1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#undef NDEBUG
#include <assert.h>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <memory>
#include "elfxx.h"
#include "mozilla/CheckedInt.h"
#define ver "1"
#define elfhack_data ".elfhack.data.v" ver
#define elfhack_text ".elfhack.text.v" ver
#ifndef R_ARM_V4BX
# define R_ARM_V4BX 0x28
#endif
#ifndef R_ARM_CALL
# define R_ARM_CALL 0x1c
#endif
#ifndef R_ARM_JUMP24
# define R_ARM_JUMP24 0x1d
#endif
#ifndef R_ARM_THM_JUMP24
# define R_ARM_THM_JUMP24 0x1e
#endif
char* rundir = nullptr;
template <typename T>
struct wrapped {
T value;
};
class Elf_Addr_Traits {
public:
typedef wrapped<Elf32_Addr> Type32;
typedef wrapped<Elf64_Addr> Type64;
template <class endian, typename R, typename T>
static inline void swap(T& t, R& r) {
r.value = endian::swap(t.value);
}
};
typedef serializable<Elf_Addr_Traits> Elf_Addr;
class ElfRelHack_Section : public ElfSection {
public:
ElfRelHack_Section(Elf_Shdr& s)
: ElfSection(s, nullptr, nullptr),
block_size((8 * s.sh_entsize - 1) * s.sh_entsize) {
name = elfhack_data;
};
void serialize(std::ofstream& file, unsigned char ei_class,
unsigned char ei_data) {
for (std::vector<Elf64_Addr>::iterator i = relr.begin(); i != relr.end();
++i) {
Elf_Addr out;
out.value = *i;
out.serialize(file, ei_class, ei_data);
}
}
bool isRelocatable() { return true; }
void push_back(Elf64_Addr offset) {
// The format used for the packed relocations is SHT_RELR, described in
// https://groups.google.com/g/generic-abi/c/bX460iggiKg/m/Jnz1lgLJAgAJ
// The gist of it is that an address is recorded, and the following words,
// if their LSB is 1, represent a bitmap of word-size-spaced relocations
// at the addresses that follow. There can be multiple such bitmaps, such
// that very long streaks of (possibly spaced) relocations can be recorded
// in a very compact way.
for (;;) {
// [block_start; block_start + block_size] represents the range of offsets
// the current bitmap can record. If the offset doesn't fall in that
// range, or if doesn't align properly to be recorded, we record the
// bitmap, and slide the block corresponding to a new bitmap. If the
// offset doesn't fall in the range for the new bitmap, or if there wasn't
// an active bitmap in the first place, we record the offset and start a
// new bitmap for the block that follows it.
if (!block_start || offset < block_start ||
offset >= block_start + block_size ||
(offset - block_start) % shdr.sh_entsize) {
if (bitmap) {
relr.push_back((bitmap << 1) | 1);
block_start += block_size;
bitmap = 0;
continue;
}
relr.push_back(offset);
block_start = offset + shdr.sh_entsize;
break;
}
bitmap |= 1ULL << ((offset - block_start) / shdr.sh_entsize);
break;
}
shdr.sh_size = relr.size() * shdr.sh_entsize;
}
private:
std::vector<Elf64_Addr> relr;
size_t block_size;
Elf64_Addr block_start = 0;
Elf64_Addr bitmap = 0;
};
class ElfRelHackCode_Section : public ElfSection {
public:
ElfRelHackCode_Section(Elf_Shdr& s, Elf& e,
ElfRelHack_Section& relhack_section, unsigned int init,
unsigned int mprotect_cb, unsigned int sysconf_cb)
: ElfSection(s, nullptr, nullptr),
parent(e),
relhack_section(relhack_section),
init(init),
init_trampoline(nullptr),
mprotect_cb(mprotect_cb),
sysconf_cb(sysconf_cb) {
std::string file(rundir);
file += "/inject/";
switch (parent.getMachine()) {
case EM_386:
file += "x86";
break;
case EM_X86_64:
file += "x86_64";
break;
case EM_ARM:
file += "arm";
break;
case EM_AARCH64:
file += "aarch64";
break;
default:
throw std::runtime_error("unsupported architecture");
}
file += ".o";
std::ifstream inject(file.c_str(), std::ios::in | std::ios::binary);
elf = new Elf(inject);
if (elf->getType() != ET_REL)
throw std::runtime_error("object for injected code is not ET_REL");
if (elf->getMachine() != parent.getMachine())
throw std::runtime_error(
"architecture of object for injected code doesn't match");
ElfSymtab_Section* symtab = nullptr;
// Find the symbol table.
for (ElfSection* section = elf->getSection(1); section != nullptr;
section = section->getNext()) {
if (section->getType() == SHT_SYMTAB)
symtab = (ElfSymtab_Section*)section;
}
if (symtab == nullptr)
throw std::runtime_error(
"Couldn't find a symbol table for the injected code");
relro = parent.getSegmentByType(PT_GNU_RELRO);
// Find the init symbol
entry_point = -1;
std::string symbol = "init";
if (!init) symbol += "_noinit";
if (relro) symbol += "_relro";
Elf_SymValue* sym = symtab->lookup(symbol.c_str());
if (!sym)
throw std::runtime_error(
"Couldn't find an 'init' symbol in the injected code");
entry_point = sym->value.getValue();
// Get all relevant sections from the injected code object.
add_code_section(sym->value.getSection());
// If the original init function is located too far away, we're going to
// need to use a trampoline. See comment in inject.c.
// Theoretically, we should check for (init - instr) > 0xffffff, where instr
// is the virtual address of the instruction that calls the original init,
// but we don't have it at this point, so punt to just init.
if (init > 0xffffff && parent.getMachine() == EM_ARM) {
Elf_SymValue* trampoline = symtab->lookup("init_trampoline");
if (!trampoline) {
throw std::runtime_error(
"Couldn't find an 'init_trampoline' symbol in the injected code");
}
init_trampoline = trampoline->value.getSection();
add_code_section(init_trampoline);
}
// Adjust code sections offsets according to their size
std::vector<ElfSection*>::iterator c = code.begin();
(*c)->getShdr().sh_addr = 0;
for (ElfSection* last = *(c++); c != code.end(); ++c) {
unsigned int addr = last->getShdr().sh_addr + last->getSize();
if (addr & ((*c)->getAddrAlign() - 1))
addr = (addr | ((*c)->getAddrAlign() - 1)) + 1;
(*c)->getShdr().sh_addr = addr;
// We need to align this section depending on the greater
// alignment required by code sections.
