/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsRFPService.h" #include #include #include #include #include #include #include #include #include #include #include "MainThreadUtils.h" #include "mozilla/ArrayIterator.h" #include "mozilla/Assertions.h" #include "mozilla/Atomics.h" #include "mozilla/Casting.h" #include "mozilla/ClearOnShutdown.h" #include "mozilla/HashFunctions.h" #include "mozilla/HelperMacros.h" #include "mozilla/Likely.h" #include "mozilla/Logging.h" #include "mozilla/MacroForEach.h" #include "mozilla/Preferences.h" #include "mozilla/RefPtr.h" #include "mozilla/Services.h" #include "mozilla/StaticPrefs_javascript.h" #include "mozilla/StaticPrefs_privacy.h" #include "mozilla/StaticPtr.h" #include "mozilla/TextEvents.h" #include "mozilla/dom/Document.h" #include "mozilla/dom/Element.h" #include "mozilla/dom/KeyboardEventBinding.h" #include "mozilla/fallible.h" #include "mozilla/XorShift128PlusRNG.h" #include "nsBaseHashtable.h" #include "nsCOMPtr.h" #include "nsComponentManagerUtils.h" #include "nsCoord.h" #include "nsTHashMap.h" #include "nsDebug.h" #include "nsError.h" #include "nsHashKeys.h" #include "nsJSUtils.h" #include "nsLiteralString.h" #include "nsPrintfCString.h" #include "nsServiceManagerUtils.h" #include "nsString.h" #include "nsStringFlags.h" #include "nsTArray.h" #include "nsTLiteralString.h" #include "nsTPromiseFlatString.h" #include "nsTStringRepr.h" #include "nsXPCOM.h" #include "nsICryptoHash.h" #include "nsIGlobalObject.h" #include "nsIObserverService.h" #include "nsIRandomGenerator.h" #include "nsIXULAppInfo.h" #include "nscore.h" #include "prenv.h" #include "prtime.h" #include "xpcpublic.h" #include "js/Date.h" using namespace mozilla; static mozilla::LazyLogModule gResistFingerprintingLog( "nsResistFingerprinting"); #define RESIST_FINGERPRINTING_PREF "privacy.resistFingerprinting" #define RFP_TIMER_PREF "privacy.reduceTimerPrecision" #define RFP_TIMER_UNCONDITIONAL_PREF \ "privacy.reduceTimerPrecision.unconditional" #define RFP_TIMER_UNCONDITIONAL_VALUE 20 #define RFP_TIMER_VALUE_PREF \ "privacy.resistFingerprinting.reduceTimerPrecision.microseconds" #define RFP_JITTER_VALUE_PREF \ "privacy.resistFingerprinting.reduceTimerPrecision.jitter" #define PROFILE_INITIALIZED_TOPIC "profile-initial-state" static constexpr uint32_t kVideoFramesPerSec = 30; static constexpr uint32_t kVideoDroppedRatio = 5; #define RFP_DEFAULT_SPOOFING_KEYBOARD_LANG KeyboardLang::EN #define RFP_DEFAULT_SPOOFING_KEYBOARD_REGION KeyboardRegion::US NS_IMPL_ISUPPORTS(nsRFPService, nsIObserver) static StaticRefPtr sRFPService; static bool sInitialized = false; nsTHashMap* nsRFPService::sSpoofingKeyboardCodes = nullptr; KeyboardHashKey::KeyboardHashKey(const KeyboardLangs aLang, const KeyboardRegions aRegion, const KeyNameIndexType aKeyIdx, const nsAString& aKey) : mLang(aLang), mRegion(aRegion), mKeyIdx(aKeyIdx), mKey(aKey) {} KeyboardHashKey::KeyboardHashKey(KeyTypePointer aOther) : mLang(aOther->mLang), mRegion(aOther->mRegion), mKeyIdx(aOther->mKeyIdx), mKey(aOther->mKey) {} KeyboardHashKey::KeyboardHashKey(KeyboardHashKey&& aOther) : PLDHashEntryHdr(std::move(aOther)), mLang(std::move(aOther.mLang)), mRegion(std::move(aOther.mRegion)), mKeyIdx(std::move(aOther.mKeyIdx)), mKey(std::move(aOther.mKey)) {} KeyboardHashKey::~KeyboardHashKey() = default; bool KeyboardHashKey::KeyEquals(KeyTypePointer aOther) const { return mLang == aOther->mLang && mRegion == aOther->mRegion && mKeyIdx == aOther->mKeyIdx && mKey == aOther->mKey; } KeyboardHashKey::KeyTypePointer KeyboardHashKey::KeyToPointer(KeyType aKey) { return &aKey; } PLDHashNumber KeyboardHashKey::HashKey(KeyTypePointer aKey) { PLDHashNumber hash = mozilla::HashString(aKey->mKey); return mozilla::AddToHash(hash, aKey->mRegion, aKey->mKeyIdx, aKey->mLang); } /* static */ nsRFPService* nsRFPService::GetOrCreate() { if (!sInitialized) { sRFPService = new nsRFPService(); nsresult rv = sRFPService->Init(); if (NS_FAILED(rv)) { sRFPService = nullptr; return nullptr; } ClearOnShutdown(&sRFPService); sInitialized = true; } return sRFPService; } constexpr double RFP_TIME_ATOM_MS = 16.667; // 60Hz, 1000/60 but rounded. /* In RFP RAF always runs at 60Hz, so we're ~0.02% off of 1000/60 here. ```js extra_frames_per_frame = 16.667 / (1000/60) - 1 // 0.00028 sec_per_extra_frame = 1 / (extra_frames_per_frame * 60) // 833.33 min_per_extra_frame = sec_per_extra_frame / 60 // 13.89 ``` We expect an extra frame every ~14 minutes, which is enough to be smooth. 