/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTimerImpl.h" #include "TimerThread.h" #include "GeckoProfiler.h" #include "nsThreadUtils.h" #include "pratom.h" #include "nsIObserverService.h" #include "mozilla/Services.h" #include "mozilla/ChaosMode.h" #include "mozilla/ArenaAllocator.h" #include "mozilla/ArrayUtils.h" #include "mozilla/BinarySearch.h" #include "mozilla/OperatorNewExtensions.h" #include "mozilla/StaticPrefs_timer.h" #include using namespace mozilla; // Uncomment the following line to enable runtime stats during development. // #define TIMERS_RUNTIME_STATS #ifdef TIMERS_RUNTIME_STATS // This class gathers durations and displays some basic stats when destroyed. // It is intended to be used as a static variable (see `AUTO_TIMERS_STATS` // below), to display stats at the end of the program. class StaticTimersStats { public: explicit StaticTimersStats(const char* aName) : mName(aName) {} ~StaticTimersStats() { // Using unsigned long long for computations and printfs. using ULL = unsigned long long; ULL n = static_cast(mCount); if (n == 0) { printf("[%d] Timers stats `%s`: (nothing)\n", int(profiler_current_process_id().ToNumber()), mName); } else if (ULL sumNs = static_cast(mSumDurationsNs); sumNs == 0) { printf("[%d] Timers stats `%s`: %llu\n", int(profiler_current_process_id().ToNumber()), mName, n); } else { printf("[%d] Timers stats `%s`: %llu ns / %llu = %llu ns, max %llu ns\n", int(profiler_current_process_id().ToNumber()), mName, sumNs, n, sumNs / n, static_cast(mLongestDurationNs)); } } void AddDurationFrom(TimeStamp aStart) { // Duration between aStart and now, rounded to the nearest nanosecond. DurationNs duration = static_cast( (TimeStamp::Now() - aStart).ToMicroseconds() * 1000 + 0.5); mSumDurationsNs += duration; ++mCount; // Update mLongestDurationNs if this one is longer. for (;;) { DurationNs longest = mLongestDurationNs; if (MOZ_LIKELY(longest >= duration)) { // This duration is not the longest, nothing to do. break; } if (MOZ_LIKELY(mLongestDurationNs.compareExchange(longest, duration))) { // Successfully updated `mLongestDurationNs` with the new value. break; } // Otherwise someone else just updated `mLongestDurationNs`, we need to // try again by looping. } } void AddCount() { MOZ_ASSERT(mSumDurationsNs == 0, "Don't mix counts and durations"); ++mCount; } private: using DurationNs = uint64_t; using Count = uint32_t; Atomic mSumDurationsNs{0}; Atomic mLongestDurationNs{0}; Atomic mCount{0}; const char* mName; }; // RAII object that measures its scoped lifetime duration and reports it to a // `StaticTimersStats`. class MOZ_RAII AutoTimersStats { public: explicit AutoTimersStats(StaticTimersStats& aStats) : mStats(aStats), mStart(TimeStamp::Now()) {} ~AutoTimersStats() { mStats.AddDurationFrom(mStart); } private: StaticTimersStats& mStats; TimeStamp mStart; }; // Macro that should be used to collect basic statistics from measurements of // block durations, from where this macro is, until the end of its enclosing // scope. The name is used in the static variable name and when displaying stats // at the end of the program; Another location could use the same name but their // stats will not be combined, so use different name if these locations should // be distinguished. # define AUTO_TIMERS_STATS(name) \ static ::StaticTimersStats sStat##name(#name); \ ::AutoTimersStats autoStat##name(sStat##name); // This macro only counts the number of times it's used, not durations. // Don't mix with AUTO_TIMERS_STATS! # define COUNT_TIMERS_STATS(name) \ static ::StaticTimersStats sStat##name(#name); \ sStat##name.AddCount(); #else // TIMERS_RUNTIME_STATS # define AUTO_TIMERS_STATS(name) # define COUNT_TIMERS_STATS(name) #endif // TIMERS_RUNTIME_STATS else NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver) TimerThread::TimerThread() : Runnable("TimerThread"), mInitialized(false), mMonitor("TimerThread.mMonitor"), mShutdown(false), mWaiting(false), mNotified(false), mSleeping(false), mAllowedEarlyFiringMicroseconds(0) {} TimerThread::~TimerThread() { mThread = nullptr; NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread"); } namespace { class TimerObserverRunnable : public Runnable { public: explicit TimerObserverRunnable(nsIObserver* aObserver) : mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {} NS_DECL_NSIRUNNABLE private: