the Greatest Common Divisor (GCD) and /// Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn gcd_lcm(&self, other: &Self) -> (Self, Self) { if self.is_zero() && other.is_zero() { return (Self::zero(), Self::zero()); } let gcd = self.gcd(other); let lcm = *self * (*other / gcd); (gcd, lcm) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &Self) -> bool { self.is_multiple_of(other) } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &Self) -> bool { if other.is_zero() { return self.is_zero(); } *self % *other == 0 } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { *self % 2 == 0 } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { !self.is_even() } /// Simultaneous truncated integer division and modulus. #[inline] fn div_rem(&self, other: &Self) -> (Self, Self) { (*self / *other, *self % *other) } } #[cfg(test)] mod $test_mod { use core::mem; use Integer; #[test] fn test_div_mod_floor() { assert_eq!(<$T as Integer>::div_floor(&10, &3), 3 as $T); assert_eq!(<$T as Integer>::mod_floor(&10, &3), 1 as $T); assert_eq!(<$T as Integer>::div_mod_floor(&10, &3), (3 as $T, 1 as $T)); assert_eq!(<$T as Integer>::div_floor(&5, &5), 1 as $T); assert_eq!(<$T as Integer>::mod_floor(&5, &5), 0 as $T); assert_eq!(<$T as Integer>::div_mod_floor(&5, &5), (1 as $T, 0 as $T)); assert_eq!(<$T as Integer>::div_floor(&3, &7), 0 as $T); assert_eq!(<$T as Integer>::div_floor(&3, &7), 0 as $T); assert_eq!(<$T as Integer>::mod_floor(&3, &7), 3 as $T); assert_eq!(<$T as Integer>::div_mod_floor(&3, &7), (0 as $T, 3 as $T)); } #[test] fn test_gcd() { assert_eq!((10 as $T).gcd(&2), 2 as $T); assert_eq!((10 as $T).gcd(&3), 1 as $T); assert_eq!((0 as $T).gcd(&3), 3 as $T); assert_eq!((3 as $T).gcd(&3), 3 as $T); assert_eq!((56 as $T).gcd(&42), 14 as $T); } #[test] fn test_gcd_cmp_with_euclidean() { fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { while m != 0 { mem::swap(&mut m, &mut n); m %= n; } n } for i in 0..255 { for j in 0..255 { assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); } } // last value // FIXME: Use inclusive ranges for above loop when implemented let i = 255; for j in 0..255 { assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); } assert_eq!(255.gcd(&255), 255); } #[test] fn test_lcm() { assert_eq!((1 as $T).lcm(&0), 0 as $T); assert_eq!((0 as $T).lcm(&1), 0 as $T); assert_eq!((1 as $T).lcm(&1), 1 as $T); assert_eq!((8 as $T).lcm(&9), 72 as $T); assert_eq!((11 as $T).lcm(&5), 55 as $T); assert_eq!((15 as $T).lcm(&17), 255 as $T); } #[test] fn test_gcd_lcm() { for i in (0..).take(256) { for j in (0..).take(256) { assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j))); } } } #[test] fn test_is_multiple_of() { assert!((0 as $T).is_multiple_of(&(0 as $T))); assert!((6 as $T).is_multiple_of(&(6 as $T))); assert!((6 as $T).is_multiple_of(&(3 as $T))); assert!((6 as $T).is_multiple_of(&(1 as $T))); assert!(!(42 as $T).is_multiple_of(&(5 as $T))); assert!(!(5 as $T).is_multiple_of(&(3 as $T))); assert!(!(42 as $T).is_multiple_of(&(0 as $T))); } #[test] fn test_even() { assert_eq!((0 as $T).is_even(), true); assert_eq!((1 as $T).is_even(), false); assert_eq!((2 as $T).is_even(), true); assert_eq!((3 as $T).is_even(), false); assert_eq!((4 as $T).is_even(), true); } #[test] fn test_odd() { assert_eq!((0 as $T).is_odd(), false); assert_eq!((1 as $T).is_odd(), true); assert_eq!((2 as $T).is_odd(), false); assert_eq!((3 as $T).is_odd(), true); assert_eq!((4 as $T).is_odd(), false); } } }; } impl_integer_for_usize!