16.67 would be ~1.4 minutes, which is OK, but is more noticable. Put another way, if this is the only unacceptable hitch you have across 14 minutes, I'm impressed, and we might revisit this. */ /* static */ double nsRFPService::TimerResolution(RTPCallerType aRTPCallerType) { double prefValue = StaticPrefs:: privacy_resistFingerprinting_reduceTimerPrecision_microseconds(); if (aRTPCallerType == RTPCallerType::ResistFingerprinting) { return std::max(RFP_TIME_ATOM_MS * 1000.0, prefValue); } return prefValue; } /** * The purpose of this function is to deterministicly generate a random midpoint * between a lower clamped value and an upper clamped value. Assuming a clamping * resolution of 100, here is an example: * * |---------------------------------------|--------------------------| * lower clamped value (e.g. 300) | upper clamped value (400) * random midpoint (e.g. 360) * * If our actual timestamp (e.g. 325) is below the midpoint, we keep it clamped * downwards. If it were equal to or above the midpoint (e.g. 365) we would * round it upwards to the largest clamped value (in this example: 400). * * The question is: does time go backwards? * * The midpoint is deterministicly random and generated from three components: * a secret seed, a per-timeline (context) 'mix-in', and a clamped time. * * When comparing times across different seed values: time may go backwards. * For a clamped time of 300, one seed may generate a midpoint of 305 and * another 395. So comparing an (actual) timestamp of 325 and 351 could see the * 325 clamped up to 400 and the 351 clamped down to 300. The seed is * per-process, so this case occurs when one can compare timestamps * cross-process. This is uncommon (because we don't have site isolation.) The * circumstances this could occur are BroadcastChannel, Storage Notification, * and in theory (but not yet implemented) SharedWorker. This should be an * exhaustive list (at time of comment writing!). * * Aside from cross-process communication, derived timestamps across different * time origins may go backwards. (Specifically, derived means adding two * timestamps together to get an (approximate) absolute time.) * Assume a page and a worker. If one calls performance.now() in the page and * then triggers a call to performance.now() in the worker, the following * invariant should hold true: * page.performance.timeOrigin + page.performance.now() < * worker.performance.timeOrigin + worker.performance.now() * * We break this invariant. * * The 'Context Mix-in' is a securely generated random seed that is unique for * each timeline that starts over at zero. It is needed to ensure that the * sequence of midpoints (as calculated by the secret seed and clamped time) * does not repeat. In RelativeTimeline.h, we define a 'RelativeTimeline' class * that can be inherited by any object that has a relative timeline. The most * obvious examples are Documents and Workers. An attacker could let time go * forward and observe (roughly) where the random midpoints fall. Then they * create a new object, time starts back over at zero, and they know * (approximately) where the random midpoints are. * * When the timestamp given is a non-relative timestamp (e.g. it is relative to * the unix epoch) it is not possible to replay a sequence of random values. * Thus, providing a zero context pointer is an indicator that the timestamp * given is absolute and does not need any additional randomness. * * @param aClampedTimeUSec [in] The clamped input time in microseconds. * @param aResolutionUSec [in] The current resolution for clamping in * microseconds. * @param aMidpointOut [out] The midpoint, in microseconds, between [0, * aResolutionUSec]. * @param aContextMixin [in] An opaque random value for relative * timestamps. 