nsCOMPtr mObserver; }; NS_IMETHODIMP TimerObserverRunnable::Run() { nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(mObserver, "sleep_notification", false); observerService->AddObserver(mObserver, "wake_notification", false); observerService->AddObserver(mObserver, "suspend_process_notification", false); observerService->AddObserver(mObserver, "resume_process_notification", false); } return NS_OK; } } // namespace namespace { // TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents. // It's needed to avoid contention over the default allocator lock when // firing timer events (see bug 733277). The thread-safety is required because // nsTimerEvent objects are allocated on the timer thread, and freed on another // thread. Because TimerEventAllocator has its own lock, contention over that // lock is limited to the allocation and deallocation of nsTimerEvent objects. // // Because this is layered over ArenaAllocator, it never shrinks -- even // "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list // for later recycling. So the amount of memory consumed will always be equal // to the high-water mark consumption. But nsTimerEvents are small and it's // unusual to have more than a few hundred of them, so this shouldn't be a // problem in practice. class TimerEventAllocator { private: struct FreeEntry { FreeEntry* mNext; }; ArenaAllocator<4096> mPool MOZ_GUARDED_BY(mMonitor); FreeEntry* mFirstFree MOZ_GUARDED_BY(mMonitor); mozilla::Monitor mMonitor; public: TimerEventAllocator() : mPool(), mFirstFree(nullptr), mMonitor("TimerEventAllocator") {} ~TimerEventAllocator() = default; void* Alloc(size_t aSize); void Free(void* aPtr); }; } // namespace // This is a nsICancelableRunnable because we can dispatch it to Workers and // those can be shut down at any time, and in these cases, Cancel() is called // instead of Run(). class nsTimerEvent final : public CancelableRunnable { public: NS_IMETHOD Run() override; nsresult Cancel() override { mTimer->Cancel(); return NS_OK; } #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY NS_IMETHOD GetName(nsACString& aName) override; #endif explicit nsTimerEvent(already_AddRefed aTimer, ProfilerThreadId aTimerThreadId) : mozilla::CancelableRunnable("nsTimerEvent"), mTimer(aTimer), mGeneration(mTimer->GetGeneration()), mTimerThreadId(aTimerThreadId) { // Note: We override operator new for this class, and the override is // fallible! sAllocatorUsers++; if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug) || profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) { mInitTime = TimeStamp::Now(); } } static void Init(); static void Shutdown(); static void DeleteAllocatorIfNeeded(); static void* operator new(size_t aSize) noexcept(true) { return sAllocator->Alloc(aSize); } void operator delete(void* aPtr) { sAllocator->Free(aPtr); sAllocatorUsers--; DeleteAllocatorIfNeeded(); } already_AddRefed ForgetTimer() { return mTimer.forget(); } private: nsTimerEvent(const nsTimerEvent&) = delete; nsTimerEvent& operator=(const nsTimerEvent&) = delete; nsTimerEvent& operator=(const nsTimerEvent&&) = delete; ~nsTimerEvent() { MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0, "This will result in us attempting to deallocate the " "nsTimerEvent allocator twice"); } TimeStamp mInitTime; RefPtr mTimer; const int32_t mGeneration; ProfilerThreadId mTimerThreadId; static TimerEventAllocator* sAllocator; static Atomic sAllocatorUsers; static Atomic sCanDeleteAllocator; }; TimerEventAllocator* nsTimerEvent::sAllocator = nullptr; Atomic nsTimerEvent::sAllocatorUsers; Atomic nsTimerEvent::sCanDeleteAllocator; namespace { void* TimerEventAllocator::Alloc(size_t aSize) { MOZ_ASSERT(aSize == sizeof(nsTimerEvent)); mozilla::MonitorAutoLock lock(mMonitor); void* p; if (mFirstFree) { p = mFirstFree; mFirstFree = mFirstFree->mNext; } else { p = mPool.Allocate(aSize, fallible); } return p; } void TimerEventAllocator::Free(void* aPtr) { mozilla::MonitorAutoLock lock(mMonitor); FreeEntry* entry = reinterpret_cast(aPtr); entry->mNext = mFirstFree; mFirstFree = entry; } } // namespace void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); } void nsTimerEvent::Shutdown() { sCanDeleteAllocator = true; DeleteAllocatorIfNeeded(); } void nsTimerEvent::DeleteAllocatorIfNeeded() { if (sCanDeleteAllocator && sAllocatorUsers == 0) { delete