if (shdr.sh_addralign < (*c)->getAddrAlign())
shdr.sh_addralign = (*c)->getAddrAlign();
last = *c;
}
shdr.sh_size = code.back()->getAddr() + code.back()->getSize();
data = static_cast<char*>(malloc(shdr.sh_size));
if (!data) {
throw std::runtime_error("Could not malloc ElfSection data");
}
char* buf = data;
for (c = code.begin(); c != code.end(); ++c) {
memcpy(buf, (*c)->getData(), (*c)->getSize());
buf += (*c)->getSize();
}
name = elfhack_text;
}
~ElfRelHackCode_Section() { delete elf; }
void serialize(std::ofstream& file, unsigned char ei_class,
unsigned char ei_data) override {
// Readjust code offsets
for (std::vector<ElfSection*>::iterator c = code.begin(); c != code.end();
++c)
(*c)->getShdr().sh_addr += getAddr();
// Apply relocations
for (std::vector<ElfSection*>::iterator c = code.begin(); c != code.end();
++c) {
for (ElfSection* rel = elf->getSection(1); rel != nullptr;
rel = rel->getNext())
if (((rel->getType() == SHT_REL) || (rel->getType() == SHT_RELA)) &&
(rel->getInfo().section == *c)) {
if (rel->getType() == SHT_REL)
apply_relocations((ElfRel_Section<Elf_Rel>*)rel, *c);
else
apply_relocations((ElfRel_Section<Elf_Rela>*)rel, *c);
}
}
ElfSection::serialize(file, ei_class, ei_data);
}
bool isRelocatable() override { return false; }
unsigned int getEntryPoint() { return entry_point; }
void insertBefore(ElfSection* section, bool dirty = true) override {
// Adjust the address so that this section is adjacent to the one it's
// being inserted before. This avoids creating holes which subsequently
// might lead the PHDR-adjusting code to create unnecessary additional
// PT_LOADs.
shdr.sh_addr =
(section->getAddr() - shdr.sh_size) & ~(shdr.sh_addralign - 1);
ElfSection::insertBefore(section, dirty);
}
private:
void add_code_section(ElfSection* section) {
if (section) {
/* Don't add section if it's already been added in the past */
for (auto s = code.begin(); s != code.end(); ++s) {
if (section == *s) return;
}
code.push_back(section);
find_code(section);
}
}
/* Look at the relocations associated to the given section to find other
* sections that it requires */
void find_code(ElfSection* section) {
for (ElfSection* s = elf->getSection(1); s != nullptr; s = s->getNext()) {
if (((s->getType() == SHT_REL) || (s->getType() == SHT_RELA)) &&
(s->getInfo().section == section)) {
if (s->getType() == SHT_REL)
scan_relocs_for_code((ElfRel_Section<Elf_Rel>*)s);
else
scan_relocs_for_code((ElfRel_Section<Elf_Rela>*)s);
}
}
}
template <typename Rel_Type>
void scan_relocs_for_code(ElfRel_Section<Rel_Type>* rel) {
ElfSymtab_Section* symtab = (ElfSymtab_Section*)rel->getLink();
for (auto r = rel->rels.begin(); r != rel->rels.end(); ++r) {
ElfSection* section =
symtab->syms[ELF64_R_SYM(r->r_info)].value.getSection();
add_code_section(section);
}
}
// TODO: sort out which non-aarch64 relocation types should be using
// `value` (even though in practice it's either 0 or the same as addend)
class pc32_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
return addr + addend - offset - base_addr;
}
};
class arm_plt32_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
// We don't care about sign_extend because the only case where this is
// going to be used only jumps forward.
Elf32_Addr tmp = (Elf32_Addr)(addr - offset - base_addr) >> 2;
tmp = (addend + tmp) & 0x00ffffff;
return (addend & 0xff000000) | tmp;
}
};
class arm_thm_jump24_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
/* Follows description of b.w and bl instructions as per
ARM Architecture Reference Manual ARM® v7-A and ARM® v7-R edition,
A8.6.16 We limit ourselves to Encoding T4 of b.w and Encoding T1 of bl.
We don't care about sign_extend because the only case where this is
going to be used only jumps forward. */
Elf32_Addr tmp = (Elf32_Addr)(addr - offset - base_addr);
unsigned int word0 = addend & 0xffff, word1 = addend >> 16;
/* Encoding T4 of B.W is 10x1 ; Encoding T1 of BL is 11x1. */
unsigned int type = (word1 & 0xd000) >> 12;
if (((word0 & 0xf800) != 0xf000) || ((type & 0x9) != 0x9))
throw std::runtime_error(
"R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for B.W "
"<label> and BL <label>");
/* When the target address points to ARM code, switch a BL to a
* BLX. This however can't be done with a B.W without adding a
* trampoline, which is not supported as of now. */
if ((addr & 0x1) == 0) {
if (type == 0x9)
throw std::runtime_error(
"R_ARM_THM_JUMP24/R_ARM_THM_CALL relocation only supported for "
"BL <label> when label points to ARM code");
/* The address of the target is always relative to a 4-bytes
* aligned address, so if the address of the BL instruction is
* not 4-bytes aligned, adjust for it. */
if ((base_addr + offset) & 0x2) tmp += 2;
/* Encoding T2 of BLX is 11x0. */
type = 0xc;
}
unsigned int s = (word0 & (1 << 10)) >> 10;
unsigned int j1 = (word1 & (1 << 13)) >> 13;
unsigned int j2 = (word1 & (1 << 11)) >> 11;
unsigned int i1 = j1 ^ s ? 0 : 1;
unsigned int i2 = j2 ^ s ? 0 : 1;
tmp += ((s << 24) | (i1 << 23) | (i2 << 22) | ((word0 & 0x3ff) << 12) |
((word1 & 0x7ff) << 1));
s = (tmp & (1 << 24)) >> 24;
j1 = ((tmp & (1 << 23)) >> 23) ^ !s;
j2 = ((tmp & (1 << 22)) >> 22) ^ !s;
return 0xf000 | (s << 10) | ((tmp & (0x3ff << 12)) >> 12) | (type << 28) |
(j1 << 29) | (j2 << 27) | ((tmp & 0xffe) << 15);
}
};
class gotoff_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
return addr + addend;
}
};
template <int start, int end>
class abs_lo12_nc_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
// Fill the bits [end:start] of the immediate value in an ADD, LDR or STR
// instruction, at bits [21:10].
// per ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture
// profile C5.6.4, C5.6.83 or C5.6.178 and ELF for the ARM® 64-bit
// Architecture (AArch64) 4.6.6, Table 4-9.
Elf64_Word mask = (1 << (end + 1)) - 1;
return value | (((((addr + addend) & mask) >> start) & 0xfff) << 10);
}
};
class adr_prel_pg_hi21_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
// Fill the bits [32:12] of the immediate value in a ADRP instruction,
// at bits [23:5]+[30:29].