0 for absolute timestamps * @param aSecretSeed [in] TESTING ONLY. When provided, the current seed * will be replaced with this value. * @return A nsresult indicating success of failure. If the * function failed, nothing is written to aMidpointOut */ /* static */ nsresult nsRFPService::RandomMidpoint(long long aClampedTimeUSec, long long aResolutionUSec, int64_t aContextMixin, long long* aMidpointOut, uint8_t* aSecretSeed /* = nullptr */) { nsresult rv; const int kSeedSize = 16; static Atomic sSecretMidpointSeed; if (MOZ_UNLIKELY(!aMidpointOut)) { return NS_ERROR_INVALID_ARG; } /* * Below, we will use three different values to seed a fairly simple random * number generator. On the first run we initiate the secret seed, which * is mixed in with the time epoch and the context mix in to seed the RNG. * * This isn't the most secure method of generating a random midpoint but is * reasonably performant and should be sufficient for our purposes. */ // If we don't have a seed, we need to get one. if (MOZ_UNLIKELY(!sSecretMidpointSeed)) { nsCOMPtr randomGenerator = do_GetService("@mozilla.org/security/random-generator;1", &rv); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } uint8_t* temp = nullptr; rv = randomGenerator->GenerateRandomBytes(kSeedSize, &temp); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } if (MOZ_UNLIKELY(!sSecretMidpointSeed.compareExchange(nullptr, temp))) { // Some other thread initted this first, never mind! delete[] temp; } } // sSecretMidpointSeed is now set, and invariant. The contents of the buffer // it points to is also invariant, _unless_ this function is called with a // non-null |aSecretSeed|. uint8_t* seed = sSecretMidpointSeed; MOZ_RELEASE_ASSERT(seed); // If someone has passed in the testing-only parameter, replace our seed with // it. We do _not_ re-allocate the buffer, since that can lead to UAF below. // The math could still be racy if the caller supplies a new secret seed while // some other thread is calling this function, but since this is arcane // test-only functionality that is used in only one test-case presently, we // put the burden of using this particular footgun properly on the test code. if (MOZ_UNLIKELY(aSecretSeed != nullptr)) { memcpy(seed, aSecretSeed, kSeedSize); } // Seed and create our random number generator. non_crypto::XorShift128PlusRNG rng(aContextMixin ^ *(uint64_t*)(seed), aClampedTimeUSec ^ *(uint64_t*)(seed + 8)); // Retrieve the output midpoint value. if (MOZ_UNLIKELY(aResolutionUSec <= 0)) { // ??? Bug 1718066 return NS_ERROR_FAILURE; } *aMidpointOut = rng.next() % aResolutionUSec; return NS_OK; } /** * Given a precision value, this function will reduce a given input time to the * nearest multiple of that precision. * * It will check if it is appropriate to clamp the input time according to the * values of the given TimerPrecisionType. Note that if one desires a minimum * precision for Resist Fingerprinting, it is the caller's responsibility to * provide the correct value. This means you should pass TimerResolution(), * which enforces a minimum value on the precision based on preferences. * * It ensures the given precision value is greater than zero, if it is not it * returns the input time. * * While the correct thing to pass is TimerResolution() we expose it as an * argument for testing purposes only. * * @param aTime [in] The input time to be clamped. * @param aTimeScale [in] The units the input time is in (Seconds, * Milliseconds, or Microseconds). * @param aResolutionUSec [in] The precision (in microseconds) to clamp to. * @param aContextMixin [in] An opaque random value for relative timestamps. * 0 for absolute timestamps * @return If clamping is appropriate, the clamped value of the * input, otherwise the input. */ /* static */ double nsRFPService::ReduceTimePrecisionImpl(double aTime, TimeScale aTimeScale, double aResolutionUSec, int64_t aContextMixin, TimerPrecisionType aType) { if (aType == TimerPrecisionType::DangerouslyNone) { return aTime; } // This boolean will serve as a flag indicating we are clamping the time // unconditionally. We do this when timer reduction preference is off; but we // still want to apply 20us clamping to al timestamps to avoid leaking // nano-second precision. bool unconditionalClamping = false; if (aType == UnconditionalAKAHighRes || aResolutionUSec <= 0) { unconditionalClamping = true; aResolutionUSec = RFP_TIMER_UNCONDITIONAL_VALUE; // 20 microseconds