(u8, test_integer_u8); impl_integer_for_usize!(u16, test_integer_u16); impl_integer_for_usize!(u32, test_integer_u32); impl_integer_for_usize!(u64, test_integer_u64); impl_integer_for_usize!(usize, test_integer_usize); #[cfg(has_i128)] impl_integer_for_usize!(u128, test_integer_u128); /// An iterator over binomial coefficients. pub struct IterBinomial<T> { a: T, n: T, k: T, } impl<T> IterBinomial<T> where T: Integer, { /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n. /// /// Note that this might overflow, depending on `T`. For the primitive /// integer types, the following n are the largest ones for which there will /// be no overflow: /// /// type | n /// -----|--- /// u8 | 10 /// i8 | 9 /// u16 | 18 /// i16 | 17 /// u32 | 34 /// i32 | 33 /// u64 | 67 /// i64 | 66 /// /// For larger n, `T` should be a bigint type. pub fn new(n: T) -> IterBinomial<T> { IterBinomial { k: T::zero(), a: T::one(), n: n, } } } impl<T> Iterator for IterBinomial<T> where T: Integer + Clone, { type Item = T; fn next(&mut self) -> Option<T> { if self.k > self.n { return None; } self.a = if !self.k.is_zero() { multiply_and_divide( self.a.clone(), self.n.clone() - self.k.clone() + T::one(), self.k.clone(), ) } else { T::one() }; self.k = self.k.clone() + T::one(); Some(self.a.clone()) } } /// Calculate r * a / b, avoiding overflows and fractions. /// /// Assumes that b divides r * a evenly. fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T { // See http://blog.plover.com/math/choose-2.html for the idea. let g = gcd(r.clone(), b.clone()); r / g.clone() * (a / (b / g)) } /// Calculate the binomial coefficient. /// /// Note that this might overflow, depending on `T`. For the primitive integer /// types, the following n are the largest ones possible such that there will /// be no overflow for any k: /// /// type | n /// -----|--- /// u8 | 10 /// i8 | 9 /// u16 | 18 /// i16 | 17 /// u32 | 34 /// i32 | 33 /// u64 | 67 /// i64 | 66 /// /// For larger n, consider using a bigint type for `T`. pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T { // See http://blog.plover.com/math/choose.html for the idea. if k > n { return T::zero(); } if k > n.clone() - k.clone() { return binomial(n.clone(), n - k); } let mut r = T::one(); let mut d = T::one(); loop { if d > k { break; } r = multiply_and_divide(r, n.clone(), d.clone()); n = n - T::one(); d = d + T::one(); } r } /// Calculate the multinomial coefficient. pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T where for<'a> T: Add<&'a T, Output = T>, { let mut r = T::one(); let mut p = T::zero(); for i in k { p = p + i; r = r * binomial(p.clone(), i.clone()); } r } #[test] fn test_lcm_overflow() { macro_rules! check { ($t:ty, $x:expr, $y:expr, $r:expr) => {{ let x: $t = $x; let y: $t = $y; let o = x.checked_mul(y); assert!( o.is_none(), "sanity checking that {} input {} * {} overflows", stringify!($t), x, y ); assert_eq!(x.lcm(&y), $r); assert_eq!(y.lcm(&x), $r); }}; } // Original bug (Issue #166) check!(i64, 46656000000000000, 600, 46656000000000000); check!(i8, 0x40, 0x04, 0x40); check!(u8, 0x80, 0x02, 0x80); check!(i16, 0x40_00, 0x04, 0x40_00); check!(u16, 0x80_00, 0x02, 0x80_00); check!(i32, 0x4000_0000, 0x04, 0x4000_0000); check!(u32, 0x8000_0000, 0x02, 0x8000_0000); check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000); check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000); } #[test] fn test_iter_binomial() { macro_rules! check_simple { ($t:ty) => {{ let n: $t = 3; let expected = [1, 3, 3, 1]; for (b, &e) in IterBinomial::new(n).zip(&expected) { assert_eq!