// per ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture
// profile C5.6.10 and ELF for the ARM® 64-bit Architecture
// (AArch64) 4.6.6, Table 4-9.
Elf64_Word imm = ((addr + addend) >> 12) - ((base_addr + offset) >> 12);
Elf64_Word immLo = (imm & 0x3) << 29;
Elf64_Word immHi = (imm & 0x1ffffc) << 3;
return value & 0x9f00001f | immLo | immHi;
}
};
class call26_relocation {
public:
Elf32_Addr operator()(unsigned int base_addr, Elf64_Off offset,
Elf64_Sxword addend, unsigned int addr,
Elf64_Word value) {
// Fill the bits [27:2] of the immediate value in a BL instruction,
// at bits [25:0].
// per ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture
// profile C5.6.26 and ELF for the ARM® 64-bit Architecture
// (AArch64) 4.6.6, Table 4-10.
return value | (((addr + addend - offset - base_addr) & 0x0ffffffc) >> 2);
}
};
template <class relocation_type>
void apply_relocation(ElfSection* the_code, char* base, Elf_Rel* r,
unsigned int addr) {
relocation_type relocation;
Elf32_Addr value;
memcpy(&value, base + r->r_offset, 4);
value = relocation(the_code->getAddr(), r->r_offset, value, addr, value);
memcpy(base + r->r_offset, &value, 4);
}
template <class relocation_type>
void apply_relocation(ElfSection* the_code, char* base, Elf_Rela* r,
unsigned int addr) {
relocation_type relocation;
Elf64_Word value;
memcpy(&value, base + r->r_offset, 4);
Elf32_Addr new_value =
relocation(the_code->getAddr(), r->r_offset, r->r_addend, addr, value);
memcpy(base + r->r_offset, &new_value, 4);
}
template <typename Rel_Type>
void apply_relocations(ElfRel_Section<Rel_Type>* rel, ElfSection* the_code) {
assert(rel->getType() == Rel_Type::sh_type);
char* buf = data + (the_code->getAddr() - code.front()->getAddr());
// TODO: various checks on the sections
ElfSymtab_Section* symtab = (ElfSymtab_Section*)rel->getLink();
for (typename std::vector<Rel_Type>::iterator r = rel->rels.begin();
r != rel->rels.end(); ++r) {
// TODO: various checks on the symbol
const char* name = symtab->syms[ELF64_R_SYM(r->r_info)].name;
unsigned int addr;
if (symtab->syms[ELF64_R_SYM(r->r_info)].value.getSection() == nullptr) {
if (strcmp(name, "relhack") == 0) {
addr = relhack_section.getAddr();
} else if (strcmp(name, "elf_header") == 0) {
// TODO: change this ungly hack to something better
ElfSection* ehdr = parent.getSection(1)->getPrevious()->getPrevious();
addr = ehdr->getAddr();
} else if (strcmp(name, "original_init") == 0) {
if (init_trampoline) {
addr = init_trampoline->getAddr();
} else {
addr = init;
}
} else if (strcmp(name, "real_original_init") == 0) {
addr = init;
} else if (relro && strcmp(name, "mprotect_cb") == 0) {
addr = mprotect_cb;
} else if (relro && strcmp(name, "sysconf_cb") == 0) {
addr = sysconf_cb;
} else if (relro && strcmp(name, "relro_start") == 0) {
addr = relro->getAddr();
} else if (relro && strcmp(name, "relro_end") == 0) {
addr = (relro->getAddr() + relro->getMemSize());
} else if (strcmp(name, "_GLOBAL_OFFSET_TABLE_") == 0) {
// We actually don't need a GOT, but need it as a reference for
// GOTOFF relocations. We'll just use the start of the ELF file
addr = 0;
} else if (strcmp(name, "") == 0) {
// This is for R_ARM_V4BX, until we find something better
addr = -1;
} else {
throw std::runtime_error("Unsupported symbol in relocation");
}
} else {
ElfSection* section =
symtab->syms[ELF64_R_SYM(r->r_info)].value.getSection();
assert((section->getType() == SHT_PROGBITS) &&
(section->getFlags() & SHF_EXECINSTR));
addr = symtab->syms[ELF64_R_SYM(r->r_info)].value.getValue();
}
// Do the relocation
#define REL(machine, type) (EM_##machine | (R_##machine##_##type << 8))
switch (elf->getMachine() | (ELF64_R_TYPE(r->r_info) << 8)) {
case REL(X86_64, PC32):
case REL(X86_64, PLT32):
case REL(386, PC32):
case REL(386, GOTPC):
case REL(ARM, GOTPC):
case REL(ARM, REL32):
case REL(AARCH64, PREL32):
apply_relocation<pc32_relocation>(the_code, buf, &*r, addr);
break;
case REL(ARM, CALL):
case REL(ARM, JUMP24):
case REL(ARM, PLT32):
apply_relocation<arm_plt32_relocation>(the_code, buf, &*r, addr);
break;
case REL(ARM, THM_PC22 /* THM_CALL */):
case REL(ARM, THM_JUMP24):
apply_relocation<arm_thm_jump24_relocation>(the_code, buf, &*r, addr);
break;
case REL(386, GOTOFF):
case REL(ARM, GOTOFF):
apply_relocation<gotoff_relocation>(the_code, buf, &*r, addr);
break;
case REL(AARCH64, ADD_ABS_LO12_NC):
apply_relocation<abs_lo12_nc_relocation<0, 11>>(the_code, buf, &*r,
addr);
break;
case REL(AARCH64, ADR_PREL_PG_HI21):
apply_relocation<adr_prel_pg_hi21_relocation>(the_code, buf, &*r,
addr);
break;
case REL(AARCH64, LDST32_ABS_LO12_NC):
apply_relocation<abs_lo12_nc_relocation<2, 11>>(the_code, buf, &*r,
addr);
break;
case REL(AARCH64, LDST64_ABS_LO12_NC):
apply_relocation<abs_lo12_nc_relocation<3, 11>>(the_code, buf, &*r,
addr);
break;
case REL(AARCH64, CALL26):
apply_relocation<call26_relocation>(the_code, buf, &*r, addr);
break;
case REL(ARM, V4BX):
// Ignore R_ARM_V4BX relocations
break;
default:
throw std::runtime_error("Unsupported relocation type");
}
}
}
Elf *elf, &parent;
ElfRelHack_Section& relhack_section;
std::vector<ElfSection*> code;
unsigned int init;
ElfSection* init_trampoline;
unsigned int mprotect_cb;
unsigned int sysconf_cb;
int entry_point;
ElfSegment* relro;
};
unsigned int get_addend(Elf_Rel* rel, Elf* elf) {
ElfLocation loc(rel->r_offset, elf);
Elf_Addr addr(loc.getBuffer(), Elf_Addr::size(elf->getClass()),
elf->getClass(), elf->getData());
return addr.value;
}
unsigned int get_addend(Elf_Rela* rel, Elf* elf) { return rel->r_addend; }
void set_relative_reloc(Elf_Rel* rel, Elf* elf, unsigned int value) {
ElfLocation loc(rel->r_offset, elf);
Elf_Addr addr;
addr.value = value;
addr.serialize(const_cast<char*>(loc.getBuffer()),
Elf_Addr::size(elf->getClass()), elf->getClass(),
elf->getData());
}
void set_relative_reloc(Elf_Rela* rel, Elf* elf, unsigned int value) {
// ld puts the value of relocated relocations both in the addend and
// at r_offset. For consistency, keep it that way.