aContextMixin = 0; // Just clarifies our logging statement at the end, // otherwise unused } // Increase the time as needed until it is in microseconds. // Note that a double can hold up to 2**53 with integer precision. This gives // us only until June 5, 2255 in time-since-the-epoch with integer precision. // So we will be losing microseconds precision after that date. // We think this is okay, and we codify it in some tests. double timeScaled = aTime * (1000000 / aTimeScale); // Cut off anything less than a microsecond. long long timeAsInt = timeScaled; // If we have a blank context mixin, this indicates we (should) have an // absolute timestamp. We check the time, and if it less than a unix timestamp // about 10 years in the past, we output to the log and, in debug builds, // assert. This is an error case we want to understand and fix: we must have // given a relative timestamp with a mixin of 0 which is incorrect. Anyone // running a debug build _probably_ has an accurate clock, and if they don't, // they'll hopefully find this message and understand why things are crashing. const long long kFeb282008 = 1204233985000; if (aContextMixin == 0 && timeAsInt < kFeb282008 && !unconditionalClamping && aType != TimerPrecisionType::RFP) { nsAutoCString type; TypeToText(aType, type); MOZ_LOG( gResistFingerprintingLog, LogLevel::Error, ("About to assert. aTime=%lli<%lli aContextMixin=%" PRId64 " aType=%s", timeAsInt, kFeb282008, aContextMixin, type.get())); MOZ_ASSERT( false, "ReduceTimePrecisionImpl was given a relative time " "with an empty context mix-in (or your clock is 10+ years off.) " "Run this with MOZ_LOG=nsResistFingerprinting:1 to get more details."); } // Cast the resolution (in microseconds) to an int. long long resolutionAsInt = aResolutionUSec; // Perform the clamping. // We do a cast back to double to perform the division with doubles, then // floor the result and the rest occurs with integer precision. This is // because it gives consistency above and below zero. Above zero, performing // the division in integers truncates decimals, taking the result closer to // zero (a floor). Below zero, performing the division in integers truncates // decimals, taking the result closer to zero (a ceil). The impact of this is // that comparing two clamped values that should be related by a constant // (e.g. 10s) that are across the zero barrier will no longer work. We need to // round consistently towards positive infinity or negative infinity (we chose // negative.) This can't be done with a truncation, it must be done with // floor. long long clamped = floor(double(timeAsInt) / resolutionAsInt) * resolutionAsInt; long long midpoint = 0; long long clampedAndJittered = clamped; if (!unconditionalClamping && StaticPrefs::privacy_resistFingerprinting_reduceTimerPrecision_jitter()) { if (!NS_FAILED(RandomMidpoint(clamped, resolutionAsInt, aContextMixin, &midpoint)) && timeAsInt >= clamped + midpoint) { clampedAndJittered += resolutionAsInt; } } // Cast it back to a double and reduce it to the correct units. double ret = double(clampedAndJittered) / (1000000.0 / double(aTimeScale)); MOZ_LOG( gResistFingerprintingLog, LogLevel::Verbose, ("Given: (%.*f, Scaled: %.*f, Converted: %lli), Rounding %s with (%lli, " "Originally %.*f), " "Intermediate: (%lli), Clamped: (%lli) Jitter: (%i Context: %" PRId64 " Midpoint: %lli) " "Final: (%lli Converted: %.*f)", DBL_DIG - 1, aTime, DBL_DIG - 1, timeScaled, timeAsInt, (unconditionalClamping ? "unconditionally" : "normally"), resolutionAsInt, DBL_DIG - 1, aResolutionUSec, (long long)floor(double(timeAsInt) / resolutionAsInt), clamped, StaticPrefs::privacy_resistFingerprinting_reduceTimerPrecision_jitter(), aContextMixin, midpoint, clampedAndJittered, DBL_DIG - 1, ret)); return ret; } /* static */ double nsRFPService::ReduceTimePrecisionAsUSecs(double aTime, int64_t aContextMixin, RTPCallerType aRTPCallerType) { const auto type = GetTimerPrecisionType(aRTPCallerType); return nsRFPService::ReduceTimePrecisionImpl(aTime, MicroSeconds, TimerResolution(aRTPCallerType), aContextMixin, type); } /* static */ double nsRFPService::ReduceTimePrecisionAsMSecs(double aTime, int64_t aContextMixin, RTPCallerType aRTPCallerType) { const