(b, e); } }}; } check_simple!(u8); check_simple!(i8); check_simple!(u16); check_simple!(i16); check_simple!(u32); check_simple!(i32); check_simple!(u64); check_simple!(i64); macro_rules! check_binomial { ($t:ty, $n:expr) => {{ let n: $t = $n; let mut k: $t = 0; for b in IterBinomial::new(n) { assert_eq!(b, binomial(n, k)); k += 1; } }}; } // Check the largest n for which there is no overflow. check_binomial!(u8, 10); check_binomial!(i8, 9); check_binomial!(u16, 18); check_binomial!(i16, 17); check_binomial!(u32, 34); check_binomial!(i32, 33); check_binomial!(u64, 67); check_binomial!(i64, 66); } #[test] fn test_binomial() { macro_rules! check { ($t:ty, $x:expr, $y:expr, $r:expr) => {{ let x: $t = $x; let y: $t = $y; let expected: $t = $r; assert_eq!(binomial(x, y), expected); if y <= x { assert_eq!(binomial(x, x - y), expected); } }}; } check!(u8, 9, 4, 126); check!(u8, 0, 0, 1); check!(u8, 2, 3, 0); check!(i8, 9, 4, 126); check!(i8, 0, 0, 1); check!(i8, 2, 3, 0); check!(u16, 100, 2, 4950); check!(u16, 14, 4, 1001); check!(u16, 0, 0, 1); check!(u16, 2, 3, 0); check!(i16, 100, 2, 4950); check!(i16, 14, 4, 1001); check!(i16, 0, 0, 1); check!(i16, 2, 3, 0); check!(u32, 100, 2, 4950); check!(u32, 35, 11, 417225900); check!(u32, 14, 4, 1001); check!(u32, 0, 0, 1); check!(u32, 2, 3, 0); check!(i32, 100, 2, 4950); check!(i32, 35, 11, 417225900); check!(i32, 14, 4, 1001); check!(i32, 0, 0, 1); check!(i32, 2, 3, 0); check!(u64, 100, 2, 4950); check!(u64, 35, 11, 417225900); check!(u64, 14, 4, 1001); check!(u64, 0, 0, 1); check!(u64, 2, 3, 0); check!(i64, 100, 2, 4950); check!(i64, 35, 11, 417225900); check!(i64, 14, 4, 1001); check!(i64, 0, 0, 1); check!(i64, 2, 3, 0); } #[test] fn test_multinomial() { macro_rules! check_binomial { ($t:ty, $k:expr) => {{ let n: $t = $k.iter().fold(0, |acc, &x| acc + x); let k: &[$t] = $k; assert_eq!(k.len(), 2); assert_eq!(multinomial(k), binomial(n, k[0])); }}; } check_binomial!(u8, &[4, 5]); check_binomial!(i8, &[4, 5]); check_binomial!(u16, &[2, 98]); check_binomial!(u16, &[4, 10]); check_binomial!(i16, &[2, 98]); check_binomial!(i16, &[4, 10]); check_binomial!(u32, &[2, 98]); check_binomial!(u32, &[11, 24]); check_binomial!(u32, &[4, 10]); check_binomial!(i32, &[2, 98]); check_binomial!(i32, &[11, 24]); check_binomial!(i32, &[4, 10]); check_binomial!(u64, &[2, 98]); check_binomial!(u64, &[11, 24]); check_binomial!(u64, &[4, 10]); check_binomial!(i64, &[2, 98]); check_binomial!(i64, &[11, 24]); check_binomial!(i64, &[4, 10]); macro_rules! check_multinomial { ($t:ty, $k:expr, $r:expr) => {{ let k: &[$t] = $k; let expected: $t = $r; assert_eq!(multinomial(k), expected); }}; } check_multinomial!(u8, &[2, 1, 2], 30); check_multinomial!(u8, &[2, 3, 0], 10); check_multinomial!(i8, &[2, 1, 2], 30); check_multinomial!(i8, &[2, 3, 0], 10); check_multinomial!(u16, &[2, 1, 2], 30); check_multinomial!(u16, &[2, 3, 0], 10); check_multinomial!(i16, &[2, 1, 2], 30); check_multinomial!(i16, &[2, 3, 0], 10); check_multinomial!(u32, &[2, 1, 2], 30); check_multinomial!(u32, &[2, 3, 0], 10); check_multinomial!(i32, &[2, 1, 2], 30); check_multinomial!(i32, &[2, 3, 0], 10); check_multinomial!(u64, &[2, 1, 2], 30); check_multinomial!(u64, &[2, 3, 0], 10); check_multinomial!(i64, &[2, 1, 2], 30); check_multinomial!(i64, &[2, 3, 0], 10); check_multinomial!(u64, &[], 1); check_multinomial!(u64, &[0], 1); check_multinomial!(u64, &[12345], 1); }