sAllocator; sAllocator = nullptr; } } #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY NS_IMETHODIMP nsTimerEvent::GetName(nsACString& aName) { bool current; MOZ_RELEASE_ASSERT( NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) && current); mTimer->GetName(aName); return NS_OK; } #endif NS_IMETHODIMP nsTimerEvent::Run() { if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) { TimeStamp now = TimeStamp::Now(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this, (now - mInitTime).ToMilliseconds())); } if (profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) { nsAutoCString name; mTimer->GetName(name); PROFILER_MARKER_TEXT( "PostTimerEvent", OTHER, MarkerOptions(MOZ_LIKELY(mInitTime) ? MarkerTiming::IntervalUntilNowFrom(mInitTime) : MarkerTiming::InstantNow(), MarkerThreadId(mTimerThreadId)), name); } mTimer->Fire(mGeneration); return NS_OK; } nsresult TimerThread::Init() { mMonitor.AssertCurrentThreadOwns(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Init [%d]\n", mInitialized)); if (!mInitialized) { nsTimerEvent::Init(); // We hold on to mThread to keep the thread alive. nsresult rv = NS_NewNamedThread("Timer", getter_AddRefs(mThread), this, {.stackSize = nsIThreadManager::DEFAULT_STACK_SIZE, .blockDispatch = true}); if (NS_FAILED(rv)) { mThread = nullptr; } else { RefPtr r = new TimerObserverRunnable(this); if (NS_IsMainThread()) { r->Run(); } else { NS_DispatchToMainThread(r); } } mInitialized = true; } if (!mThread) { return NS_ERROR_FAILURE; } return NS_OK; } nsresult TimerThread::Shutdown() { MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n")); if (!mThread) { return NS_ERROR_NOT_INITIALIZED; } nsTArray> timers; { // lock scope MonitorAutoLock lock(mMonitor); mShutdown = true; // notify the cond var so that Run() can return if (mWaiting) { mNotified = true; mMonitor.Notify(); } // Need to copy content of mTimers array to a local array // because call to timers' Cancel() (and release its self) // must not be done under the lock. Destructor of a callback // might potentially call some code reentering the same lock // that leads to unexpected behavior or deadlock. // See bug 422472. for (const UniquePtr& entry : mTimers) { timers.AppendElement(entry->Take()); } mTimers.Clear(); } for (const RefPtr& timer : timers) { if (timer) { timer->Cancel(); } } mThread->Shutdown(); // wait for the thread to die nsTimerEvent::Shutdown(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n")); return NS_OK; } namespace { struct MicrosecondsToInterval { PRIntervalTime operator[](size_t aMs) const { return PR_MicrosecondsToInterval(aMs); } }; struct IntervalComparator { int operator()(PRIntervalTime aInterval) const { return (0 < aInterval) ? -1 : 1; } }; } // namespace NS_IMETHODIMP TimerThread::Run() { MonitorAutoLock lock(mMonitor); mProfilerThreadId = profiler_current_thread_id(); // We need to know how many microseconds give a positive PRIntervalTime. This // is platform-dependent and we calculate it at runtime, finding a value |v| // such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in // the range [0, v) to find the ms-to-interval scale. uint32_t usForPosInterval = 1; while (PR_MicrosecondsToInterval(usForPosInterval) == 0) { usForPosInterval <<= 1; } size_t usIntervalResolution; BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval, IntervalComparator(), &usIntervalResolution); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1); // Half of the amount of microseconds needed to get positive PRIntervalTime. // We use this to decide how to round our wait times later mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2; bool forceRunNextTimer = false; while (!mShutdown) { // Have to use PRIntervalTime here, since PR_WaitCondVar takes it TimeDuration waitFor; bool forceRunThisTimer = forceRunNextTimer; forceRunNextTimer = false; if (mSleeping) { // Sleep for 0.1 seconds while not firing timers. uint32_t milliseconds = 100; if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) { milliseconds = ChaosMode::randomUint32LessThan(200); } waitFor = TimeDuration::FromMilliseconds(milliseconds); } else { waitFor = TimeDuration::Forever(); TimeStamp now = TimeStamp::Now(); RemoveLeadingCanceledTimersInternal(); if (!mTimers.IsEmpty()) { if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) { next: // NB: AddRef before the Release