auto type = GetTimerPrecisionType(aRTPCallerType); return nsRFPService::ReduceTimePrecisionImpl(aTime, MilliSeconds, TimerResolution(aRTPCallerType), aContextMixin, type); } /* static */ double nsRFPService::ReduceTimePrecisionAsMSecsRFPOnly( double aTime, int64_t aContextMixin, RTPCallerType aRTPCallerType) { return nsRFPService::ReduceTimePrecisionImpl( aTime, MilliSeconds, TimerResolution(aRTPCallerType), aContextMixin, GetTimerPrecisionTypeRFPOnly(aRTPCallerType)); } /* static */ double nsRFPService::ReduceTimePrecisionAsSecs(double aTime, int64_t aContextMixin, RTPCallerType aRTPCallerType) { const auto type = GetTimerPrecisionType(aRTPCallerType); return nsRFPService::ReduceTimePrecisionImpl( aTime, Seconds, TimerResolution(aRTPCallerType), aContextMixin, type); } /* static */ double nsRFPService::ReduceTimePrecisionAsSecsRFPOnly( double aTime, int64_t aContextMixin, RTPCallerType aRTPCallerType) { return nsRFPService::ReduceTimePrecisionImpl( aTime, Seconds, TimerResolution(aRTPCallerType), aContextMixin, GetTimerPrecisionTypeRFPOnly(aRTPCallerType)); } /* static */ double nsRFPService::ReduceTimePrecisionAsUSecsWrapper( double aTime, bool aShouldResistFingerprinting, JSContext* aCx) { MOZ_ASSERT(aCx); nsCOMPtr global = xpc::CurrentNativeGlobal(aCx); MOZ_ASSERT(global); RTPCallerType callerType; if (aShouldResistFingerprinting) { callerType = RTPCallerType::ResistFingerprinting; } else if (global->CrossOriginIsolated()) { callerType = RTPCallerType::CrossOriginIsolated; } else { callerType = RTPCallerType::Normal; } return nsRFPService::ReduceTimePrecisionImpl( aTime, MicroSeconds, TimerResolution(callerType), 0, /* For absolute timestamps (all the JS engine does), supply zero context mixin */ GetTimerPrecisionType(callerType)); } /* static */ uint32_t nsRFPService::CalculateTargetVideoResolution(uint32_t aVideoQuality) { return aVideoQuality * NSToIntCeil(aVideoQuality * 16 / 9.0); } /* static */ uint32_t nsRFPService::GetSpoofedTotalFrames(double aTime) { double precision = TimerResolution(RTPCallerType::ResistFingerprinting) / 1000 / 1000; double time = floor(aTime / precision) * precision; return NSToIntFloor(time * kVideoFramesPerSec); } /* static */ uint32_t nsRFPService::GetSpoofedDroppedFrames(double aTime, uint32_t aWidth, uint32_t aHeight) { uint32_t targetRes = CalculateTargetVideoResolution( StaticPrefs::privacy_resistFingerprinting_target_video_res()); // The video resolution is less than or equal to the target resolution, we // report a zero dropped rate for this case. if (targetRes >= aWidth * aHeight) { return 0; } double precision = TimerResolution(RTPCallerType::ResistFingerprinting) / 1000 / 1000; double time = floor(aTime / precision) * precision; // Bound the dropped ratio from 0 to 100. uint32_t boundedDroppedRatio = std::min(kVideoDroppedRatio, 100U); return NSToIntFloor(time * kVideoFramesPerSec * (boundedDroppedRatio / 100.0)); } /* static */ uint32_t nsRFPService::GetSpoofedPresentedFrames(double aTime, uint32_t aWidth, uint32_t aHeight) { uint32_t targetRes = CalculateTargetVideoResolution( StaticPrefs::privacy_resistFingerprinting_target_video_res()); // The target resolution is greater than the current resolution. For this // case, there will be no dropped frames, so we report total frames directly. if (targetRes >= aWidth * aHeight) { return GetSpoofedTotalFrames(aTime); } double precision = TimerResolution(RTPCallerType::ResistFingerprinting) / 1000 / 1000; double time = floor(aTime / precision) * precision; // Bound the dropped ratio from 0 to 100. uint32_t boundedDroppedRatio = std::min(kVideoDroppedRatio, 100U); return NSToIntFloor(time * kVideoFramesPerSec * ((100 - boundedDroppedRatio) / 100.0)); } static const char* GetSpoofedVersion() { #ifdef ANDROID // Return Desktop's ESR version. return "102.0"; #else return MOZILLA_UAVERSION; #endif } /* static */ void nsRFPService::GetSpoofedUserAgent(nsACString& userAgent, bool isForHTTPHeader) { // This function generates the spoofed value of User Agent. // We spoof the values of the platform and Firefox version, which could be // used as fingerprinting sources to identify individuals. // Reference of the format of User Agent: // https://developer.mozilla.org/en-US/docs/Web/API/NavigatorID/userAgent // https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent // These magic numbers are the lengths of the UA string literals below. // Assume three-digit Firefox version numbers so we have room to grow. size_t preallocatedLength = 13 + (isForHTTPHeader ? mozilla::ArrayLength(SPOOFED_HTTP_UA_OS) : mozilla::ArrayLength(SPOOFED_UA_OS)) - 1 + 5 + 3 + 10 + mozilla::ArrayLength(LEGACY_UA_GECKO_TRAIL) - 1 + 9 + 3 + 2; userAgent.SetCapacity(preallocatedLength); const char* spoofedVersion = GetSpoofedVersion(); // "Mozilla/5.0 (%s; rv:%d.0) Gecko/%d Firefox/%d.0" userAgent.AssignLiteral("Mozilla/5.0 ("); if (isForHTTPHeader) { userAgent.AppendLiteral(SPOOFED_HTTP_UA_OS); } else { userAgent.AppendLiteral(SPOOFED_UA_OS); } userAgent.AppendLiteral("; rv:"); userAgent.Append(spoofedVersion); userAgent.AppendLiteral(") Gecko/"); #if defined(ANDROID) userAgent.Append(spoofedVersion); #else userAgent.AppendLiteral(LEGACY_UA_GECKO_TRAIL); #endif userAgent.AppendLiteral(" Firefox/"); userAgent.Append(spoofedVersion); MOZ_ASSERT(userAgent.Length() <= preallocatedLength); } static const char* gCallbackPrefs[] = { RESIST_FINGERPRINTING_PREF, RFP_TIMER_PREF, RFP_TIMER_UNCONDITIONAL_PREF, RFP_TIMER_VALUE_PREF, RFP_JITTER_VALUE_PREF, nullptr, }; nsresult nsRFPService::Init() { MOZ_ASSERT(NS_IsMainThread()); nsresult rv; nsCOMPtr obs = mozilla::services::GetObserverService(); NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE); rv = obs->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false); NS_ENSURE_SUCCESS(rv, rv); #if defined(XP_WIN) rv = obs->AddObserver(this, PROFILE_INITIALIZED_TOPIC, false); NS_ENSURE_SUCCESS(rv, rv); #endif Preferences::RegisterCallbacks(nsRFPService::PrefChanged, gCallbackPrefs, this); // We backup the original TZ value here. const char* tzValue = PR_GetEnv("TZ"); if (tzValue != nullptr) { mInitialTZValue = nsCString(tzValue); } // Call Update here to cache the values of the prefs and set the timezone. UpdateRFPPref(); return rv; } // This function updates every fingerprinting item necessary except // timing-related void nsRFPService::UpdateRFPPref() { MOZ_ASSERT(NS_IsMainThread()); bool privacyResistFingerprinting = StaticPrefs::privacy_resistFingerprinting(); JS::SetReduceMicrosecondTimePrecisionCallback( nsRFPService::ReduceTimePrecisionAsUSecsWrapper); // set fdlibm pref JS::SetUseFdlibmForSinCosTan( StaticPrefs::javascript_options_use_fdlibm_for_sin_cos_tan() || privacyResistFingerprinting); if (privacyResistFingerprinting) { PR_SetEnv("TZ=UTC"); } else if (sInitialized) { // We will not touch the TZ value if 'privacy.resistFingerprinting' is false // during the time of initialization. if (!mInitialTZValue.IsEmpty()) { nsAutoCString tzValue = "TZ="_ns + mInitialTZValue; static char* tz = nullptr; // If the tz has been set before, we free it first since it will be // allocated a new value later. if (tz != nullptr) { free(tz); } // PR_SetEnv() needs the input string been leaked intentionally, so // we copy it here. tz = ToNewCString(tzValue, mozilla::fallible); if (tz != nullptr) { PR_SetEnv(tz); } } else { #if defined(XP_WIN) // For Windows, we reset the TZ to an empty string. This will make Windows // to use its system timezone. PR_SetEnv("TZ="); #else // For POSIX like system, we reset the TZ to the /etc/localtime, which is // the system timezone. PR_SetEnv("TZ=:/etc/localtime"); #endif } } // If and only if the time zone was changed above, propagate the change to the // functions and the JS runtime. if (privacyResistFingerprinting || sInitialized) { // localtime_r (and other functions) may not call tzset, so do this here // after changing TZ to ensure all functions use the new time zone. #if defined(XP_WIN) _tzset(); #else tzset(); #endif nsJSUtils::ResetTimeZone(); } } void nsRFPService::StartShutdown() { MOZ_ASSERT(NS_IsMainThread()); nsCOMPtr obs = mozilla::services::GetObserverService(); if (obs) { obs->RemoveObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID); } Preferences::UnregisterCallbacks(nsRFPService::PrefChanged, gCallbackPrefs, this); } /* static */ void nsRFPService::MaybeCreateSpoofingKeyCodes(const KeyboardLangs aLang, const KeyboardRegions aRegion) { if (sSpoofingKeyboardCodes == nullptr) { sSpoofingKeyboardCodes = new nsTHashMap(); } if (KeyboardLang::EN == aLang) { switch (aRegion) { case KeyboardRegion::US: MaybeCreateSpoofingKeyCodesForEnUS(); break; } } } /* static */ void nsRFPService::MaybeCreateSpoofingKeyCodesForEnUS() { MOZ_ASSERT(sSpoofingKeyboardCodes); static bool sInitialized = false; const KeyboardLangs lang = KeyboardLang::EN; const KeyboardRegions reg = KeyboardRegion::US; if (sInitialized) { return; } static const SpoofingKeyboardInfo spoofingKeyboardInfoTable[] = { #define KEY(key_, _codeNameIdx, _keyCode, _modifier) \ {NS_LITERAL_STRING_FROM_CSTRING(key_), \ KEY_NAME_INDEX_USE_STRING, \ {CODE_NAME_INDEX_##_codeNameIdx, _keyCode, _modifier}}, #define CONTROL(keyNameIdx_, _codeNameIdx, _keyCode) \ {u""_ns, \ KEY_NAME_INDEX_##keyNameIdx_, \ {CODE_NAME_INDEX_##_codeNameIdx, _keyCode, MODIFIER_NONE}}, #include "KeyCodeConsensus_En_US.h" #undef CONTROL #undef KEY }; for (const auto& keyboardInfo : spoofingKeyboardInfoTable) { KeyboardHashKey key(lang, reg, keyboardInfo.mKeyIdx, keyboardInfo.mKey); MOZ_ASSERT(!sSpoofingKeyboardCodes->Contains(key), "Double-defining key code; fix your KeyCodeConsensus file"); sSpoofingKeyboardCodes->InsertOrUpdate(key, &keyboardInfo.mSpoofingCode); } sInitialized = true; } /* static */ void nsRFPService::GetKeyboardLangAndRegion(const nsAString& aLanguage, KeyboardLangs& aLocale, KeyboardRegions& aRegion) { nsAutoString langStr; nsAutoString regionStr; uint32_t partNum = 0; for (const nsAString& part : aLanguage.Split('-')) { if (partNum == 0) { langStr = part; } else { regionStr = part; break; } partNum++; } // We test each language here as well as the region. There are some cases that // only the language is given, we will use the default region code when this // happens. The default region should depend on the given language. if (langStr.EqualsLiteral(RFP_KEYBOARD_LANG_STRING_EN)) { aLocale = KeyboardLang::EN; // Give default values first. aRegion = KeyboardRegion::US; if (regionStr.EqualsLiteral(RFP_KEYBOARD_REGION_STRING_US)) { aRegion = KeyboardRegion::US; } } else { // There is no spoofed keyboard locale for the given language. We use the // default one in this case. aLocale = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG; aRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION; } } /* static */ bool nsRFPService::GetSpoofedKeyCodeInfo( const dom::Document* aDoc, const WidgetKeyboardEvent* aKeyboardEvent, SpoofingKeyboardCode& aOut) { MOZ_ASSERT(aKeyboardEvent); KeyboardLangs keyboardLang = RFP_DEFAULT_SPOOFING_KEYBOARD_LANG; KeyboardRegions keyboardRegion = RFP_DEFAULT_SPOOFING_KEYBOARD_REGION; // If the document is given, we use the content language which is get from the // document. Otherwise, we use the default one. if (aDoc != nullptr) { nsAutoString language; aDoc->GetContentLanguage(language); // If the content-langauge is not given, we try to get langauge from the // HTML lang attribute. if (language.IsEmpty()) { dom::Element* elm = aDoc->GetHtmlElement(); if (elm != nullptr) { elm->GetLang(language); } } // If two or more languages are given, per HTML5 spec, we should consider // it as 'unknown'. So we use the default one. if (!language.IsEmpty() && !language.Contains(char16_t(','))) { language.StripWhitespace(); GetKeyboardLangAndRegion(language, keyboardLang, keyboardRegion); } } MaybeCreateSpoofingKeyCodes(keyboardLang, keyboardRegion); KeyNameIndex keyIdx = aKeyboardEvent->mKeyNameIndex; nsAutoString keyName; if (keyIdx == KEY_NAME_INDEX_USE_STRING) { keyName = aKeyboardEvent->mKeyValue; } KeyboardHashKey key(keyboardLang, keyboardRegion, keyIdx, keyName); const SpoofingKeyboardCode* keyboardCode = sSpoofingKeyboardCodes->Get(key); if (keyboardCode != nullptr) { aOut = *keyboardCode; return true; } return false; } /* static */ bool nsRFPService::GetSpoofedModifierStates( const dom::Document* aDoc, const WidgetKeyboardEvent* aKeyboardEvent, const Modifiers aModifier, bool& aOut) { MOZ_ASSERT(aKeyboardEvent); // For modifier or control keys, we don't need to hide its modifier states. if (aKeyboardEvent->mKeyNameIndex != KEY_NAME_INDEX_USE_STRING) { return false; } // We will spoof the modifer state for Alt, Shift, and AltGraph. // We don't spoof the