set_relative_reloc((Elf_Rel*)rel, elf, value);
rel->r_addend = value;
}
void maybe_split_segment(Elf* elf, ElfSegment* segment) {
std::list<ElfSection*>::iterator it = segment->begin();
for (ElfSection* last = *(it++); it != segment->end(); last = *(it++)) {
// When two consecutive non-SHT_NOBITS sections are apart by more
// than the alignment of the section, the second can be moved closer
// to the first, but this requires the segment to be split.
if (((*it)->getType() != SHT_NOBITS) && (last->getType() != SHT_NOBITS) &&
((*it)->getOffset() - last->getOffset() - last->getSize() >
segment->getAlign())) {
// Probably very wrong.
Elf_Phdr phdr;
phdr.p_type = PT_LOAD;
phdr.p_vaddr = 0;
phdr.p_paddr = phdr.p_vaddr + segment->getVPDiff();
phdr.p_flags = segment->getFlags();
phdr.p_align = segment->getAlign();
phdr.p_filesz = (Elf64_Xword)-1LL;
phdr.p_memsz = (Elf64_Xword)-1LL;
ElfSegment* newSegment = new ElfSegment(&phdr);
elf->insertSegmentAfter(segment, newSegment);
for (; it != segment->end(); ++it) {
newSegment->addSection(*it);
}
for (it = newSegment->begin(); it != newSegment->end(); ++it) {
segment->removeSection(*it);
}
break;
}
}
}
// EH_FRAME constants
static const unsigned char DW_EH_PE_absptr = 0x00;
static const unsigned char DW_EH_PE_omit = 0xff;
// Data size
static const unsigned char DW_EH_PE_LEB128 = 0x01;
static const unsigned char DW_EH_PE_data2 = 0x02;
static const unsigned char DW_EH_PE_data4 = 0x03;
static const unsigned char DW_EH_PE_data8 = 0x04;
// Data signedness
static const unsigned char DW_EH_PE_signed = 0x08;
// Modifiers
static const unsigned char DW_EH_PE_pcrel = 0x10;
// Return the data size part of the encoding value
static unsigned char encoding_data_size(unsigned char encoding) {
return encoding & 0x07;
}
// Advance `step` bytes in the buffer at `data` with size `size`, returning
// the advanced buffer pointer and remaining size.
// Returns true if step <= size.
static bool advance_buffer(char** data, size_t* size, size_t step) {
if (step > *size) return false;
*data += step;
*size -= step;
return true;
}
// Advance in the given buffer, skipping the full length of the variable-length
// encoded LEB128 type in CIE/FDE data.
static bool skip_LEB128(char** data, size_t* size) {
if (!*size) return false;
while (*size && (*(*data)++ & (char)0x80)) {
(*size)--;
}
return true;
}
// Advance in the given buffer, skipping the full length of a pointer encoded
// with the given encoding.
static bool skip_eh_frame_pointer(char** data, size_t* size,
unsigned char encoding) {
switch (encoding_data_size(encoding)) {
case DW_EH_PE_data2:
return advance_buffer(data, size, 2);
case DW_EH_PE_data4:
return advance_buffer(data, size, 4);
case DW_EH_PE_data8:
return advance_buffer(data, size, 8);
case DW_EH_PE_LEB128:
return skip_LEB128(data, size);
}
throw std::runtime_error("unreachable");
}
// Specialized implementations for adjust_eh_frame_pointer().
template <typename T>
static bool adjust_eh_frame_sized_pointer(char** data, size_t* size,
ElfSection* eh_frame,
unsigned int origAddr, Elf* elf) {
if (*size < sizeof(T)) return false;
serializable<FixedSizeData<T>> pointer(*data, *size, elf->getClass(),
elf->getData());
mozilla::CheckedInt<T> value = pointer.value;
if (origAddr < eh_frame->getAddr()) {
unsigned int diff = eh_frame->getAddr() - origAddr;
value -= diff;
} else {
unsigned int diff = origAddr - eh_frame->getAddr();
value += diff;
}
if (!value.isValid())
throw std::runtime_error("Overflow while adjusting eh_frame");
pointer.value = value.value();
pointer.serialize(*data, *size, elf->getClass(), elf->getData());
return advance_buffer(data, size, sizeof(T));
}
// In the given eh_frame section, adjust the pointer with the given encoding,
// pointed to by the given buffer (`data`, `size`), considering the eh_frame
// section was originally at `origAddr`. Also advances in the buffer.
static bool adjust_eh_frame_pointer(char** data, size_t* size,
unsigned char encoding,
ElfSection* eh_frame, unsigned int origAddr,
Elf* elf) {
if ((encoding & 0x70) != DW_EH_PE_pcrel)
return skip_eh_frame_pointer(data, size, encoding);
if (encoding & DW_EH_PE_signed) {
switch (encoding_data_size(encoding)) {
case DW_EH_PE_data2:
return adjust_eh_frame_sized_pointer<int16_t>(data, size, eh_frame,
origAddr, elf);
case DW_EH_PE_data4:
return adjust_eh_frame_sized_pointer<int32_t>(data, size, eh_frame,
origAddr, elf);
case DW_EH_PE_data8:
return adjust_eh_frame_sized_pointer<int64_t>(data, size, eh_frame,
origAddr, elf);
}
} else {
switch (encoding_data_size(encoding)) {
case DW_EH_PE_data2:
return adjust_eh_frame_sized_pointer<uint16_t>(data, size, eh_frame,
origAddr, elf);
case DW_EH_PE_data4:
return adjust_eh_frame_sized_pointer<uint32_t>(data, size, eh_frame,
origAddr, elf);
case DW_EH_PE_data8:
return adjust_eh_frame_sized_pointer<uint64_t>(data, size, eh_frame,
origAddr, elf);
}
}
throw std::runtime_error("Unsupported eh_frame pointer encoding");
}
// The eh_frame section may contain "PC"-relative pointers. If we move the
// section, those need to be adjusted. Other type of pointers are relative to
// sections we don't touch.