under RemoveTimerInternal to avoid // mRefCnt passing through zero, in case all other refs than the one // from mTimers have gone away (the last non-mTimers[i]-ref's Release // must be racing with us, blocked in gThread->RemoveTimer waiting // for TimerThread::mMonitor, under nsTimerImpl::Release. RefPtr timerRef(mTimers[0]->Take()); RemoveFirstTimerInternal(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("Timer thread woke up %fms from when it was supposed to\n", fabs((now - timerRef->mTimeout).ToMilliseconds()))); // We are going to let the call to PostTimerEvent here handle the // release of the timer so that we don't end up releasing the timer // on the TimerThread instead of on the thread it targets. { LogTimerEvent::Run run(timerRef.get()); PostTimerEvent(timerRef.forget()); } if (mShutdown) { break; } // Update now, as PostTimerEvent plus the locking may have taken a // tick or two, and we may goto next below. now = TimeStamp::Now(); } } RemoveLeadingCanceledTimersInternal(); if (!mTimers.IsEmpty()) { TimeStamp timeout = mTimers[0]->Value()->mTimeout; // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer // is due now or overdue. // // Note that we can only sleep for integer values of a certain // resolution. We use mAllowedEarlyFiringMicroseconds, calculated // before, to do the optimal rounding (i.e., of how to decide what // interval is so small we should not wait at all). double microseconds = (timeout - now).ToMicroseconds(); if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) { // The mean value of sFractions must be 1 to ensure that // the average of a long sequence of timeouts converges to the // actual sum of their times. static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f, 1.0f, 1.75f, 2.75f}; microseconds *= sFractions[ChaosMode::randomUint32LessThan( ArrayLength(sFractions))]; forceRunNextTimer = true; } if (microseconds < mAllowedEarlyFiringMicroseconds) { forceRunNextTimer = false; goto next; // round down; execute event now } waitFor = TimeDuration::FromMicroseconds(microseconds); if (waitFor.IsZero()) { // round up, wait the minimum time we can wait waitFor = TimeDuration::FromMicroseconds(1); } } if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) { if (waitFor == TimeDuration::Forever()) MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n")); else MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting for %f\n", waitFor.ToMilliseconds())); } } mWaiting = true; mNotified = false; { AUTO_PROFILER_TRACING_MARKER("TimerThread", "Wait", OTHER); mMonitor.Wait(waitFor); } if (mNotified) { forceRunNextTimer = false; } mWaiting = false; } return NS_OK; } nsresult TimerThread::AddTimer(nsTimerImpl* aTimer, const MutexAutoLock& aProofOfLock) { MonitorAutoLock lock(mMonitor); AUTO_TIMERS_STATS(TimerThread_AddTimer); if (!aTimer->mEventTarget) { return NS_ERROR_NOT_INITIALIZED; } nsresult rv = Init(); if (NS_FAILED(rv)) { return rv; } // Add the timer to our list. if (!AddTimerInternal(aTimer)) { return NS_ERROR_OUT_OF_MEMORY; } // Awaken the timer thread if: // - This is the new front timer, which may require the TimerThread to wake up // earlier than previously planned. AND/OR // - The delay is 0, which is usually meant to be run as soon as possible. // Note: Even if the thread is scheduled to wake up now/soon, on some // systems there could be a significant delay compared to notifying, which // is almost immediate; and some users of 0-delay depend on it being this // fast! if (mWaiting && (mTimers[0]->Value() == aTimer || aTimer->mDelay.IsZero())) { mNotified = true; mMonitor.Notify(); } if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) { struct TimerMarker { static constexpr Span MarkerTypeName() { return MakeStringSpan("Timer"); } static void StreamJSONMarkerData( baseprofiler::SpliceableJSONWriter& aWriter, const ProfilerString8View& aTimerName, uint32_t aDelay, MarkerThreadId aThreadId) { aWriter.StringProperty("name", aTimerName); aWriter.IntProperty("delay", aDelay); if (!aThreadId.IsUnspecified()) { // Tech note: If `ToNumber()` returns a uint64_t, the conversion to // int64_t is "implementation-defined" before C++20. This is // acceptable here, because this is a one-way conversion to a unique // identifier that's used to visually separate data by thread on the // front-end. aWriter.IntProperty("threadId", static_cast( aThreadId.ThreadId().ToNumber())); } } static MarkerSchema MarkerTypeDisplay() { using MS = MarkerSchema; MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable}; schema.AddKeyLabelFormatSearchable("name", "Name", MS::Format::String, MS::Searchable::Searchable); schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds); schema.SetTableLabel( "{marker.name} - {marker.data.name} - {marker.data.delay}"); return schema; } }; nsAutoCString name; aTimer->GetName(name, aProofOfLock); nsLiteralCString prefix("Anonymous_"); profiler_add_marker( "AddTimer", geckoprofiler::category::OTHER, MarkerOptions(MarkerThreadId(mProfilerThreadId), MarkerStack::MaybeCapture( StringHead(name, prefix.Length()) == prefix)), TimerMarker{}, name, aTimer->mDelay.ToMilliseconds(), MarkerThreadId::CurrentThread()); } return NS_OK; } nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer, const MutexAutoLock& aProofOfLock) { MonitorAutoLock lock(mMonitor); AUTO_TIMERS_STATS(TimerThread_RemoveTimer); // Remove the timer from our array. Tell callers that aTimer was not found // by returning NS_ERROR_NOT_AVAILABLE. if (!RemoveTimerInternal(aTimer)) { return NS_ERROR_NOT_AVAILABLE; } // Note: The timer thread is *not* awoken. // The removed-timer entry is just left null, and will be reused (by a new or // re-set timer) or discarded (when the timer thread logic handles non-null // timers around it). // If this was the front timer, and in the unlikely case that its entry is not // soon reused by a re-set timer, the timer thread will wake up at the // previously-scheduled time, but will quickly notice that there is no actual // pending timer, and will restart its wait until the following real timeout. if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) { nsAutoCString name; aTimer->GetName(name, aProofOfLock); nsLiteralCString prefix("Anonymous_"); PROFILER_MARKER_TEXT( "RemoveTimer", OTHER, MarkerOptions(MarkerThreadId(mProfilerThreadId), MarkerStack::MaybeCapture( StringHead(name, prefix.Length()) == prefix)), name); } return NS_OK; } TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault, uint32_t aSearchBound) { MonitorAutoLock lock(mMonitor); AUTO_TIMERS_STATS(TimerThread_FindNextFireTimeForCurrentThread); TimeStamp timeStamp = aDefault; uint32_t index = 0; #ifdef DEBUG TimeStamp firstTimeStamp; Entry* initialFirstEntry = nullptr; if (!mTimers.IsEmpty()) { initialFirstEntry = mTimers[0].get(); firstTimeStamp = mTimers[0]->Timeout(); } #endif auto end = mTimers.end(); while (end != mTimers.begin()) { nsTimerImpl* timer = mTimers[0]->Value(); if (timer) { if (timer->mTimeout > aDefault) { timeStamp = aDefault; break; } // Don't yield to timers created with the *_LOW_PRIORITY type. if (!timer->IsLowPriority()) { bool isOnCurrentThread = false; nsresult rv = timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread); if (NS_SUCCEEDED(rv) && isOnCurrentThread) { timeStamp = timer->mTimeout; break; } } if (++index > aSearchBound) { // Track the currently highest timeout so that we can bail out when we // reach the bound or when we find a timer for the current thread. // This won't give accurate information if we stop before finding // any timer for the current thread, but at least won't report too // long idle period. timeStamp = timer->mTimeout; break; } } std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan); --end; } while (end != mTimers.end()) { ++end; std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan); } #ifdef DEBUG if (!mTimers.IsEmpty()) { if (firstTimeStamp != mTimers[0]->Timeout()) { TimeStamp now = TimeStamp::Now(); printf_stderr( "firstTimeStamp %f, mTimers[0]->Timeout() %f, " "initialFirstTimer %p, current first %p\n", (firstTimeStamp - now).ToMilliseconds(), (mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry, mTimers[0].get()); } } MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout()); #endif return timeStamp; } // This function must be called from within a lock // Also: we hold the mutex for the nsTimerImpl. bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); aTimer->mMutex.AssertCurrentThreadOwns(); AUTO_TIMERS_STATS(TimerThread_AddTimerInternal); if (mShutdown) { return false; } TimeStamp now = TimeStamp::Now(); LogTimerEvent::LogDispatch(aTimer); UniquePtr* entry = mTimers.AppendElement( MakeUnique(now, aTimer->mTimeout, aTimer), mozilla::fallible); if (!entry) { return false; } std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan); return true; } // This function must be called from within a lock // Also: we hold the mutex for the nsTimerImpl. bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); aTimer->mMutex.AssertCurrentThreadOwns(); AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal); if (!aTimer) { COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_nullptr); return false; } if (!aTimer->mHolder) { COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_not_in_list); return false; } AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal_in_list); aTimer->mHolder->Forget(aTimer); return true; } void TimerThread::RemoveLeadingCanceledTimersInternal() { mMonitor.AssertCurrentThreadOwns(); AUTO_TIMERS_STATS(TimerThread_RemoveLeadingCanceledTimersInternal); // Move all canceled timers from the front of the list to // the back of the list using std::pop_heap(). We do this // without actually removing them from the list so we can // modify the nsTArray in a single bulk operation. auto sortedEnd = mTimers.end(); while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) { std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan); --sortedEnd; } // If there were no canceled timers then we are done. if (sortedEnd == mTimers.end()) { return; } // Finally, remove the canceled timers from the back of the // nsTArray. mTimers.RemoveLastElements(mTimers.end() - sortedEnd); } void TimerThread::RemoveFirstTimerInternal() { mMonitor.AssertCurrentThreadOwns(); AUTO_TIMERS_STATS(TimerThread_RemoveFirstTimerInternal); MOZ_ASSERT(!mTimers.IsEmpty()); std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan); mTimers.RemoveLastElement(); } void TimerThread::PostTimerEvent(already_AddRefed aTimerRef) { mMonitor.AssertCurrentThreadOwns(); AUTO_TIMERS_STATS(TimerThread_PostTimerEvent); RefPtr timer(aTimerRef); if (!timer->mEventTarget) { NS_ERROR("Attempt to post timer event to NULL event target"); return; } // XXX we may want to reuse this nsTimerEvent in the case of repeating timers. // Since we already addref'd 'timer', we don't need to addref here. // We will release either in ~nsTimerEvent(), or pass the reference back to // the caller. We need to copy the generation number from this timer into the // event, so we can avoid firing a timer that was re-initialized after being // canceled. nsCOMPtr target = timer->mEventTarget; void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent)); if (!p) { return; } RefPtr event = ::new (KnownNotNull, p) nsTimerEvent(timer.forget(), mProfilerThreadId); nsresult rv; { // We release mMonitor around the Dispatch because if the Dispatch interacts // with the timer API we'll deadlock. MonitorAutoUnlock unlock(mMonitor); rv = target->Dispatch(event, NS_DISPATCH_NORMAL); if (NS_FAILED(rv)) { timer = event->ForgetTimer(); // We do this to avoid possible deadlock by taking the two locks in a // different order than is used in RemoveTimer(). RemoveTimer() has // aTimer->mMutex first. We use timer.get() to keep static analysis // happy MutexAutoLock lock1(timer.get()->mMutex); MonitorAutoLock lock2(mMonitor); RemoveTimerInternal(timer.get()); } } } void TimerThread::DoBeforeSleep() { // Mainthread MonitorAutoLock lock(mMonitor); mSleeping = true; } // Note: wake may be notified without preceding sleep notification void TimerThread::DoAfterSleep() { // Mainthread MonitorAutoLock lock(mMonitor); mSleeping = false; // Wake up the timer thread to re-process the array to ensure the sleep delay // is correct, and fire any expired timers (perhaps quite a few) mNotified = true; PROFILER_MARKER_UNTYPED("AfterSleep", OTHER, MarkerThreadId(mProfilerThreadId)); mMonitor.Notify(); } NS_IMETHODIMP TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic, const char16_t* /* aData */) { if (StaticPrefs::timer_ignore_sleep_wake_notifications()) { return NS_OK; } if (strcmp(aTopic, "sleep_notification") == 0 || strcmp(aTopic, "suspend_process_notification") == 0) { DoBeforeSleep(); } else if (strcmp(aTopic, "wake_notification") == 0 || strcmp(aTopic, "resume_process_notification") == 0) { DoAfterSleep(); } return NS_OK; } uint32_t TimerThread::AllowedEarlyFiringMicroseconds() { MonitorAutoLock lock(mMonitor); return mAllowedEarlyFiringMicroseconds; }