Control key, because it is often used // for command key combinations in web apps. if ((aModifier & (MODIFIER_ALT | MODIFIER_SHIFT | MODIFIER_ALTGRAPH)) != 0) { SpoofingKeyboardCode keyCodeInfo; if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) { aOut = ((keyCodeInfo.mModifierStates & aModifier) != 0); return true; } } return false; } /* static */ bool nsRFPService::GetSpoofedCode(const dom::Document* aDoc, const WidgetKeyboardEvent* aKeyboardEvent, nsAString& aOut) { MOZ_ASSERT(aKeyboardEvent); SpoofingKeyboardCode keyCodeInfo; if (!GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) { return false; } WidgetKeyboardEvent::GetDOMCodeName(keyCodeInfo.mCode, aOut); // We need to change the 'Left' with 'Right' if the location indicates // it's a right key. if (aKeyboardEvent->mLocation == dom::KeyboardEvent_Binding::DOM_KEY_LOCATION_RIGHT && StringEndsWith(aOut, u"Left"_ns)) { aOut.ReplaceLiteral(aOut.Length() - 4, 4, u"Right"); } return true; } /* static */ bool nsRFPService::GetSpoofedKeyCode(const dom::Document* aDoc, const WidgetKeyboardEvent* aKeyboardEvent, uint32_t& aOut) { MOZ_ASSERT(aKeyboardEvent); SpoofingKeyboardCode keyCodeInfo; if (GetSpoofedKeyCodeInfo(aDoc, aKeyboardEvent, keyCodeInfo)) { aOut = keyCodeInfo.mKeyCode; return true; } return false; } /* static */ TimerPrecisionType nsRFPService::GetTimerPrecisionType( RTPCallerType aRTPCallerType) { if (aRTPCallerType == RTPCallerType::SystemPrincipal) { return DangerouslyNone; } if (aRTPCallerType == RTPCallerType::ResistFingerprinting) { return RFP; } if (StaticPrefs::privacy_reduceTimerPrecision() && aRTPCallerType == RTPCallerType::CrossOriginIsolated) { return UnconditionalAKAHighRes; } if (StaticPrefs::privacy_reduceTimerPrecision()) { return Normal; } if (StaticPrefs::privacy_reduceTimerPrecision_unconditional()) { return UnconditionalAKAHighRes; } return DangerouslyNone; } /* static */ TimerPrecisionType nsRFPService::GetTimerPrecisionTypeRFPOnly( RTPCallerType aRTPCallerType) { if (aRTPCallerType == RTPCallerType::ResistFingerprinting) { return RFP; } if (StaticPrefs::privacy_reduceTimerPrecision_unconditional() && aRTPCallerType != RTPCallerType::SystemPrincipal) { return UnconditionalAKAHighRes; } return DangerouslyNone; } /* static */ void nsRFPService::TypeToText(TimerPrecisionType aType, nsACString& aText) { switch (aType) { case TimerPrecisionType::DangerouslyNone: aText.AssignLiteral("DangerouslyNone"); return; case TimerPrecisionType::Normal: aText.AssignLiteral("Normal"); return; case TimerPrecisionType::RFP: aText.AssignLiteral("RFP"); return; case TimerPrecisionType::UnconditionalAKAHighRes: aText.AssignLiteral("UnconditionalAKAHighRes"); return; default: MOZ_ASSERT(false, "Shouldn't go here"); aText.AssignLiteral("Unknown Enum Value"); return; } } // static void nsRFPService::PrefChanged(const char* aPref, void* aSelf) { static_cast(aSelf)->PrefChanged(aPref); } void nsRFPService::PrefChanged(const char* aPref) { nsDependentCString pref(aPref); if (pref.EqualsLiteral(RESIST_FINGERPRINTING_PREF)) { UpdateRFPPref(); #if defined(XP_WIN) if (!XRE_IsE10sParentProcess()) { // Windows does not follow POSIX. Updates to the TZ environment variable // are not reflected immediately on that platform as they are on UNIX // systems without this call. _tzset(); } #endif } } NS_IMETHODIMP nsRFPService::Observe(nsISupports* aObject, const char* aTopic, const char16_t* aMessage) { if (strcmp(NS_XPCOM_SHUTDOWN_OBSERVER_ID, aTopic) == 0) { StartShutdown(); } #if defined(XP_WIN) else if (!strcmp(PROFILE_INITIALIZED_TOPIC, aTopic)) { // If we're e10s, then we don't need to run this, since the child process // will simply inherit the environment variable from the parent process, in // which case it's unnecessary to call _tzset(). if (XRE_IsParentProcess() && !XRE_IsE10sParentProcess()) { // Windows does not follow POSIX. Updates to the TZ environment variable // are not reflected immediately on that platform as they are on UNIX // systems without this call. _tzset(); } nsCOMPtr obs = mozilla::services::GetObserverService(); NS_ENSURE_TRUE(obs, NS_ERROR_NOT_AVAILABLE); nsresult rv = obs->RemoveObserver(this, PROFILE_INITIALIZED_TOPIC); NS_ENSURE_SUCCESS(rv, rv); } #endif return NS_OK; }