static void adjust_eh_frame(ElfSection* eh_frame, unsigned int origAddr,
Elf* elf) {
if (eh_frame->getAddr() == origAddr) // nothing to do;
return;
char* data = const_cast<char*>(eh_frame->getData());
size_t size = eh_frame->getSize();
unsigned char LSDAencoding = DW_EH_PE_omit;
unsigned char FDEencoding = DW_EH_PE_absptr;
bool hasZ = false;
// Decoding of eh_frame based on https://www.airs.com/blog/archives/460
while (size) {
if (size < sizeof(uint32_t)) goto malformed;
serializable<FixedSizeData<uint32_t>> entryLength(
data, size, elf->getClass(), elf->getData());
if (!advance_buffer(&data, &size, sizeof(uint32_t))) goto malformed;
char* cursor = data;
size_t length = entryLength.value;
if (length == 0) {
continue;
}
if (size < sizeof(uint32_t)) goto malformed;
serializable<FixedSizeData<uint32_t>> id(data, size, elf->getClass(),
elf->getData());
if (!advance_buffer(&cursor, &length, sizeof(uint32_t))) goto malformed;
if (id.value == 0) {
// This is a Common Information Entry
if (length < 2) goto malformed;
// Reset LSDA and FDE encodings, and hasZ for subsequent FDEs.
LSDAencoding = DW_EH_PE_omit;
FDEencoding = DW_EH_PE_absptr;
hasZ = false;
// CIE version. Should only be 1 or 3.
char version = *cursor++;
length--;
if (version != 1 && version != 3) {
throw std::runtime_error("Unsupported eh_frame version");
}
// NUL terminated string.
const char* augmentationString = cursor;
size_t l = strnlen(augmentationString, length - 1);
if (l == length - 1) goto malformed;
if (!advance_buffer(&cursor, &length, l + 1)) goto malformed;
// Skip code alignment factor (LEB128)
if (!skip_LEB128(&cursor, &length)) goto malformed;
// Skip data alignment factor (LEB128)
if (!skip_LEB128(&cursor, &length)) goto malformed;
// Skip return address register (single byte in CIE version 1, LEB128
// in CIE version 3)
if (version == 1) {
if (!advance_buffer(&cursor, &length, 1)) goto malformed;
} else {
if (!skip_LEB128(&cursor, &length)) goto malformed;
}
// Past this, it's data driven by the contents of the augmentation string.
for (size_t i = 0; i < l; i++) {
if (!length) goto malformed;
switch (augmentationString[i]) {
case 'z':
if (!skip_LEB128(&cursor, &length)) goto malformed;
hasZ = true;
break;
case 'L':
LSDAencoding = *cursor++;
length--;
break;
case 'R':
FDEencoding = *cursor++;
length--;
break;
case 'P': {
unsigned char encoding = (unsigned char)*cursor++;
length--;
if (!adjust_eh_frame_pointer(&cursor, &length, encoding, eh_frame,
origAddr, elf))
goto malformed;
} break;
default:
goto malformed;
}
}
} else {
// This is a Frame Description Entry
// Starting address
if (!adjust_eh_frame_pointer(&cursor, &length, FDEencoding, eh_frame,
origAddr, elf))
goto malformed;
if (LSDAencoding != DW_EH_PE_omit) {
// Skip number of bytes, same size as the starting address.
if (!skip_eh_frame_pointer(&cursor, &length, FDEencoding))
goto malformed;
if (hasZ) {
if (!skip_LEB128(&cursor, &length)) goto malformed;
}
// pointer to the LSDA.
if (!adjust_eh_frame_pointer(&cursor, &length, LSDAencoding, eh_frame,
origAddr, elf))
goto malformed;
}
}
data += entryLength.value;
size -= entryLength.value;
}
return;
malformed:
throw std::runtime_error("malformed .eh_frame");
}
template <typename Rel_Type>
int do_relocation_section(Elf* elf, unsigned int rel_type,
unsigned int rel_type2, bool force) {
ElfDynamic_Section* dyn = elf->getDynSection();
if (dyn == nullptr) {
fprintf(stderr, "Couldn't find SHT_DYNAMIC section\n");
return -1;
}
ElfRel_Section<Rel_Type>* section =
(ElfRel_Section<Rel_Type>*)dyn->getSectionForType(Rel_Type::d_tag);
if (section == nullptr) {
fprintf(stderr, "No relocations\n");
return -1;
}
assert(section->getType() == Rel_Type::sh_type);
Elf64_Shdr relhack64_section = {0,
SHT_PROGBITS,
SHF_ALLOC,
0,
(Elf64_Off)-1LL,
0,
SHN_UNDEF,
0,
Elf_Addr::size(elf->getClass()),
Elf_Addr::size(elf->getClass())};
Elf64_Shdr relhackcode64_section = {0,
SHT_PROGBITS,
SHF_ALLOC | SHF_EXECINSTR,
0,
(Elf64_Off)-1LL,
0,
SHN_UNDEF,
0,
1,
0};
unsigned int entry_sz = Elf_Addr::size(elf->getClass());
// The injected code needs to be executed before any init code in the
// binary. There are three possible cases:
// - The binary has no init code at all. In this case, we will add a
// DT_INIT entry pointing to the injected code.
// - The binary has a DT_INIT entry. In this case, we will interpose:
// we change DT_INIT to point to the injected code, and have the
// injected code call the original DT_INIT entry point.
// - The binary has no DT_INIT entry, but has a DT_INIT_ARRAY. In this
// case, we interpose as well, by replacing the first entry in the
// array to point to the injected code, and have the injected code
// call the original first entry.
// The binary may have .ctors instead of DT_INIT_ARRAY, for its init
// functions, but this falls into the second case above, since .ctors
// are actually run by DT_INIT code.
ElfValue* value = dyn->getValueForType(DT_INIT);
unsigned int original_init = value ? value->getValue() : 0;
ElfSection* init_array = nullptr;
if (!value || !value->getValue()) {
value = dyn->getValueForType(DT_INIT_ARRAYSZ);
if (value && value->getValue() >= entry_sz)
init_array = dyn->getSectionForType(DT_INIT_ARRAY);
}
Elf_Shdr relhack_section(relhack64_section);
Elf_Shdr relhackcode_section(relhackcode64_section);
auto relhack_ptr = std::make_unique<ElfRelHack_Section>(relhack_section);
auto relhack = relhack_ptr.get();
ElfSymtab_Section* symtab = (ElfSymtab_Section*)section->getLink();
Elf_SymValue* sym = symtab->lookup("__cxa_pure_virtual");
std::vector<Rel_Type> new_rels;
std::vector<Rel_Type> init_array_relocs;
size_t init_array_insert = 0;
for (typename std::vector<Rel_Type>::iterator i = section->rels.begin();
i != section->rels.end(); ++i) {
// We don't need to keep R_*_NONE relocations
if (!ELF64_R_TYPE(i->r_info)) continue;
ElfLocation loc(i->r_offset, elf);
// __cxa_pure_virtual is a function used in vtables to point at pure
// virtual methods. The __cxa_pure_virtual function usually abort()s.
// These functions are however normally never called. In the case
// where they would, jumping to the null address instead of calling
// __cxa_pure_virtual is going to work just as well. So we can remove
// relocations for the __cxa_pure_virtual symbol and null out the
// content at the offset pointed by the relocation.
if (sym) {
if (sym->defined) {
// If we are statically linked to libstdc++, the
// __cxa_pure_virtual symbol is defined in our lib, and we
// have relative relocations (rel_type) for it.
if (ELF64_R_TYPE(i->r_info) == rel_type) {
Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(),
elf->getData());
if (addr.value == sym->value.getValue()) {
memset((char*)loc.getBuffer(), 0, entry_sz);
continue;
}
}
} else {
// If we are dynamically linked to libstdc++, the
// __cxa_pure_virtual symbol is undefined in our lib, and we
// have absolute relocations (rel_type2) for it.
if ((ELF64_R_TYPE(i->r_info) == rel_type2) &&
(sym == &symtab->syms[ELF64_R_SYM(i->r_info)])) {
memset((char*)loc.getBuffer(), 0, entry_sz);
continue;
}
}
}
// Keep track of the relocations associated with the init_array section.
if (init_array && i->r_offset >= init_array->getAddr() &&
i->r_offset < init_array->getAddr() + init_array->getSize()) {
init_array_relocs.push_back(*i);
init_array_insert = new_rels.size();
} else if (!(loc.getSection()->getFlags() & SHF_WRITE) ||
(ELF64_R_TYPE(i->r_info) != rel_type)) {
// Don't pack relocations happening in non writable sections.
// Our injected code is likely not to be allowed to write there.
new_rels.push_back(*i);
} else if (i->r_offset & 1) {
// RELR packing doesn't support relocations at an odd address, but
// there shouldn't be any.
new_rels.push_back(*i);
} else {
// With Elf_Rel, the value pointed by the relocation offset is the addend.
// With Elf_Rela, the addend is in the relocation entry, but the elfhacked
// relocation info doesn't contain it. Elfhack relies on the value pointed
// by the relocation offset to also contain the addend. Which is true with
// BFD ld and gold, but not lld, which leaves that nulled out. So if that
// value is nulled out, we update it to the addend.
Elf_Addr addr(loc.getBuffer(), entry_sz, elf->getClass(), elf->getData());
unsigned int addend = get_addend(&*i, elf);
if (addr.value == 0) {
addr.value = addend;
addr.serialize(const_cast<char*>(loc.getBuffer()), entry_sz,
elf->getClass(), elf->getData());
} else if (addr.value != addend) {
fprintf(stderr,
"Relocation addend inconsistent with content. Skipping\n");
return -1;
}
relhack->push_back(i->r_offset);
}
}
// Last entry must be a nullptr
relhack->push_back(0);
if (init_array) {
// Some linkers create a DT_INIT_ARRAY section that, for all purposes,
// is empty: it only contains 0x0 or 0xffffffff pointers with no
// relocations. In some other cases, there can be null pointers with no
// relocations in the middle of the section. Example: crtend_so.o in the
// Android NDK contains a sized .init_array with a null pointer and no
// relocation, which ends up in all Android libraries, and in some cases it
// ends up in the middle of the final .init_array section. If we have such a
// reusable slot at the beginning of .init_array, we just use it. It we have
// one in the middle of .init_array, we slide its content to move the "hole"
// at the beginning and use it there (we need our injected code to run
// before any other). Otherwise, replace the first entry and keep the
// original pointer.
std::sort(init_array_relocs.begin(), init_array_relocs.end(),
[](Rel_Type& a, Rel_Type& b) { return a.r_offset < b.r_offset; });
size_t expected = init_array->getAddr();
const size_t zero = 0;
const size_t all = SIZE_MAX;
const char* data = init_array->getData();
size_t length = Elf_Addr::size(elf->getClass());
size_t off = 0;
for (; off < init_array_relocs.size(); off++) {
auto& r = init_array_relocs[off];
if (r.r_offset >= expected + length &&
(memcmp(data + off * length, &zero, length) == 0 ||
memcmp(data + off * length, &all, length) == 0)) {
// We found a hole, move the preceding entries.
while (off) {
auto& p = init_array_relocs[--off];
if (ELF64_R_TYPE(p.r_info) == rel_type) {
unsigned int addend = get_addend(&p, elf);
p.r_offset += length;
set_relative_reloc(&p, elf, addend);
} else {
fprintf(stderr,
"Unsupported relocation type in DT_INIT_ARRAY. Skipping\n");
return -1;
}
}
break;
}
expected = r.r_offset + length;
}
if (off == 0) {
// We either found a hole above, and can now use the first entry,
// or the init_array section is effectively empty (see further above)
// and we also can use the first entry.
// Either way, code further below will take care of actually setting
// the right r_info and r_added for the relocation.
Rel_Type rel;
rel.r_offset = init_array->getAddr();
init_array_relocs.insert(init_array_relocs.begin(), rel);
} else {
// Use relocated value of DT_INIT_ARRAY's first entry for the
// function to be called by the injected code.
auto& rel = init_array_relocs[0];
unsigned int addend = get_addend(&rel, elf);
if (ELF64_R_TYPE(rel.r_info) == rel_type) {
original_init = addend;
} else if (ELF64_R_TYPE(rel.r_info) == rel_type2) {
ElfSymtab_Section* symtab = (ElfSymtab_Section*)section->getLink();
original_init =
symtab->syms[ELF64_R_SYM(rel.r_info)].value.getValue() + addend;
} else {
fprintf(stderr,
"Unsupported relocation type for DT_INIT_ARRAY's first entry. "
"Skipping\n");
return -1;
}
}
new_rels.insert(std::next(new_rels.begin(), init_array_insert),
init_array_relocs.begin(), init_array_relocs.end());
}
unsigned int mprotect_cb = 0;
unsigned int sysconf_cb = 0;
// If there is a relro segment, our injected code will run after the linker
// sets the corresponding pages read-only. We need to make our code change
// that to read-write before applying relocations, which means it needs to
// call mprotect. To do that, we need to find a reference to the mprotect
// symbol. In case the library already has one, we use that, but otherwise, we
// add the symbol. Then the injected code needs to be able to call the
// corresponding function, which means it needs access to a pointer to it. We
// get such a pointer by making the linker apply a relocation for the symbol
// at an address our code can read. The problem here is that there is not much
// relocated space where we can put such a pointer, so we abuse the bss
// section temporarily (it will be restored to a null value before any code
// can actually use it)
if (elf->getSegmentByType(PT_GNU_RELRO)) {
ElfSection* gnu_versym = dyn->getSectionForType(DT_VERSYM);
auto lookup = [&symtab, &gnu_versym](const char* symbol) {
Elf_SymValue* sym_value = symtab->lookup(symbol, STT(FUNC));
if (!sym_value) {
symtab->syms.emplace_back();
sym_value = &symtab->syms.back();
symtab->grow(symtab->syms.size() * symtab->getEntSize());
sym_value->name =
((ElfStrtab_Section*)symtab->getLink())->getStr(symbol);
sym_value->info = ELF64_ST_INFO(STB_GLOBAL, STT_FUNC);
sym_value->other = STV_DEFAULT;
new (&sym_value->value) ElfLocation(nullptr, 0, ElfLocation::ABSOLUTE);
sym_value->size = 0;
sym_value->defined = false;
// The DT_VERSYM data (in the .gnu.version section) has the same number
// of entries as the symbols table. Since we added one entry there, we
// need to add one entry here. Zeroes in the extra data means no version
// for that symbol, which is the simplest thing to do.
if (gnu_versym) {
gnu_versym->grow(gnu_versym->getSize() + gnu_versym->getEntSize());
}
}
return sym_value;
};
Elf_SymValue* mprotect = lookup("mprotect");
Elf_SymValue* sysconf = lookup("sysconf");
// Add relocations for the mprotect and sysconf symbols.
auto add_relocation_to = [&new_rels, &symtab, rel_type2](
Elf_SymValue* symbol, unsigned int location) {
new_rels.emplace_back();
Rel_Type& rel = new_rels.back();
memset(&rel, 0, sizeof(rel));
rel.r_info = ELF64_R_INFO(
std::distance(symtab->syms.begin(),
std::vector<Elf_SymValue>::iterator(symbol)),
rel_type2);
rel.r_offset = location;
return location;
};
// Find the beginning of the bss section, and use an aligned location in
// there for the relocation.
for (ElfSection* s = elf->getSection(1); s != nullptr; s = s->getNext()) {
if (s->getType() != SHT_NOBITS ||
(s->getFlags() & (SHF_TLS | SHF_WRITE)) != SHF_WRITE) {
continue;
}
size_t ptr_size = Elf_Addr::size(elf->getClass());
size_t usable_start = (s->getAddr() + ptr_size - 1) & ~(ptr_size - 1);
size_t usable_end = (s->getAddr() + s->getSize()) & ~(ptr_size - 1);
if (usable_end - usable_start >= 2 * ptr_size) {
mprotect_cb = add_relocation_to(mprotect, usable_start);
sysconf_cb = add_relocation_to(sysconf, usable_start + ptr_size);
break;
}
}
if (mprotect_cb == 0 || sysconf_cb == 0) {
fprintf(stderr, "Couldn't find .bss. Skipping\n");
return -1;
}
}
size_t old_size = section->getSize();
section->rels.assign(new_rels.begin(), new_rels.end());
section->shrink(new_rels.size() * section->getEntSize());
auto relhackcode_ptr = std::make_unique<ElfRelHackCode_Section>(
relhackcode_section, *elf, *relhack, original_init, mprotect_cb,
sysconf_cb);
auto relhackcode = relhackcode_ptr.get();
// Find the first executable section, and insert the relhack code before
// that. The relhack data is inserted between .rel.dyn and .rel.plt.
ElfSection* first_executable = nullptr;
for (ElfSection* s = elf->getSection(1); s != nullptr; s = s->getNext()) {
if (s->getFlags() & SHF_EXECINSTR) {
first_executable = s;
break;
}
}
if (!first_executable) {
fprintf(stderr, "Couldn't find executable section. Skipping\n");
return -1;
}
// Once the pointers for relhack, relhackcode, and init are inserted,
// their ownership is transferred to the Elf object, which will free
// them when itself is freed. Hence the .release() calls here (and
// the init.release() call later on). Please note that the raw
// pointers will continue to be used after .release(), which is why
// we are caching them (since .release() will end up setting the
// smart pointer's internal raw pointer to nullptr).
relhack->insertBefore(section);
relhack_ptr.release();
relhackcode->insertBefore(first_executable);
relhackcode_ptr.release();
// Don't try further if we can't gain from the relocation section size change.
// We account for the fact we're going to split the PT_LOAD before the
// injected code section, so the overhead of the page alignment for section
// needs to be accounted for.
size_t align = first_executable->getSegmentByType(PT_LOAD)->getAlign();
size_t new_size = relhack->getSize() + section->getSize() +
relhackcode->getSize() +
(relhackcode->getAddr() & (align - 1));
if (!force && (new_size >= old_size || old_size - new_size < align)) {
fprintf(stderr, "No gain. Skipping\n");
return -1;
}
// .eh_frame/.eh_frame_hdr may be between the relocation sections and the
// executable sections. When that happens, we may end up creating a separate
// PT_LOAD for just both of them because they are not considered relocatable.
// But they are, in fact, kind of relocatable, albeit with some manual work.
// Which we'll do here.
ElfSegment* eh_frame_segment = elf->getSegmentByType(PT_GNU_EH_FRAME);
ElfSection* eh_frame_hdr =
eh_frame_segment ? eh_frame_segment->getFirstSection() : nullptr;
// The .eh_frame section usually follows the eh_frame_hdr section.
ElfSection* eh_frame = eh_frame_hdr ? eh_frame_hdr->getNext() : nullptr;
ElfSection* first = eh_frame_hdr;
ElfSection* second = eh_frame;
if (eh_frame && strcmp(eh_frame->getName(), ".eh_frame")) {
// But sometimes it appears *before* the eh_frame_hdr section.
eh_frame = eh_frame_hdr->getPrevious();
first = eh_frame;
second = eh_frame_hdr;
}
if (eh_frame_hdr && (!eh_frame || strcmp(eh_frame->getName(), ".eh_frame"))) {
throw std::runtime_error(
"Expected to find an .eh_frame section adjacent to .eh_frame_hdr");
}
if (eh_frame && first->getAddr() > relhack->getAddr() &&
second->getAddr() < first_executable->getAddr()) {
// The distance between both sections needs to be preserved because
// eh_frame_hdr contains relative offsets to eh_frame. Well, they could be
// relocated too, but it's not worth the effort for the few number of bytes
// this would save.
unsigned int distance = second->getAddr() - first->getAddr();
unsigned int origAddr = eh_frame->getAddr();
ElfSection* previous = first->getPrevious();
first->getShdr().sh_addr = (previous->getAddr() + previous->getSize() +
first->getAddrAlign() - 1) &
~(first->getAddrAlign() - 1);
second->getShdr().sh_addr =
(first->getAddr() + std::min(first->getSize(), distance) +
second->getAddrAlign() - 1) &
~(second->getAddrAlign() - 1);
// Re-adjust to keep the original distance.
// If the first section has a smaller alignment requirement than the second,
// the second will be farther away, so we need to adjust the first.
// If the second section has a smaller alignment requirement than the first,
// it will already be at the right distance.
first->getShdr().sh_addr = second->getAddr() - distance;
assert(distance == second->getAddr() - first->getAddr());
first->markDirty();
adjust_eh_frame(eh_frame, origAddr, elf);
}
// Adjust PT_LOAD segments
for (ElfSegment* segment = elf->getSegmentByType(PT_LOAD); segment;
segment = elf->getSegmentByType(PT_LOAD, segment)) {
maybe_split_segment(elf, segment);
}
// Ensure Elf sections will be at their final location.
elf->normalize();
auto init =
std::make_unique<ElfLocation>(relhackcode, relhackcode->getEntryPoint());
if (init_array) {
// Adjust the first DT_INIT_ARRAY entry to point at the injected code
// by transforming its relocation into a relative one pointing to the
// address of the injected code.
Rel_Type* rel = §ion->rels[init_array_insert];
rel->r_info = ELF64_R_INFO(0, rel_type); // Set as a relative relocation
set_relative_reloc(rel, elf, init->getValue());
} else {
if (dyn->setValueForType(DT_INIT, init.get())) {
init.release();
} else {
fprintf(stderr, "Can't grow .dynamic section to set DT_INIT. Skipping\n");
return -1;
}
}
// TODO: adjust the value according to the remaining number of relative
// relocations
if (dyn->getValueForType(Rel_Type::d_tag_count))
dyn->setValueForType(Rel_Type::d_tag_count, new ElfPlainValue(0));
return 0;
}
static inline int backup_file(const char* name) {
std::string fname(name);
fname += ".bak";
return rename(name, fname.c_str());
}
void do_file(const char* name, bool backup = false, bool force = false) {
std::ifstream file(name, std::ios::in | std::ios::binary);
Elf elf(file);
unsigned int size = elf.getSize();
fprintf(stderr, "%s: ", name);
if (elf.getType() != ET_DYN) {
fprintf(stderr, "Not a shared object. Skipping\n");
return;
}
for (ElfSection* section = elf.getSection(1); section != nullptr;
section = section->getNext()) {
if (section->getName() &&
(strncmp(section->getName(), ".elfhack.", 9) == 0)) {
fprintf(stderr, "Already elfhacked. Skipping\n");
return;
}
}
int exit = -1;
switch (elf.getMachine()) {
case EM_386:
exit =
do_relocation_section<Elf_Rel>(&elf, R_386_RELATIVE, R_386_32, force);
break;
case EM_X86_64:
exit = do_relocation_section<Elf_Rela>(&elf, R_X86_64_RELATIVE,
R_X86_64_64, force);
break;
case EM_ARM:
exit = do_relocation_section<Elf_Rel>(&elf, R_ARM_RELATIVE, R_ARM_ABS32,
force);
break;
case EM_AARCH64:
exit = do_relocation_section<Elf_Rela>(&elf, R_AARCH64_RELATIVE,
R_AARCH64_ABS64, force);
break;
default:
throw std::runtime_error("unsupported architecture");
}
if (exit == 0) {
if (!force && (elf.getSize() >= size)) {
fprintf(stderr, "No gain. Skipping\n");
} else if (backup && backup_file(name) != 0) {
fprintf(stderr, "Couln't create backup file\n");
} else {
std::ofstream ofile(name,
std::ios::out | std::ios::binary | std::ios::trunc);
elf.write(ofile);
fprintf(stderr, "Reduced by %d bytes\n", size - elf.getSize());
}
}
}
void undo_file(const char* name, bool backup = false) {
std::ifstream file(name, std::ios::in | std::ios::binary);
Elf elf(file);
unsigned int size = elf.getSize();
fprintf(stderr, "%s: ", name);
if (elf.getType() != ET_DYN) {
fprintf(stderr, "Not a shared object. Skipping\n");
return;
}
ElfSection *data = nullptr, *text = nullptr;
for (ElfSection* section = elf.getSection(1); section != nullptr;
section = section->getNext()) {
if (section->getName() && (strcmp(section->getName(), elfhack_data) == 0))
data = section;
if (section->getName() && (strcmp(section->getName(), elfhack_text) == 0))
text = section;
}
if (!data || !text) {
fprintf(stderr, "Not elfhacked. Skipping\n");
return;
}
// When both elfhack sections are in the same segment, try to merge
// the segment that contains them both and the following segment.
// When the elfhack sections are in separate segments, try to merge
// those segments.
ElfSegment* first = data->getSegmentByType(PT_LOAD);
ElfSegment* second = text->getSegmentByType(PT_LOAD);
if (first == second) {
second = elf.getSegmentByType(PT_LOAD, first);
}
// Only merge the segments when their flags match.
if (second->getFlags() != first->getFlags()) {
fprintf(stderr, "Couldn't merge PT_LOAD segments. Skipping\n");
return;
}
// Move sections from the second PT_LOAD to the first, and remove the
// second PT_LOAD segment.
for (std::list<ElfSection*>::iterator section = second->begin();
section != second->end(); ++section)
first->addSection(*section);
elf.removeSegment(second);
elf.normalize();
if (backup && backup_file(name) != 0) {
fprintf(stderr, "Couln't create backup file\n");
} else {
std::ofstream ofile(name,
std::ios::out | std::ios::binary | std::ios::trunc);
elf.write(ofile);
fprintf(stderr, "Grown by %d bytes\n", elf.getSize() - size);
}
}
int main(int argc, char* argv[]) {
int arg;
bool backup = false;
bool force = false;
bool revert = false;
char* lastSlash = rindex(argv[0], '/');
if (lastSlash != nullptr) rundir = strndup(argv[0], lastSlash - argv[0]);
for (arg = 1; arg < argc; arg++) {
if (strcmp(argv[arg], "-f") == 0)
force = true;
else if (strcmp(argv[arg], "-b") == 0)
backup = true;
else if (strcmp(argv[arg], "-r") == 0)
revert = true;
else if (revert) {
undo_file(argv[arg], backup);
} else
do_file(argv[arg], backup, force);
}
free(rundir);
return 0;
}
|